JPS6325415A - Device for protecting boiler from abnormal combustion - Google Patents

Device for protecting boiler from abnormal combustion

Info

Publication number
JPS6325415A
JPS6325415A JP61167966A JP16796686A JPS6325415A JP S6325415 A JPS6325415 A JP S6325415A JP 61167966 A JP61167966 A JP 61167966A JP 16796686 A JP16796686 A JP 16796686A JP S6325415 A JPS6325415 A JP S6325415A
Authority
JP
Japan
Prior art keywords
flow rate
air
fuel
combustion
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167966A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iimura
飯村 嘉朗
Akira Sugano
彰 菅野
Tadashi Komada
駒田 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61167966A priority Critical patent/JPS6325415A/en
Publication of JPS6325415A publication Critical patent/JPS6325415A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To reduce a response delay by calculating the concentration of residual O2 contained in a waste gas from a ratio of the flow rate of a supplied fuel to the flow rate of air in quantities to be controlled in the air-fuel ratio control to protect the boiler from abnormal combustion. CONSTITUTION:In order to obtain the concentration of residual O2 contained in a waste gas from the flow rate of a fuel and the flow rate of air with respect to a furnace combustion state, the base concentration of residual O2 in the waste gas is impaled from the fuel flow rate to a function generator 51. Further, in a function generator 52, an air flow rate in conformity with the fuel flow rate is calculated. A difference between the calculated air flow rate and an actual air flow rate 12 is obtained by a subtractor 55, and the difference is added to the O2 base concentration made by the function generator 51 by an adder 56. In monitoring the furnace combustion state, an alarm (ANN1) is output by the comparison of the same with a function generator 53 of the set value of residual O2 in the waste gas, in which combustion becomes unstable. Further, the plant is tripped by the comparison of the same with a function generator 54 of the set value residual O2 in the waste gas, in which there is a possibility of burner misfiring. By these procedures, it becomes possible to prevent the danger of abnormal combustion of the boiler from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電所のボイラ燃焼制御に係り得に、ボ
イラ火炉内の燃焼を各プロセス量より判断するに好敵な
ボイラ異常燃焼保護装置。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to boiler combustion control in thermal power plants, and is particularly applicable to boiler abnormal combustion protection, which is a good enemy when determining combustion in a boiler furnace based on each process amount. Device.

〔従来の技術〕[Conventional technology]

従来の火炉的燃焼状態監視は、フレームディテクタや、
炉内監視カメラに依るものであり、プロセス量により監
視は、燃焼ガス02濃度や火炉ドラフト等、空燃比制御
の被制御量の上下限値に依るものであった。
Conventional furnace combustion status monitoring uses flame detectors,
It relies on an in-furnace monitoring camera, and monitoring of process variables is based on the upper and lower limits of controlled variables for air-fuel ratio control, such as combustion gas 02 concentration and furnace draft.

なおこの種の装置として関連するものには、特開昭49
−77073が挙げられる。
Related devices of this type include Japanese Patent Application Laid-open No. 49
-77073 is mentioned.

[発明が解決しようとする問題点〕 上記従来技術の燃焼状態保護機能については、燃料流量
制御系は、供給燃料圧力や流電などの異常を監視し、空
気流量制御系は、火炉ドラフトや供給空気流量などの異
常を監視し、空燃比制御系の異常はおのおのの制御系の
被制御量監視に依るもので、火炉内燃焼状態はフレーム
ディテクタ(火炎感知器)や炉内監視カメラに依るもの
が多い。しかし、多種燃料焚ボイラにおいてはフレーム
ディテクタの調整が難かしく除外されている場合が多い
。この様なプラントにおいては、火炉内の燃焼状態を監
視するには、プロセス量として、燃焼ガス02濃度や、
炉内カメラに頼うざるをなく異常燃焼発見が遅れる等の
不具合があった。
[Problems to be Solved by the Invention] Regarding the combustion state protection function of the above-mentioned conventional technology, the fuel flow control system monitors abnormalities such as supply fuel pressure and current flow, and the air flow control system monitors abnormalities such as furnace draft and supply. Abnormalities such as air flow rate are monitored, and abnormalities in the air-fuel ratio control system are determined by monitoring the controlled quantities of each control system, and the combustion status in the furnace is determined by a flame detector and a monitoring camera inside the furnace. There are many. However, flame detectors are difficult to adjust for multi-fuel boilers and are often excluded. In such a plant, in order to monitor the combustion state in the furnace, the combustion gas 02 concentration,
There were problems such as having to rely on in-reactor cameras, which delayed the detection of abnormal combustion.

本発明の目的は、燃焼状態を監視するに当り、燃料流量
とその燃料流量に対応すべく計画された空気流量を供給
時点にて比較し、監視することで。
An object of the present invention is to compare and monitor the fuel flow rate and the air flow rate planned to correspond to the fuel flow rate at the time of supply when monitoring the combustion state.

火炉内の状態を監視することにある。Its purpose is to monitor the conditions inside the furnace.

〔問題点を解決するための手段〕[Means for solving problems]

供給される燃料流量と空気流量の比率を求めておき、現
在の燃料流量と空気流量が上記比率からの偏差を求める
ことにより02濃度として計画値からの偏差を求め、本
偏差と実燃焼ガス02濃度を比較し現在供給されている
燃料流量と空気流量の妥当性を判断する。
The ratio of the supplied fuel flow rate and air flow rate is determined, and the deviation of the current fuel flow rate and air flow rate from the above ratio is determined to determine the deviation from the planned value as the 02 concentration, and this deviation and the actual combustion gas 02 Compare the concentrations to determine the validity of the currently supplied fuel flow rate and air flow rate.

さらに本妥当性の判断は、供給燃料流量によつりその偏
差許容量を可変に設定し、絶対的に02濃度の低い燃焼
状態においては02濃度の高い状態より判断許容量を狭
く設定し、ボイラ異常燃焼の危険性を防ぐことが可能と
なる。
Furthermore, for this validity judgment, the deviation allowance is set variably depending on the supplied fuel flow rate, and the judgment allowance is set narrower in a combustion state where the 02 concentration is absolutely low than in a state where the 02 concentration is high. It becomes possible to prevent the risk of abnormal combustion.

〔作用〕[Effect]

石炭焚ボイラでは各バーナ毎の燃料流量に応じた空気流
量を制御出来るように、風箱をコンパートメント入口に
仕切り、各々のコンパートメント入口にダンパを設ける
のが一般的である。このように、各バーナに対して供給
される燃焼空気量はそのバーナで燃焼している燃料流量
に対して最適な空燃比となるように制御される。一方、
ボイラ全体としてみると必要以上の空気量はボイラから
排気される排ガスにより大気に放出されるむだな熱量の
増加を招き、ボイラの効率を低下させるので、ボイラの
燃焼排ガス中の残存02を監視し、この値が適切な値と
なるように、ボイラに供給される合計空気量、すなわち
、各バーナに供給される空気量の合計量を制御している
In a coal-fired boiler, it is common to divide the wind box into compartment entrances and provide a damper at each compartment entrance so that the air flow rate can be controlled according to the fuel flow rate for each burner. In this way, the amount of combustion air supplied to each burner is controlled to provide the optimum air-fuel ratio for the flow rate of the fuel being burned in that burner. on the other hand,
When looking at the boiler as a whole, an amount of air that is more than necessary increases the amount of wasted heat released into the atmosphere by the exhaust gas exhausted from the boiler, reducing the efficiency of the boiler, so monitor the remaining 02 in the combustion exhaust gas of the boiler. , the total amount of air supplied to the boiler, that is, the total amount of air supplied to each burner, is controlled so that this value becomes an appropriate value.

それによって供給燃料流量に対し安定した燃焼状態にお
いては供給空気流量も決まり、異常燃焼状態を監視する
に当ってはこの供給燃料流量と供給空気流量の比率が変
動したことにより確認出来る。
As a result, the supplied air flow rate is determined in a stable combustion state with respect to the supplied fuel flow rate, and abnormal combustion conditions can be monitored by checking changes in the ratio between the supplied fuel flow rate and the supplied air flow rate.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

図に於いて、1はボイラ、2はボイラ1中に設けられた
水管で給水ポンプ(図示せず)より給水が行われる。4
は給炭機であり石炭を微粉炭機5に供給する。微粉炭機
5で粉枠された微粉炭は1次空気ダンパ6で制御される
搬送用空気(1次空気と呼ぶ)により、送炭管7を経由
して石炭バー:、”Yaに至り燃焼される(添字・〜・
は各コンパートメント毎に付ける。)。1次空気は図に
は示さない1次空気ファンにより通風される。8は1次
空気の流量検出器である。9は微粉炭機5に給炭されて
いる石炭流量の検出器である。10は押込ファンであり
、燃焼用の空気を供給するものである。11は各コンパ
ートメントに設けられた人口ダンパであり、各バーナへ
の供給空気量を制御するものである。12は各々のコン
パートメント空気流量の検出器である。バーナ3で水管
2の水を加熱し蒸気としてタービンに送気する。13は
ボイラの排ガス中の残存o2濃度の検出器である。
In the figure, 1 is a boiler, 2 is a water pipe provided in the boiler 1, and water is supplied from a water supply pump (not shown). 4
is a coal feeder that supplies coal to the pulverizer 5. The pulverized coal that has been pulverized by the pulverizer 5 is conveyed by conveying air (referred to as primary air) controlled by a primary air damper 6 through a coal conveying pipe 7 to a coal bar: Ya, where it is combusted. be done (subscript...
is attached to each compartment. ). The primary air is ventilated by a primary air fan not shown. 8 is a primary air flow rate detector. 9 is a detector for the flow rate of coal being fed to the pulverizer 5. 10 is a forced fan, which supplies air for combustion. Reference numeral 11 denotes an artificial damper provided in each compartment, which controls the amount of air supplied to each burner. 12 is a detector for each compartment air flow rate. The burner 3 heats the water in the water pipe 2 and sends it to the turbine as steam. 13 is a detector for residual O2 concentration in the boiler exhaust gas.

図に於いて、20は計算機であり、そのうち21は、プ
ラントの運転状態より空燃比に基づきボイラ合計空気流
量指令及び排ガス中の残存02濃度設定値の演算を行う
制御装置。22は、ボイラの排ガス中の残存02濃度の
検出器13からのフィードバック量と設定値の比較を行
いボイラ合計空気流量指令値に修正を加え、更に、各コ
ンパその合計量を指令値を比較し、各バーナの空気流量
の指令値の修正信号を演算する制御装置である。
In the figure, 20 is a computer, of which 21 is a control device that calculates the boiler total air flow rate command and the residual O2 concentration set value in the exhaust gas based on the air-fuel ratio from the operating state of the plant. 22 compares the feedback amount from the detector 13 of the residual 02 concentration in the exhaust gas of the boiler with the set value, corrects the boiler total air flow command value, and further compares the total amount of each comparator with the command value. , is a control device that calculates a correction signal for the command value of the air flow rate of each burner.

23は各微粉炭機5に給炭されている石炭流量検出器9
のフィードバック信号を入力し、各バーナ空気流量指令
値を演算し、更に、22の制御装置で演算された修正指
令により、バーナ空気流量指令値に修正を加え、コンパ
ートメント空気流量検出器12及びバーナの1次空気流
量検出器8のフィードバック量を入力して、これらの合
計値と前述の指令を比較し、コンパートメント入口ダン
パ11を制御する制御装置である。更に、23は給炭さ
れている石炭流量検出器9のフィードバック信号よりバ
ーナへの最低空気流量を演算し、そのコンバートメン1
〜空気流量を与えるコンパートメント入口空気ダンパ1
1の開度を計算しダンパ開度がその値以下にならないよ
う制限を加えて安全性を確保する。
23 is a coal flow rate detector 9 fed to each pulverizer 5;
inputs the feedback signal, calculates each burner air flow rate command value, and further modifies the burner air flow rate command value based on the correction command calculated by the control device 22, and controls the compartment air flow rate detector 12 and the burner. This control device inputs the feedback amount of the primary air flow rate detector 8, compares the total value with the above-mentioned command, and controls the compartment entrance damper 11. Further, 23 calculates the minimum air flow rate to the burner from the feedback signal of the coal flow rate detector 9 that is being fed, and calculates the minimum air flow rate to the burner.
~ Compartment inlet air damper 1 providing air flow rate
Safety is ensured by calculating the opening degree of 1 and adding a limit so that the damper opening degree does not go below that value.

上記の様に制御されている燃焼状態にて燃料流量と排ガ
ス中残存02濃度の関係は第4図の実線の関係があり、
燃焼状態が不安定になった場合は、)゛剪記排ガス中残
存○・濃度特性からずれてくる・ご奉戴流量が燃料流量
に比べ多い場合は排ガス中残存02濃度は高い方向に移
る。
In the combustion state controlled as above, the relationship between the fuel flow rate and the residual 02 concentration in the exhaust gas is as shown by the solid line in Figure 4.
If the combustion state becomes unstable, the concentration characteristics will deviate from the following: - If the flow rate is greater than the fuel flow rate, the concentration of O2 remaining in the exhaust gas will shift to a higher direction.

従って火炉的燃焼状態を燃料流量と空気流量より排ガス
中残存02濃度を求めるには、燃料流量より排ガス中残
存02のベース濃度を関数発生器51にて与え、さらに
関数発生器52にて、燃料流量に見合った空気流量を算
出し、実空気流量1.2にてその差を減算合55にて求
め関数発生器51にて作成した02のベース濃度に加算
器56により加算する。
Therefore, in order to determine the residual O2 concentration in the exhaust gas in a furnace-like combustion state from the fuel flow rate and the air flow rate, the function generator 51 gives the base concentration of the residual O2 in the exhaust gas from the fuel flow rate, and then the function generator 52 gives the residual O2 concentration in the exhaust gas. An air flow rate commensurate with the flow rate is calculated, and the difference is calculated at an actual air flow rate of 1.2 by a subtraction sum 55 and added to the base concentration of 02 created by a function generator 51 by an adder 56.

炉内燃焼状態監視に当っては、まず燃焼が不安定になる
排ガス中残存02設定値、関数発生器53との比較より
警報(ANNI)を出力する。
In monitoring the combustion state in the furnace, first, an alarm (ANNI) is output based on a comparison with the function generator 53 and the set value of 02 remaining in the exhaust gas at which combustion becomes unstable.

バーナ失火の可能性のある排ガス中残存02M定値関数
発生器:54との比較にてプラントをトリップさせるも
のである。
The plant is tripped in comparison with 02M constant value function generator 54 remaining in the exhaust gas where there is a possibility of burner misfire.

上記例は、石炭焚きプラントを例に説明したが多種燃料
混焼ボイラにおいては、排ガス中残存02算出に混焼率
を用いることで用品に実現出来\チ・ ′−′号発明の効果〕 ′本発明によれば、炉内の燃焼結果のプロセス量より異
常を検出するのではなく、空燃比制御の被制御量の供給
燃料流量と、空気流量の比率から排ガス02濃度を算出
し、異常燃焼を保護するもので、応答遅れが少なく、さ
らに、既設プラント等に対しても改造の範囲が少なく安
価にて実現出来る。
The above example was explained using a coal-fired plant as an example, but in a multi-fuel mixed combustion boiler, it can be realized in the product by using the mixed combustion rate to calculate the residual 02 in the exhaust gas. According to the method, instead of detecting abnormalities from the process amount of combustion results in the furnace, the exhaust gas 02 concentration is calculated from the ratio of the supplied fuel flow rate of the controlled amount of air-fuel ratio control and the air flow rate to protect against abnormal combustion. As a result, there is little response delay, and furthermore, it can be realized at low cost with a small scope of modification to existing plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃焼状態監視回路図、第2図はボイラ本体系統
図、第3図は空燃比制御系統図、第4図は燃料、02濃
度特性図、第5図は関数発生器設定を示す図である。 3・・・バーナ、5・・・微粉炭機、6・・・1次空気
ダンパ、7・・・送炭管、8・・・1次空気流量検出器
、9・・・給炭量検出器、10・・・押込ファン、11
・・・コンパートメント人口ダンパ、12・・・コンパ
ートメント空気量検出器、13・・・排ガス中残存02
濃度検出器。
Figure 1 shows the combustion status monitoring circuit diagram, Figure 2 shows the boiler main body system diagram, Figure 3 shows the air-fuel ratio control system diagram, Figure 4 shows the fuel and 02 concentration characteristics diagram, and Figure 5 shows the function generator settings. It is a diagram. 3... Burner, 5... Pulverizer, 6... Primary air damper, 7... Coal feeding pipe, 8... Primary air flow rate detector, 9... Coal feeding amount detection Container, 10... Push-in fan, 11
... Compartment artificial damper, 12 ... Compartment air amount detector, 13 ... Residual in exhaust gas 02
Concentration detector.

Claims (1)

【特許請求の範囲】 1、火力プラントの燃焼保護装置において、ボイラに供
給される燃料流量と空気流量より、燃焼後の排ガス中残
存O_2濃度を算出する回路と前記排ガス中残存O_2
濃度算出値の値により警報を出力する回路より成り、警
報出力の設定値が燃焼バランスを保つに最適な値をとる
様設定されていることを特徴とするボイラ異常燃焼保護
装置。 2、特許請求範囲第1項において、警報対象の排ガス中
残存O_2濃度が供給燃流量と空気流量より求めている
ことを特徴とするボイラ異常燃焼保護装置。
[Claims] 1. In a combustion protection device for a thermal power plant, a circuit for calculating the concentration of O_2 remaining in the exhaust gas after combustion from the flow rate of fuel and the flow rate of air supplied to the boiler, and the O_2 remaining in the exhaust gas
1. A boiler abnormal combustion protection device comprising a circuit that outputs an alarm based on a calculated concentration value, the alarm output set value being set to an optimum value to maintain combustion balance. 2. A boiler abnormal combustion protection device according to claim 1, characterized in that the concentration of residual O_2 in the exhaust gas to be warned is determined from the supplied fuel flow rate and the air flow rate.
JP61167966A 1986-07-18 1986-07-18 Device for protecting boiler from abnormal combustion Pending JPS6325415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167966A JPS6325415A (en) 1986-07-18 1986-07-18 Device for protecting boiler from abnormal combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167966A JPS6325415A (en) 1986-07-18 1986-07-18 Device for protecting boiler from abnormal combustion

Publications (1)

Publication Number Publication Date
JPS6325415A true JPS6325415A (en) 1988-02-02

Family

ID=15859338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167966A Pending JPS6325415A (en) 1986-07-18 1986-07-18 Device for protecting boiler from abnormal combustion

Country Status (1)

Country Link
JP (1) JPS6325415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513773A (en) * 2009-12-14 2013-04-22 アーベーベー・リサーチ・リミテッド System and associated method for monitoring and controlling a power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513773A (en) * 2009-12-14 2013-04-22 アーベーベー・リサーチ・リミテッド System and associated method for monitoring and controlling a power plant

Similar Documents

Publication Publication Date Title
CN109084324A (en) The burning air quantity control system and control method of biomass boiler
US8109759B2 (en) Assured compliance mode of operating a combustion system
WO2023088279A1 (en) System and method for improving rb working condition of induced draft fan of two-boiler one-machine thermal power generating unit
JP2015224822A (en) Waste incinerator and waste incineration method
JPS6325415A (en) Device for protecting boiler from abnormal combustion
JP4184291B2 (en) Combustion method of garbage by stoker type incinerator
JP2005024126A (en) Combustion control method
JP2007285553A (en) Control method of combustion boiler
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
JPH0791539B2 (en) Air blowing method for coke dry fire extinguishing equipment
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
JP2958550B2 (en) Combustion equipment
JPH10281453A (en) Method for controlling primary air in mill in coal burning boiler facility
JP2001289405A (en) Pulvirized coal fired boiler
JP2002122317A (en) Combustion control system of refuse incinerator
JPS6361816A (en) Internal pressure of furnace control of balanced draft type boiler facility
JPH0217775B2 (en)
SU1719796A1 (en) Method of combustion automatic control
JPS6350588Y2 (en)
JPH11182830A (en) Combustor temperature control method
JP2006125759A (en) Operation control device for incinerator
JPS60216829A (en) Denitration apparatus
JPS63131918A (en) Combustion control device for boiler
JPH01266420A (en) Control device for excess air ratio