JPS6255969A - Photoconductive semiconductor photodetector - Google Patents

Photoconductive semiconductor photodetector

Info

Publication number
JPS6255969A
JPS6255969A JP60197012A JP19701285A JPS6255969A JP S6255969 A JPS6255969 A JP S6255969A JP 60197012 A JP60197012 A JP 60197012A JP 19701285 A JP19701285 A JP 19701285A JP S6255969 A JPS6255969 A JP S6255969A
Authority
JP
Japan
Prior art keywords
layer
type
impurity density
semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197012A
Other languages
Japanese (ja)
Inventor
Kenshin Taguchi
田口 剣申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60197012A priority Critical patent/JPS6255969A/en
Publication of JPS6255969A publication Critical patent/JPS6255969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector having high speed responsiveness by forming a P-N junction in a semiconductor layer having a large forbidden band width, and depleting a light absorbing layer having a small forbidden band width by means of an inner electric field to secondarily gasify a light-excited carrier. CONSTITUTION:An n-type A InAs layer 2 of 1X10<17> of impurity density, an n<-> type A InAs layer 3 of 1X10<15> of impurity density, an n<-> type InGaAs layer 4 of 1X10<14> of impurity density, an n<-> type InGaAs layer 5 of 5X10<14> of impurity density, an P<+> type InP layer 6 of 1X10<18> of impurity density are laminated and epitaxially grown on an n<+> type InP substrate 1 having (100) plane. Then, an n<+> type region 7 to become source and drain regions is formed at the opposed peripheral edges by diffusing to intrude to the layer 2, and leads leading electrodes 8 are coated on the surface. Thus, incident light signal is absorbed by the layer 4, electron-hole pairs are generated, the electrons are moved to the secondary gas region by the bent of a band in the layer 4, and the holes are moved to the secondary gas region expanded by the inner electric field generated by P<+>-N<-> junction of the layers 5 and 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信あるいは光情報処理等に用いる光検出
器としての光導電型半導体受光素子゛に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoconductive semiconductor light-receiving element as a photodetector used in optical communication, optical information processing, etc.

〔従来技術とその問題点〕[Prior art and its problems]

半導体受光素子は、長距離大容量あるいは光情報処理用
等の光通信システムにおける光検出器として重要なもの
であり、光源としての半導体レーザあるいは発光ダイオ
ードと共にその研究、開発が進められている。この様な
半導体受光素子として、化合物半導体を用いた光導電型
半導体受光素子が、比較的簡便な方法により得られ、か
つ、高速、高感度の可能性を有する点から注目されてき
ており、既存のアバランシ・フォトダイオード。
Semiconductor light-receiving elements are important as photodetectors in optical communication systems for long-distance, large-capacity or optical information processing, and their research and development are progressing along with semiconductor lasers or light-emitting diodes as light sources. As such a semiconductor light-receiving device, a photoconductive semiconductor light-receiving device using a compound semiconductor has been attracting attention because it can be obtained by a relatively simple method and has the possibility of high speed and high sensitivity. avalanche photodiode.

あるいはフォトダイオードと並んで優れた特性の実現が
望まれている。
Alternatively, it is desired to realize characteristics as excellent as those of photodiodes.

従来、高速応答を得るなめに2次元電子ガスを利用した
光導電型半導体受光素子として、第3図に示す構造のも
のが報告されている〔1ブiイ1’、7+ジクス、レタ
ー(^pp1.Phys、LetL、、43(3)、1
^ugust  191t3)  )。この例では、n
”’ −10G、、^、4を光吸収層とし、n  −1
oGaAs4とn −^f1.A、3.およびn−A文
■、、G、A、、2の接合による伝導体不連続に起因し
た低濃度n”’  InGa^34中の谷の領域に、光
励起されたキャリアの内型子を空間的に閉じ込めること
によりドナーイオン等による散乱のない電子の高移動度
を利用している。この様にして得られた素子は、立上り
時間80 psec、半値全幅250 psecの光応
答特性を示したと報告しているが、正孔の遅いドリフト
速度に規定されたn secオーダーの遅い光応答が長
いテールとして見られた。
Conventionally, as a photoconductive type semiconductor light-receiving element that utilizes two-dimensional electron gas to obtain a high-speed response, a structure shown in Figure 3 has been reported [1 bu 1', 7 + zyx, letter (^ pp1.Phys, LetL,, 43(3), 1
^gust 191t3) ). In this example, n
”' -10G, ^, 4 is the light absorption layer, n -1
oGaAs4 and n −^f1. A.3. and n-A sentence ■, , G, A, , spatially transfers the inner molecules of photoexcited carriers to the valley region in the low-concentration n''' InGa^34 caused by the conductor discontinuity due to the junction of 2. The high mobility of electrons, which is not scattered by donor ions etc., is utilized by confining the electrons in the nanoparticles.It is reported that the device obtained in this way exhibited photoresponse characteristics with a rise time of 80 psec and a full width at half maximum of 250 psec. However, a slow photoresponse on the order of n sec determined by the slow drift velocity of the holes was observed as a long tail.

この様なパルス応答の立下がりの劣化、即ち、遅い正孔
の影響を除き目的で第4図に示す様な構造の半導電型半
導体受光素子も報告されている〔 アプライド、フィジ
クス、レター(入pp1.Phys、Lett、、43
(12)、15December 1983)) 、こ
の例では、p−−G、A、13を光吸収層とし、n  
GaAs 14 仁n ” A−5GaAs 15との
接合によってn−GaAs14中に生ずる2次元電子ガ
スを利用している。p”  GaAs基板11をゲート
とし、逆バイアスを加えることにより正孔をゲートから
取り出してソース、ドレイン間を流れる光電流に寄与さ
せないことにより遅い成分のない3 Q Psec程度
の立ち下がり時間が得られていると報告している。しか
しながら、この様なゲートによる遅い成分の取り出しは
、光−電気信号変換効率の低下の上に成立しており、高
い信号/′雑音比が求められる光通信システム等の光検
出器としては必ずしも適していない。
In order to eliminate such deterioration in the fall of the pulse response, that is, the influence of slow holes, a semiconducting semiconductor photodetector with a structure as shown in Figure 4 has also been reported. pp1. Phys, Lett,, 43
(12), 15December 1983)) In this example, p--G, A, 13 are light absorption layers, and n
The two-dimensional electron gas generated in n-GaAs 14 by bonding with GaAs 14 A-5 GaAs 15 is utilized.The p'' GaAs substrate 11 is used as a gate, and holes are taken out from the gate by applying a reverse bias. They report that by not contributing to the photocurrent flowing between the source and drain, a fall time of about 3 Q Psec without slow components can be obtained. However, the extraction of slow components by such gates is based on a decrease in optical-to-electrical signal conversion efficiency, and is not necessarily suitable as a photodetector for optical communication systems that require a high signal/'noise ratio. Not yet.

そこで、本発明の目的は、この様な従来の欠点を除去せ
しめ、高い光−電気信号変換効率を保ちかつ高速応答特
性を有する光導電型半導体受光素比を提供することにあ
る。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a photoconductive semiconductor light-receiving element that eliminates these conventional drawbacks, maintains high optical-to-electrical signal conversion efficiency, and has high-speed response characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

前述の問題点を解決するために本発明は少なくとも禁制
帯幅のことなる同一導電型の半導体層を接して有する半
導体において、上記半導体における禁制帯幅の大なる半
導体層の上記禁制帯幅の小なる半導体層と接しない領域
に上記の導電型と逆の導電型の半導体層あるいは半導体
領域を形成することにより上記同一導電型で禁制帯幅の
ことなる半導体層2層にわたり空乏化することを特徴と
する。
In order to solve the above-mentioned problems, the present invention provides at least a semiconductor having adjacent semiconductor layers of the same conductivity type with different forbidden band widths, in which a semiconductor layer having a large forbidden band width in the semiconductor layer has a small forbidden band width. By forming a semiconductor layer or a semiconductor region of a conductivity type opposite to the above conductivity type in a region not in contact with the semiconductor layer, depletion occurs across the two semiconductor layers of the same conductivity type and different forbidden band widths. shall be.

〔作用・原理〕[Action/Principle]

本発明は上記の手段により従来技術の問題点を解決した
。即ち、上記した様に禁制帯幅の大なる半導体層中にp
、n接合を形成し、この内部電界により禁制帯幅の小な
る光吸収層にわたり空乏化することにより、禁制帯幅の
小なる半導体層での光励起によって生成する電子・正孔
対の内小数キャリアとなるキャリアを禁制帯幅のことな
る2つの半導体のバンド構造に起因したバンドの不連続
により2次元ガス化して高速応答を得ることを可能とし
た。
The present invention solves the problems of the prior art by the above means. That is, as mentioned above, p is present in the semiconductor layer with a large forbidden band width.
, an n-junction is formed, and this internal electric field depletes the light absorption layer with a small bandgap, resulting in minority carriers among electron-hole pairs generated by photoexcitation in the semiconductor layer with a small bandgap. It has become possible to obtain a high-speed response by two-dimensionally gasifying the carriers resulting from the band discontinuity caused by the band structure of two semiconductors with different forbidden band widths.

〔実施例〕〔Example〕

以下、本発明の実施例について図を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す概略横断面図である
。本実施例は、まず(100)面を有するn”−1,P
基板1の上にエピタキシャル成長法(例えば分子線エピ
タキシャル成長法)により膜厚0.5μm、不純物濃度
I X 1017cm−’のn −A、flOA、層2
.膜厚0.3μm、不純物濃度1×1011015C1
のn −−Aj!−1,A、層3を形成後、膜厚2μm
、不純物濃度5 x 1014C11−9のn−−In
GaA、層4.膜厚0.2μm、不純物濃度5X10”
     ’1 のn  −1,P層5.膜厚0.5μ
m、不純f7I濃度I X 1018cm−3のp+ 
 I。2層6を形成する。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention. In this example, first, n”-1,P having a (100) plane
A layer 2 of n-A, flOA with a film thickness of 0.5 μm and an impurity concentration of I x 1017 cm-' is formed on the substrate 1 by an epitaxial growth method (e.g., molecular beam epitaxial growth method).
.. Film thickness 0.3μm, impurity concentration 1×1011015C1
n --Aj! -1, A, film thickness 2 μm after forming layer 3
, n--In with impurity concentration 5 x 1014C11-9
GaA, layer 4. Film thickness 0.2μm, impurity concentration 5X10”
'1 n -1, P layer 5. Film thickness 0.5μ
m, p+ of impurity f7I concentration I x 1018 cm-3
I. Two layers 6 are formed.

次にソース及びドレイン領域を形成する為に、例えばA
 t+ G e合金を蒸着後所定の領域以外の部分を除
去した後、高温熱処理することによりn4領域7を形成
する。そして、このn1領域7にリード線取出し用の電
極8を形成することにより本実施例の光導電型受光素子
が得られる。
Next, to form the source and drain regions, for example A
After the t+Ge alloy is deposited, portions other than the predetermined regions are removed, and then high-temperature heat treatment is performed to form the n4 region 7. Then, by forming an electrode 8 for taking out a lead wire in this n1 region 7, the photoconductive type light receiving element of this embodiment is obtained.

上記した本発明の一実施例の受光素子の動作を第2図の
概略バンド構造図を用いて説明する。入射した光信号は
光吸収層であるn−−1nGaAs層4で吸収され光励
起された電子−正孔対が発生する。
The operation of the light receiving element according to the embodiment of the present invention described above will be explained using the schematic band structure diagram shown in FIG. The incident optical signal is absorbed by the n--1n GaAs layer 4, which is a light absorption layer, and photoexcited electron-hole pairs are generated.

この内、電子はn−一^11.A、層3とn−−1,G
Among these, the electron is n-1^11. A, layer 3 and n--1, G
.

^1層4の伝導帯の不連続に起因しなn −−1nGa
A。
^1n−1nGa not caused by conduction band discontinuity in layer 4
A.

層4内でのバンドのまがりによる2次元ガス領域に移動
し、一方正孔は、n−−1,P層5とp“−1、P層6
とにより形成されたp+−n−接合による内部電界に起
因した空乏層のn−1,G、^84内のの拡がりによる
正孔の2次元ガス形成域に移動する。このとき、上記第
1図で説明した電極8間はソース、ドレインを形成する
為に電位差が与えられており、上記正孔及び−電子の2
次元ガスは高速に取り出すことが可能となる。
The holes move to the two-dimensional gas region due to band bending within layer 4, while holes move between n--1, P layer 5 and p"-1, P layer 6.
The holes move to the two-dimensional gas formation region due to the expansion of n-1, G, ^84 of the depletion layer caused by the internal electric field due to the p+-n- junction formed by the hole. At this time, a potential difference is applied between the electrodes 8 described in FIG. 1 above to form a source and a drain, and the holes and electrons are
Dimensional gas can be extracted at high speed.

なお、上記実施例では、1.P基板を用い、I、G。In addition, in the above embodiment, 1. Using P substrate, I, G.

^3層を光吸収層とする場合について説明したが、この
例に限らず第2図に示すようなバンドm遣を満たす化合
物半導体の組合せであればよい。
Although a case has been described in which the third layer is used as a light absorption layer, the present invention is not limited to this example, and any combination of compound semiconductors satisfying the band m distribution as shown in FIG. 2 may be used.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明した様に、本発明によれば、光励起され
たキャリアの両方を2次元ガス化が可能となり光−電気
信号変換効率の低下を抑えてかつ高速応答特性を有する
光導電型半導体受光素子が提供できる。
As explained in detail above, according to the present invention, it is possible to two-dimensionally gasify both photoexcited carriers, suppress a decrease in optical-electrical signal conversion efficiency, and provide a photoconductive semiconductor light-receiving element that has high-speed response characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の横断面模式図、第2図は、
第1図の動作を説明する為のバンド構造模式図、第3図
及び第4図は従来の光導電型半導体受光素子の断面模式
図である。 1・・・n+〜ll1IP基板、2−n −1’1nA
s、3・・n−−^J!−1nA、、4−・n −−1
,、GaAs、5−= nl。P、6・・・p” −1
,P 、 7・・・n+領領域8・・・電極、9−・・
半絶縁性1.P基板、10−n ” −G、IIIA、
、・・・ρ−−G、A、、 14−n −GaA、、 
15−n”  −^J!Ga人5.16−n”−GaA
a、1?−ゲート電極。
FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention, and FIG.
FIG. 1 is a schematic diagram of a band structure for explaining the operation, and FIGS. 3 and 4 are schematic cross-sectional diagrams of a conventional photoconductive semiconductor light-receiving element. 1...n+~ll1IP board, 2-n-1'1nA
s, 3...n--^J! -1nA,,4-・n--1
,,GaAs,5-=nl. P, 6...p''-1
, P, 7...n+ region 8...electrode, 9-...
Semi-insulating 1. P substrate, 10-n”-G, IIIA,
,...ρ--G,A,, 14-n-GaA,,
15-n”-^J!Ga person 5.16-n”-GaA
a.1? - Gate electrode.

Claims (1)

【特許請求の範囲】[Claims]  少なくとも禁制帯幅の異なる同一導電型の半導体層を
接合した半導体層構造を備え、前記禁制帯幅の大きな半
導体層の禁制帯幅の小さな半導体層と接合されていない
領域に前記の導電型と逆の導電型の半導体層あるいは半
導体領域を形成することにより、前記同一導電型で禁制
帯幅の異なる半導体層2層にわたり空乏化することを特
徴とする光導電型半導体受光素子。
A semiconductor layer structure in which at least semiconductor layers of the same conductivity type with different forbidden band widths are bonded, and a region of the semiconductor layer with a large band gap that is not bonded to a semiconductor layer with a small band gap has a conductivity type opposite to that of the conductivity type. 1. A photoconductive semiconductor light-receiving device, characterized in that by forming a semiconductor layer or a semiconductor region of a conductivity type, depletion occurs across the two semiconductor layers of the same conductivity type and different forbidden band widths.
JP60197012A 1985-09-05 1985-09-05 Photoconductive semiconductor photodetector Pending JPS6255969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197012A JPS6255969A (en) 1985-09-05 1985-09-05 Photoconductive semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197012A JPS6255969A (en) 1985-09-05 1985-09-05 Photoconductive semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6255969A true JPS6255969A (en) 1987-03-11

Family

ID=16367315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197012A Pending JPS6255969A (en) 1985-09-05 1985-09-05 Photoconductive semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6255969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036101A (en) * 1999-06-21 2001-02-09 Agilent Technol Inc Photoconductive switch having improved semiconductor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036101A (en) * 1999-06-21 2001-02-09 Agilent Technol Inc Photoconductive switch having improved semiconductor structure

Similar Documents

Publication Publication Date Title
US4477721A (en) Electro-optic signal conversion
KR101052030B1 (en) Electromagnetic radiation converter
JPS6016474A (en) Hetero multiple junction type photo detector
KR920005395A (en) Photoelectric
JP4061057B2 (en) Photodiode
US4525731A (en) Semiconductor conversion of optical-to-electrical energy
JP2002231992A (en) Semiconductor light receiving element
KR100326835B1 (en) Solar battery
JPS6255969A (en) Photoconductive semiconductor photodetector
CN115295646A (en) High-performance light detector chip epitaxial wafer
US4399448A (en) High sensitivity photon feedback photodetectors
JPS6285477A (en) Photosemiconductor device
JP2633234B2 (en) Optical semiconductor device
JPS61283178A (en) Photoconductive type semiconductor photodetector
JPS6255968A (en) Photoconductive semiconductor photodetector
JPH01196182A (en) Photodiode
JPS61283177A (en) Photoconductive type semiconductor photodetector
SU344781A1 (en) Semiconducting photoelement
JPH0265279A (en) Semiconductor photodetecting element
JPS6138208Y2 (en)
SU598470A1 (en) Solar photocell
JPH0437594B2 (en)
JP2995751B2 (en) Semiconductor light receiving element
JPS61198688A (en) Semiconductor photodetector
JPS63142683A (en) Avalanche photodiode