JPS61283178A - Photoconductive type semiconductor photodetector - Google Patents
Photoconductive type semiconductor photodetectorInfo
- Publication number
- JPS61283178A JPS61283178A JP60125427A JP12542785A JPS61283178A JP S61283178 A JPS61283178 A JP S61283178A JP 60125427 A JP60125427 A JP 60125427A JP 12542785 A JP12542785 A JP 12542785A JP S61283178 A JPS61283178 A JP S61283178A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- region
- forbidden band
- band width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 abstract description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 230000000779 depleting effect Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/103—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
- H01L31/1035—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/112—Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
- H01L31/1124—Devices with PN homojunction gate
- H01L31/1126—Devices with PN homojunction gate the device being a field-effect phototransistor
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信あるいは光情報処理等に用いる光検出器
としての光導電型半導体受光素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoconductive semiconductor light-receiving element as a photodetector used in optical communication, optical information processing, etc.
半導体受光素子は長距離大容量あるいは光情報処理用等
の光通信システムにおける光検出器として重要なもので
あシ、光源としての半導体レーザあるいは発光ダイオー
ドと共にその研究、開発が進められている。この様な受
光素子として化合物半導体を用いた光導電型半導体受光
素子が比較的簡便な方法によシ得°られ、かつ高速、高
感度の可能性を有する点から注目されてきてお9、既存
のアバランシ・フォトダイオード、あるかはフォトダイ
オードと並んで優れた特性の実現が望まれている。Semiconductor photodetectors are important as photodetectors in optical communication systems for long-distance, large-capacity or optical information processing, and their research and development are progressing along with semiconductor lasers or light-emitting diodes as light sources. Photoconductive semiconductor light-receiving devices using compound semiconductors have attracted attention because they can be obtained by a relatively simple method and have the potential for high speed and high sensitivity9. Avalanche photodiodes, or even photodiodes, are expected to have excellent characteristics.
従来、高速応答を得るために、2次元電子ガスを利用し
た光導電型半導体受光素子として、第3図に示す構造の
報告例がある〔アプライド・フィジクス・レター(Ap
pl −Phys 、Lett 、、43[3)e I
August1983 ) 〕。この例では、n−I
nGaAs13 f光吸収層とし、InGaAs13と
n−AtInAs12,14の接合による伝導体不連続
に起因した低濃度InGaAs13層中の谷の領域に、
光励起されたキャリアの内篭子を空間的に閉じ込める事
によりドナーイオン等による散乱のない電子の高移動度
を利用している。この様にして得られた素子は、立上り
時間80p!11!+(+、半値全幅250psecの
光応答特性を示したと報告しているが、正孔の遅いドリ
フト速度に規定されたn secオーダーの遅い光応答
が長いテールとして見られた。Conventionally, in order to obtain high-speed response, there has been a report on the structure shown in Figure 3 as a photoconductive type semiconductor light-receiving element that utilizes two-dimensional electron gas [Applied Physics Letters (Ap.
pl-Phys, Lett,, 43[3)e I
August 1983)]. In this example, n-I
nGaAs13 f light absorption layer, in the valley region in the low concentration InGaAs13 layer caused by conductor discontinuity due to the junction of InGaAs13 and n-AtInAs12,14,
By spatially confining the inner cage of photoexcited carriers, the high mobility of electrons without scattering by donor ions etc. is utilized. The device thus obtained has a rise time of 80p! 11! +(+, reported to exhibit a photoresponse characteristic with a full width at half maximum of 250 psec, but a slow photoresponse on the order of n sec determined by the slow drift velocity of holes was observed as a long tail.
図中11は半絶縁性InP基板、15はn”−Galn
As、16は電極である。In the figure, 11 is a semi-insulating InP substrate, 15 is an n”-Galn
As, 16 is an electrode.
この様なパルス応答の立下がりの劣化、即ち、遅い正孔
の影響を除く目的で第4図に示す様な構造の光導電型半
導体受光素子も報告されている〔アプライド・フィジク
ス・レター(Appl、Phys。A photoconductive semiconductor light-receiving element with a structure as shown in Fig. 4 has also been reported for the purpose of eliminating such deterioration in the fall of the pulse response, that is, the influence of slow holes [Applied Physics Letters]. , Phys.
Lett0m43QJ−15Deasmber 198
3 ) ”l。この例ではGaAs23ヲ光吸収層とし
、 n−GaAs 24とn−AtGaAa25との接
合によってn−GaA+s 24中に生ずる2次元電子
ガスを利用している。p−GaAs基板21ヲダートと
し、逆バイアスを加えることによシ正孔t−ff−)か
ら取り出して、ソース・ドレイン間を流れる光電流に寄
与させないことにより、遅い成分のない80p sea
程度の立ち下がシ時間が得られていると報告している。Lett0m43QJ-15Deasmber 198
3) "l. In this example, GaAs 23 is used as a light absorption layer, and two-dimensional electron gas generated in n-GaA+s 24 by joining n-GaAs 24 and n-AtGaAa 25 is used. P-GaAs substrate 21 is used as a light absorption layer. By applying a reverse bias, the holes are taken out from the holes (t-ff-) and do not contribute to the photocurrent flowing between the source and drain, resulting in an 80 p sea without slow components.
It has been reported that a certain amount of time has been obtained for the downtime.
図中22はp −GaAs 、 26はn −GaAm
。In the figure, 22 is p-GaAs, 26 is n-GaAm
.
27はf−)電極、28は電極である。27 is an f-) electrode, and 28 is an electrode.
しかしながら、この様なダートによる遅い成分の取り出
しは、光−電気信号変換効率の低下の上に成立しており
、高い信号/雑音比が求められる光通信システム等の光
検出器としては必ずしも適していない。However, the extraction of slow components by such darts results in a decrease in optical-to-electrical signal conversion efficiency, and is not necessarily suitable as a photodetector for optical communication systems that require a high signal/noise ratio. do not have.
本発明の目的は、この様な従来の欠点を除去せしめ、高
い光−電気信号変換効率を保ち、かつ高速応答特性を有
する光導電型半導体受光素子を提供する仁とKある。SUMMARY OF THE INVENTION An object of the present invention is to provide a photoconductive semiconductor light-receiving device which eliminates such conventional drawbacks, maintains high optical-to-electrical signal conversion efficiency, and has high-speed response characteristics.
本発明は少なくとも禁制帯幅の異なる同一導電型の半導
体層を接して有する半導体において、上記禁制帯幅の大
なる半導体層の上記禁制帯幅の小なる半導体層と接しな
い領域に上記の導電型と逆の導電型の半導体領域を形成
することによりp−n接合を形成し、このp−n接合に
逆バイアスを印加することにより前記禁制帯幅の小なる
半導体層忙わたり空乏化することを特徴とする。The present invention provides a semiconductor having at least semiconductor layers of the same conductivity type with different forbidden band widths in contact with each other, in which a region of the semiconductor layer with the large forbidden band width that is not in contact with the semiconductor layer with the small forbidden band width is of the conductive type. A p-n junction is formed by forming a semiconductor region of the opposite conductivity type, and by applying a reverse bias to this p-n junction, it is possible to prevent depletion of the semiconductor layer with a small forbidden band width. Features.
禁制帯幅の大なる半導体層中にp−n接合を形成し、こ
のp−n接合に逆バイアスを印加して、前記禁制帯幅の
小なる光吸収層にわたり空乏化することによ)、本、禁
制帯幅の小なる半導体層での光励起によって生成する電
子、正孔対の内、小数キャリアとなるキャリアを前記禁
制帯幅が異なる2つの半導体のバンド構造に起因したバ
ンドの不連続によシ2次元ガス化することにより高速応
答を得ることを可能とした。By forming a p-n junction in a semiconductor layer with a large forbidden band width, applying a reverse bias to this p-n junction, and depleting the light absorption layer with a small forbidden band width), In this book, among electron and hole pairs generated by photoexcitation in a semiconductor layer with a small forbidden band width, carriers that become minority carriers are generated by band discontinuity caused by the band structure of two semiconductors with different forbidden band widths. By performing two-dimensional gasification, it was possible to obtain a high-speed response.
以下1本発明の実施例について図面を参照して説明する
。An embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明の一実施例を示す概略横断面図である
。本実施例は、まず(100)面を有するn+−InP
基板1の上にエピタキシャル成長法(側光ば分子線エピ
タキシャル成長法)によシ膜厚0.51Rn、不純物濃
度I X 1017z−’のn−AtInAa層2、膜
厚0.3μm、不純物濃度lX10m のn−AAI
nAs層3を形成後、膜厚2μm不純物濃度5X10
cm のn −InGaAs層4、膜厚1.5μm、不
純物濃度5 X 10”m−’のn−InP層5を形成
する。この様にして得たウェーハに、例えば5IO2膜
を選択拡散マスクとして選択的に例えばZnを拡散する
ことによりp −InP領域6を形成する。FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention. In this example, first, n+-InP having (100) plane
An n-AtInAa layer 2 with a film thickness of 0.51Rn and an impurity concentration I x 1017z-' is grown on the substrate 1 by an epitaxial growth method (side-light molecular beam epitaxial growth method). -AAI
After forming the nAs layer 3, the film thickness is 2 μm and the impurity concentration is 5×10
An n-InGaAs layer 4 with a thickness of 1.5 μm and an n-InP layer 5 with an impurity concentration of 5×10”m are formed on the wafer thus obtained. For example, a 5IO2 film is used as a selective diffusion mask on the wafer thus obtained. The p-InP region 6 is formed by selectively diffusing, for example, Zn.
次に例えばAuGe合金を蒸着後、所定の領域外を除去
し次後、高温処理することによりn領域7を形成し、そ
の後、リード線取シ出し用電極8及び8′を形成して光
導電型受光素子を完成する。Next, after depositing, for example, an AuGe alloy, the area outside the predetermined area is removed, and then high temperature treatment is performed to form the n-region 7. After that, lead wire extraction electrodes 8 and 8' are formed to conduct photoconductivity. Complete the type photodetector.
上記した本発明の一実施例の効果を第2図の概略バンド
構造図を用いて説明する。光信号は光吸収層であるIn
GaAs層4で吸収され光励起された電子−正孔対が発
生する。この内、電子は前記A/JnAa層3とInG
aAs層4の伝導体の不連続に起因したInGaAs層
4内でのバンドのまがシによる2次元ガス領域に移動し
、一方正孔は、前記InP層5と6とによ膜形成された
p −n接合に逆バイアスが印加されることによシ空乏
層のn−InGaAs層4内への拡がシによる正孔の2
次元ガス形成域に移動する。The effects of the embodiment of the present invention described above will be explained using the schematic band structure diagram shown in FIG. The optical signal is transmitted through the light absorption layer In
Electron-hole pairs that are absorbed and photoexcited in the GaAs layer 4 are generated. Among these, the electrons are connected to the A/JnAa layer 3 and the InG
Due to the band distortion in the InGaAs layer 4 caused by the discontinuity of the conductor in the aAs layer 4, the holes move to the two-dimensional gas region, while the holes are formed in the InP layers 5 and 6. By applying a reverse bias to the p-n junction, the depletion layer spreads into the n-InGaAs layer 4, and the holes due to
Move to the dimensional gas formation area.
このとき第1図において、電極8,8間はソース・ドレ
インを形成する為に電位差が与えられており上記正孔及
び電子の2次元ガスは高速に取シ出すことが可能となる
。At this time, in FIG. 1, a potential difference is applied between the electrodes 8 and 8 to form a source and drain, and the two-dimensional gas of holes and electrons can be extracted at high speed.
以上詳しく説明した様に、本発明によれば光励起された
キャリアの両方を2次元ガス化が可能とな)、光−電気
信号変換効率の低下を抑え、かつ高速応答特性を有する
光導電型半導体受光素子を提供できる効果を有するもの
である。As explained in detail above, according to the present invention, it is possible to two-dimensionally gasify both photoexcited carriers), suppress a decrease in photo-electrical signal conversion efficiency, and have high-speed response characteristics. This has the effect of providing a light receiving element.
第1図は本発明の一実施例の構造の横断面図、第2図は
第1図の構造による素子の効果を説明する為のバンド構
造概略図、第3図及び第4図は従来の光導電型半導体受
光素子の断面模式図である。
1 ・= n−InP基板、2− n−AtInAa
、:l・・n−gInAs、4 ・・・n−InGaA
s 、 5− n−InP 、 6−・p −InP。
7・・・n領域、8・・・電極。
4、− TL−ITLG(LAS
5・・−n−rThP
第2図
一十
画Z
老2
一一一一一−1
をFIG. 1 is a cross-sectional view of the structure of one embodiment of the present invention, FIG. 2 is a schematic diagram of the band structure for explaining the effect of the device with the structure of FIG. 1, and FIGS. 3 and 4 are the conventional FIG. 2 is a schematic cross-sectional view of a photoconductive semiconductor light-receiving element. 1 ・= n-InP substrate, 2- n-AtInAa
, :l...n-gInAs, 4...n-InGaA
s, 5-n-InP, 6-·p-InP. 7...n region, 8...electrode. 4, -TL-ITLG(LAS 5...-n-rThP Figure 2 10th stroke Z Old 2 1111-1
Claims (1)
層を接して有する半導体において、上記禁制帯幅の大な
る半導体層の上記禁制帯幅の小なる半導体層と接しない
領域に上記の導電型と逆の導電型の半導体領域を形成す
ることによりp−n接合とし、このp−n接合に逆バイ
アスを印加することにより前記禁制帯幅の小なる半導体
層にわたり空乏化するようにしたことを特徴とする光導
電型半導体受光素子。(1) In a semiconductor having at least semiconductor layers of the same conductivity type with different forbidden band widths in contact with each other, a region of the semiconductor layer with a large forbidden band width that is not in contact with the semiconductor layer with a small forbidden band width has a conductivity type of the above conductivity type. A p-n junction is formed by forming a semiconductor region of the opposite conductivity type, and by applying a reverse bias to this p-n junction, the semiconductor layer having a small forbidden band width is depleted. Features of photoconductive semiconductor light-receiving device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60125427A JPS61283178A (en) | 1985-06-10 | 1985-06-10 | Photoconductive type semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60125427A JPS61283178A (en) | 1985-06-10 | 1985-06-10 | Photoconductive type semiconductor photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61283178A true JPS61283178A (en) | 1986-12-13 |
Family
ID=14909826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60125427A Pending JPS61283178A (en) | 1985-06-10 | 1985-06-10 | Photoconductive type semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61283178A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160283A (en) * | 1986-12-23 | 1988-07-04 | Fujitsu Ltd | Semiconductor photodetector |
US5272364A (en) * | 1991-07-01 | 1993-12-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor photodetector device with short lifetime region |
-
1985
- 1985-06-10 JP JP60125427A patent/JPS61283178A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63160283A (en) * | 1986-12-23 | 1988-07-04 | Fujitsu Ltd | Semiconductor photodetector |
US5272364A (en) * | 1991-07-01 | 1993-12-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor photodetector device with short lifetime region |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4731641A (en) | Avalanche photo diode with quantum well layer | |
US4684969A (en) | Heterojunction avalanche photodiode | |
JPS63955B2 (en) | ||
JPS61283178A (en) | Photoconductive type semiconductor photodetector | |
JPS6244709B2 (en) | ||
JPS6285477A (en) | Photosemiconductor device | |
JPS60110177A (en) | Manufacture of semiconductor photodetector | |
JPS61283177A (en) | Photoconductive type semiconductor photodetector | |
JPS6255969A (en) | Photoconductive semiconductor photodetector | |
JPS61289678A (en) | Avalanche photo diode | |
JPH0437591B2 (en) | ||
JPS59232470A (en) | Semiconductor light receiving element | |
JP2667413B2 (en) | Semiconductor light receiving device | |
JPH01196182A (en) | Photodiode | |
JPS6255968A (en) | Photoconductive semiconductor photodetector | |
JPS59149070A (en) | Photodetector | |
JPS61198688A (en) | Semiconductor photodetector | |
JPH0750429A (en) | Photodetector and manufacture thereof | |
JPH0265279A (en) | Semiconductor photodetecting element | |
JPS6157716B2 (en) | ||
JP2995751B2 (en) | Semiconductor light receiving element | |
JPS61121482A (en) | Photoconductive semiconductor light-receiving element | |
JPS59132687A (en) | Semiconductor photo detecting element | |
JPS62169376A (en) | Photodiode | |
JPH0451990B2 (en) |