JPS60216829A - Denitration apparatus - Google Patents

Denitration apparatus

Info

Publication number
JPS60216829A
JPS60216829A JP59074235A JP7423584A JPS60216829A JP S60216829 A JPS60216829 A JP S60216829A JP 59074235 A JP59074235 A JP 59074235A JP 7423584 A JP7423584 A JP 7423584A JP S60216829 A JPS60216829 A JP S60216829A
Authority
JP
Japan
Prior art keywords
amount
amt
ammonia gas
nox
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59074235A
Other languages
Japanese (ja)
Other versions
JPH0533088B2 (en
Inventor
Yukimi Takahira
幸美 高比良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59074235A priority Critical patent/JPS60216829A/en
Publication of JPS60216829A publication Critical patent/JPS60216829A/en
Publication of JPH0533088B2 publication Critical patent/JPH0533088B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To maintain denitration efficiency at a fixed level in a denitration apparatus by determining the content of NOx and the amt. of NH3 corresponding thereto, controlling the amt. of NH3 to be injected from the difference between the value of injected NH3 and required NH3, thus correcting the amt. of NOx by outputting correcting output for a specified time. CONSTITUTION:The concn. of NOx at the inlet of a denitration reactor is found by an originator 41, and the flow rate thereat is found by an originator 42, and the total amt. of NOx is found by a multiplier 43. Further, the amt. of NH3 is found by an originator 44, and the required amt. of NH3 is found from said sensed value and the total amt. of NOx using a molar ratio operator 45, and a multiplier 46 succeedingly. The difference between the required amt. and injected amt. of NH3 is inputted to the controller 48, thus, an NH3 injecting valve 8 is controlled to control the amt. of NH3 to be injected. When the operation condition of a boiler varies, a relay circuit 50 is closed for a specified time corresponding to the variation. A correction signal is given to an adder 51 to add a correction signal to the total amt. of NOx, which is inputted to the controller through a subtractor 47 to control the amt. of NH3 to be injected. Thus, the concn. of NOx at the outlet of the denitration apparatus is held at a fixed level.

Description

【発明の詳細な説明】 本発明は例えば石炭焚きボイラ等の排ガス処理に用いる
脱硝装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a denitrification device used for treating exhaust gas from, for example, a coal-fired boiler.

石炭焚きボイラの燃焼ガスに含まれる窒素酸化物(NO
x)の低減装置である脱硝装置は第1図のような構成に
なっている。すなわち、図において、1はボイラ火炉で
あり、2はこのボイラ火炉1に空気を送風する押込通x
iである。3はボイラ火炉1からの排煙中に含まれる窒
素酸化物をアンモニアとの反応により低減させる1l1
21i1反応器であり、4は脱硝反応器3からのガスを
導出する誘引通J!1111.5はこの導出されたガス
を外部に排出するための煙突である。ボイラ火炉1から
の排煙はダクト6により脱硝反応器3、誘引通風機4を
経て煙突5に導かれ、この煙突5より排出される。
Nitrogen oxides (NO) contained in the combustion gas of coal-fired boilers
The denitrification device, which is a device for reducing x), has a configuration as shown in FIG. That is, in the figure, 1 is a boiler furnace, and 2 is a push-in passage x for blowing air into the boiler furnace 1.
It is i. 3 is 1l1 which reduces nitrogen oxides contained in the flue gas from the boiler furnace 1 by reaction with ammonia.
21i1 is a reactor, and 4 is an induced passage J! which leads out the gas from the denitrification reactor 3. 1111.5 is a chimney for discharging this extracted gas to the outside. Exhaust smoke from the boiler furnace 1 is guided by a duct 6 to a chimney 5 via a denitrification reactor 3 and an induced draft fan 4, and is discharged from the chimney 5.

7はアンモニアガスを発生するためのアンモニアガス発
生設備であり、8はこのアンモニアガス発生設備7より
発生されたアンモニアガスの注入制御弁である。9はア
ンモニアガス量を調整するアンモニアガス注入制御装置
であり、このアンモニアガス注入制御装置9により、ア
ンモニアガス注入弁8はその開度を調整され、上記アン
モニアガス発生設備7より発生されたアンモニアガスの
脱硝反応器3への注入量を制御するものである。
7 is an ammonia gas generation facility for generating ammonia gas, and 8 is an injection control valve for the ammonia gas generated by the ammonia gas generation facility 7. Reference numeral 9 denotes an ammonia gas injection control device for adjusting the amount of ammonia gas, and the ammonia gas injection control device 9 adjusts the opening degree of the ammonia gas injection valve 8, so that the ammonia gas generated from the ammonia gas generation equipment 7 is controlled by the ammonia gas injection control device 9. This controls the amount of water injected into the denitrification reactor 3.

すなわち、このような構成において、押込通風t12に
より、ボイラ火炉1に空気を送風し、ボイラ火炉1を燃
焼させる。ボイラ火炉1からの排煙は誘引通JlllI
4によって、煙突へと排出されるが、この時、脱硝反応
器3により排煙中に含まれる窒素酸化物はアンモニアと
の反応により低減される。
That is, in such a configuration, air is blown to the boiler furnace 1 by the forced draft t12, and the boiler furnace 1 is caused to burn. Exhaust smoke from boiler furnace 1 is passed through
At this time, the nitrogen oxides contained in the flue gas are reduced by the denitrification reactor 3 by reaction with ammonia.

脱硝反応器3には、アンモニアガス発生設備7より発生
されたアンモニアガスが注入されており、脱硝反応器3
はこの注入されたアンモニアガスを窒素酸化物と反応さ
せることにより低減させる。
Ammonia gas generated from the ammonia gas generation equipment 7 is injected into the denitrification reactor 3.
is reduced by reacting the injected ammonia gas with nitrogen oxides.

効率的な脱硝反応を行わせるため、アンモニアガス注入
制御装置9により排煙中の窒素酸化物濃度に応じ、アン
モニアガス注入弁8の開度を調整し、アンモニアガス発
生設備7より発生されたアンモニアガスの脱硝装[3へ
の注入量を制御する。これによって、規定濃度内の窒素
酸化物濃度にガス量を抑えて排煙することができるよう
になる。
In order to perform an efficient denitrification reaction, the ammonia gas injection control device 9 adjusts the opening degree of the ammonia gas injection valve 8 according to the nitrogen oxide concentration in the flue gas, and the ammonia gas generated from the ammonia gas generation equipment 7 is Control the amount of gas injected into the denitrification system [3. This makes it possible to suppress the amount of gas to a nitrogen oxide concentration within the specified concentration while exhausting smoke.

ところで、このようなシステムにおける脱硝装置の脱硝
反応用アンモニアガス(NH3)注入量の目標値制御は
第2図の如き系統により行っている。すなわち、脱硝反
応器3人口(第1図におけるA点)でのNOx濃度を検
出してその検出濃度に応じた検出信号を発生するNOx
濃度発信器21とボイラ火炉1への送風量を検出してそ
の検出送風量に応じた検出信号を発生する供給空気量発
信器22を設け、この雨検出信号を乗算器23に与えて
乗算し、脱硝反応器入口A点でのNOxの総量をめる。
By the way, target value control of the amount of ammonia gas (NH3) for denitrification reaction in the denitrification apparatus in such a system is performed by a system as shown in FIG. In other words, NOx detects the NOx concentration at three points in the denitrification reactor (point A in Figure 1) and generates a detection signal according to the detected concentration.
A concentration transmitter 21 and a supply air amount transmitter 22 that detects the amount of air blown to the boiler furnace 1 and generates a detection signal according to the detected amount of air blown are provided, and this rain detection signal is given to a multiplier 23 for multiplication. , calculate the total amount of NOx at point A at the inlet of the denitrification reactor.

一方、脱硝反応器3へ注入されるアンモニアガス量を検
出し、その検出量に応じた検出信号を発生するアンモニ
アガス量発信器24を設けて、アンモニアガス量を検出
し、この検出したアンモニアガス量と上記演算してめた
NOxの総量をモ 、ル比演算器25に与えてこれらの
モル比をめる。
On the other hand, an ammonia gas amount transmitter 24 is provided which detects the amount of ammonia gas injected into the denitrification reactor 3 and generates a detection signal according to the detected amount. The amount of NOx and the total amount of NOx calculated above are fed to the molar ratio calculator 25 to calculate their molar ratio.

すなわち、モル比演算器25はアンモニアガス量とNO
xの総量との比よりモル比を演算し、このようにしてめ
たモル比は乗算器26に上記求めたNOxの総量ととも
に入力されて両者は乗算され、NH3要求量がめられる
。このNH3要求量とアンモニアガス量発信器24の出
力するアンモニアガス口を減算器27に与えてNH3要
求量に対するアンモニアガス量の差をめ、偏差信号とし
て制御器28に与える。制御器28は上記偏差信号が零
になるような弁開度制御信号を出力するもので、この弁
開度割部信号をアンモニアガス注入弁^え工弁開度ヶ制
御す、5i−よ0、アンモニアガス注入弁8はその開度
を調整され、上記アンモニアガス発生設備7より発生さ
れたアンモニアガスの脱硝反応器3への注入量が制御さ
れる。
That is, the molar ratio calculator 25 calculates the amount of ammonia gas and NO.
The molar ratio is calculated from the ratio of x to the total amount, and the thus determined molar ratio is input to the multiplier 26 together with the determined total amount of NOx, and the two are multiplied to determine the required amount of NH3. This required amount of NH3 and the ammonia gas port output from the ammonia gas amount transmitter 24 are given to a subtractor 27 to calculate the difference between the amount of ammonia gas and the required amount of NH3, and the difference is given to the controller 28 as a deviation signal. The controller 28 outputs a valve opening control signal such that the deviation signal becomes zero, and this valve opening division signal is used to control the opening of the ammonia gas injection valve. The opening degree of the ammonia gas injection valve 8 is adjusted, and the amount of ammonia gas generated from the ammonia gas generation equipment 7 to be injected into the denitrification reactor 3 is controlled.

この制御系に於ける制御特性を第3図に示す。The control characteristics of this control system are shown in FIG.

すなわち、(a)に示すように脱硝反応器入口NOX総
量が急変するとこれに追従してアンモニアガス注入量も
増加するが、この増加は各発信器21.22.24の出
力にて成されるので、(b)ようにやや遅れて変化する
。従って、脱硝反応器3の出口N0xl!度は脱硝反応
器入口NOX濃度の急変時にほぼ時期を同じくしてNO
X濃度が急上昇し、その後、アンモニア注入量が増加す
るので、次第に目標値に戻るが、遅れ要素のために一旦
濃度が下がり過ぎ、再び上昇して安定化する。
That is, as shown in (a), when the total amount of NOx at the inlet of the denitrification reactor suddenly changes, the amount of ammonia gas injected increases accordingly, but this increase is made by the output of each transmitter 21, 22, and 24. Therefore, it changes with a slight delay as shown in (b). Therefore, the outlet N0xl of the denitrification reactor 3! The degree of NO
The X concentration rises rapidly, and then the amount of ammonia injected increases, so it gradually returns to the target value, but due to the lag factor, the concentration once drops too much, then rises again and becomes stable.

このような制御系は種々ある制御方式の中の一例であっ
て、この他にもいろいろあるが、従来の制御方式ではい
ずれも上述のように脱硝反応器入口NOX濃度の急激な
変化に対して脱硝反応器3自身の持つ遅れをカバーでき
なかった。
This type of control system is one example of various control systems, and there are many others, but all conventional control systems respond to sudden changes in the NOx concentration at the inlet of the denitrification reactor, as described above. The delay caused by the denitrification reactor 3 itself could not be compensated for.

これは、脱硝反応器入口NOx濃度の急変を制御系が予
測できないことにある。また、石炭焚きボイラにおいて
は、石炭バーナの起動/停止過程のある時点に、よくこ
のような現象が発生する。
This is because the control system cannot predict sudden changes in the NOx concentration at the inlet of the denitrification reactor. Further, in coal-fired boilers, such a phenomenon often occurs at a certain point in the startup/stop process of the coal burner.

例えば、加圧形ミルの場合、起動時においては給炭機を
起動した時点で、また、停止過程においてはミルへの熱
空気をしゃ断した時点などにおいて発生することが知ら
れている。従って、このようなNOX濃度急変による排
出NOX濃度変化の生じないようにした脱硝装置の開発
が望まれている。
For example, in the case of a pressurized mill, it is known that this occurs when the coal feeder is started, and when the hot air to the mill is cut off during the shutdown process. Therefore, it is desired to develop a denitrification device that prevents changes in exhaust NOx concentration due to such sudden changes in NOx concentration.

本発明は上記の事情に鑑みて成されたもので、ボイラの
排ガス中に含まれる窒素酸化物を、注入したアンモニア
ガスと反応させることにより脱硝を行う脱硝装置におい
て、脱硝装置入口での排ガスの窒素酸化物量を得る手段
と、上記注入アンモニアガス量と窒素酸化物量より要求
アンモニアガス量をめる手段と、この要求アンモニアガ
ス量と上記注入アンモニアガス量との偏差をめ、この偏
差に応じた注入アンモニアガス量の制御出力を発生する
手段と、上記ボイラの運転状態変化時に応動して上記脱
硝装置の脱硝反応遅れ特性に合せた補正出力を所定時間
与えて、上記窒素酸化物量を補正する手段とを用い、ボ
イラ運転状態変化、すなわち、運転状態が切替わる際に
脱硝装置入口での窒素酸化物濃度が急変しても、排出窒
素酸化物濃度が急変しないようにした制御系を有する脱
硝装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a denitrification device that denitrates nitrogen oxides contained in boiler exhaust gas by reacting with injected ammonia gas. A means for obtaining the amount of nitrogen oxide, a means for calculating the required ammonia gas amount from the above-mentioned injected ammonia gas amount and nitrogen oxide amount, and a deviation between the required ammonia gas amount and the above-mentioned injected ammonia gas amount, and a method according to this deviation. means for generating a control output for the amount of ammonia gas to be injected; and means for correcting the amount of nitrogen oxides by providing a correction output for a predetermined period of time in accordance with the denitrification reaction delay characteristic of the denitrification device in response to changes in the operating state of the boiler; A denitrification device that uses a control system that prevents the concentration of discharged nitrogen oxides from changing suddenly even if the nitrogen oxide concentration at the denitrification device inlet suddenly changes when the boiler operating state changes, that is, when the operating state changes. The purpose is to provide

以下、本発明の一実施例について第4図、第5図を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 and 5.

第4図は本発明による脱硝装置の脱硝反応用アンモニア
ガス(NH3)注入量の制御を行う制御系の構成を示す
ブロック図である。図中41は上記脱硝反応器3人口(
第1図におけるA点)でのNOx11度を検出してその
検出濃度に応じた検出信号を発生するNOx濃度発信器
、42はボイラ火炉1への送風量を検出してその検出量
J!IIに応じた検出信号を発生する供給空気量発信器
、43は上記NOx濃度発信器41と供給空気1発信器
42の出力する検出信号を乗算し、脱硝反応器入口A点
でのNOxの総量をめる乗算器、44は上記脱硝反応器
3へ注入されるアンモニアガス量を検出し、その検出量
に応じた検出信号を発生するアンモニアガス量発信器、
45はモル比演算器であり、上記アンモニアガス量発信
器44の検出したアンモニアガス量と上記演算してめた
NOXの総量よりこれらのモル比をAのである。46は
乗算器であり、モル比演算器45によりめたモル比と上
記求めたNOxの総量とを乗算して、請求量をめるもの
である。
FIG. 4 is a block diagram showing the configuration of a control system that controls the injection amount of ammonia gas (NH3) for the denitrification reaction in the denitrification apparatus according to the present invention. In the figure, 41 indicates the population of the three denitrification reactors (
A NOx concentration transmitter 42 detects 11 degrees of NOx at point A in FIG. A supply air amount transmitter 43 that generates a detection signal according to II multiplies the detection signals output from the NOx concentration transmitter 41 and the supply air 1 transmitter 42, and calculates the total amount of NOx at point A at the inlet of the denitrification reactor. 44 is an ammonia gas amount transmitter that detects the amount of ammonia gas injected into the denitrification reactor 3 and generates a detection signal according to the detected amount;
Reference numeral 45 denotes a molar ratio calculator, which calculates the molar ratio A based on the ammonia gas amount detected by the ammonia gas amount transmitter 44 and the total amount of NOX calculated above. 46 is a multiplier that multiplies the molar ratio determined by the molar ratio calculator 45 by the total amount of NOx determined above to determine the billed amount.

47は減算器であり、上記乗算器46の出力するNHi
要求量とアンモニアガス量発信器44の出力するアンモ
ニアガス量を減算してNH3要求量に対するアンモニア
ガス量の差をめ、偏差信号を得るものである。48は制
御器で、この制御器48は上記偏差信号が零になるよう
な弁開度制御信号を出力するものであって、この弁開度
制御信号をアンモニアガス注入弁8に与えて弁開度を制
御することにより、アンモニアガス注入弁8はその開度
を調整され、上記アンモニアガス発生設備7より発生さ
れたアンモニアガスの脱硝反応器3への注入量が制御さ
れる。ここまでの構成においては上記第2図のものと基
本的に同じである。
47 is a subtracter, and the NHi output from the multiplier 46 is
A deviation signal is obtained by subtracting the required amount and the ammonia gas amount output from the ammonia gas amount transmitter 44 to find the difference between the ammonia gas amount and the NH3 required amount. Reference numeral 48 denotes a controller, and this controller 48 outputs a valve opening control signal such that the deviation signal becomes zero, and applies this valve opening control signal to the ammonia gas injection valve 8 to open the valve. By controlling the opening degree of the ammonia gas injection valve 8, the amount of ammonia gas generated from the ammonia gas generation equipment 7 to be injected into the denitrification reactor 3 is controlled. The configuration up to this point is basically the same as that in FIG. 2 above.

本発明においては更に補正信号発生器49を付加し、ボ
イラの運転状態の変化時にこの補正信号発生器49の出
力を乗算器43の出力に加算するようにした点が異なる
。すなわち、補正信号発生器49の出力側にはボイラの
運転状態の変化時に動作して所定時間閉路するリレー5
0を設けるとともにこのリレー50を介して出力される
補正信号発生器49の出力を上記乗算器43の出力に加
算して上記乗算器46に与える加算器51を該乗算器4
6の前段に設けである。
The present invention differs in that a correction signal generator 49 is further added, and the output of this correction signal generator 49 is added to the output of the multiplier 43 when the operating state of the boiler changes. That is, on the output side of the correction signal generator 49, there is a relay 5 that operates and closes for a predetermined time when the operating state of the boiler changes.
0 and adds the output of the correction signal generator 49 outputted via this relay 50 to the output of the multiplier 43 and supplies it to the multiplier 46.
It is provided at the front stage of 6.

次に上記構成の本装置の作用について説明する。Next, the operation of this device having the above configuration will be explained.

脱硝反応器3人口でのNOx濃度を検出してその検出濃
度に応じた検出信号を発生するNOx11度発信器41
とボイラ火炉1への送風量を検出してその検出送風量に
応じた検出信号を発生する供給空気量発信器42により
、NOx濃度と送風量を検出し、この雨検出信号を乗算
器43に与えて乗算し、脱硝反応器入口A点でのNOx
の総量をめる。
NOx 11 degree transmitter 41 that detects the NOx concentration in the denitrification reactor 3 population and generates a detection signal according to the detected concentration
The supply air amount transmitter 42 detects the amount of air blown to the boiler furnace 1 and generates a detection signal according to the detected air amount, detects the NOx concentration and the amount of air blown, and sends this rain detection signal to the multiplier 43. Given and multiplied, NOx at the denitrification reactor inlet point A
Calculate the total amount.

一方、脱硝反応器3に注入されるアンモニアガス量を検
出し、その検出量に応じた検出信号を発生するアンモニ
アガス量発信器44によりアンモニアガス量を検出し、
この検出したアンモニアガス量と上記演算してめたNO
xの総量をモル比演算器45に与えてこれらのモル比を
める請求めたモル比は乗算器46に上記求めたNOxの
総量とともに入力されて両者は乗算され、NH!要求量
がめられる。このNHs要求量とアンモニアガス量発信
B44の出力するアンモニアガス量を減算1$47に与
えてNH!要求量に対するアンモニアガス量の差をめ、
偏差信号として制御器48に与える。制御器48は上記
偏差信号が零になるような弁開度制御信号を出力し、こ
れをアンモニアガス注入弁8に与えて弁開度を制御する
On the other hand, the ammonia gas amount is detected by an ammonia gas amount transmitter 44 that detects the amount of ammonia gas injected into the denitrification reactor 3 and generates a detection signal according to the detected amount,
The amount of ammonia gas detected and the NO calculated above
The total amount of x is given to the molar ratio calculator 45 to calculate these molar ratios.The obtained molar ratio is inputted to the multiplier 46 together with the total amount of NOx determined above, and both are multiplied, NH! The required quantity is determined. This NHs request amount and the ammonia gas amount output from the ammonia gas amount transmitter B44 are subtracted and given to 1$47, and NH! Calculate the difference in the amount of ammonia gas against the required amount,
It is given to the controller 48 as a deviation signal. The controller 48 outputs a valve opening degree control signal such that the deviation signal becomes zero, and applies this to the ammonia gas injection valve 8 to control the valve opening degree.

これにより、アンモニアガス注入弁8はその開度を調整
され、上記アンモニアガス発生設備7より発生されたア
ンモニアガスの脱硝反応器3への注入量が制御される。
Thereby, the opening degree of the ammonia gas injection valve 8 is adjusted, and the amount of ammonia gas generated from the ammonia gas generation equipment 7 to be injected into the denitrification reactor 3 is controlled.

以上は通常時での制御形態である。今、ボイラ火炉1の
運転状態が変化したとするとこの変化に応動して所定時
間、リレー50が閉路する。これにより、該リレー50
を介して補正信号発生器49の出力する補正信号が加算
器51に与えられ、加算器51は乗算器43の出力する
脱硝反応器入口A点でのNOXの総」に上記補正信号を
加算して乗算器46に与える。従って、上記所定時間、
前記減算器47より出力される上記偏差信号は補正信号
弁補正されて制御器48に与えられる。従って、制御器
48により上記偏差信号が零になるような弁開度制御信
号を出力し、これをアンモニアガス注入弁8与えて弁開
度を制御して、上記アンモニアガス発生設備7より発生
されたアンモニアガスの脱硝反応器3への注入量を制御
することにより、ボイラ運転状態変化時の脱硝装置入口
NOX濃度急変に対応したアンモニアガス注入量の調整
をすることができるようになり、ボイラの運転状態が変
化しても脱硝装置出口でのNOX濃度一定に保つことが
できるようになる。
The above is the control form under normal conditions. Now, if the operating state of the boiler furnace 1 changes, the relay 50 closes for a predetermined period of time in response to this change. As a result, the relay 50
The correction signal output from the correction signal generator 49 is given to the adder 51 via and is applied to the multiplier 46. Therefore, the above predetermined time,
The deviation signal outputted from the subtracter 47 is corrected by a correction signal valve and then provided to a controller 48. Therefore, the controller 48 outputs a valve opening control signal such that the deviation signal becomes zero, and this signal is applied to the ammonia gas injection valve 8 to control the valve opening, so that the ammonia gas generated by the ammonia gas generation equipment 7 is By controlling the amount of ammonia gas injected into the denitrification reactor 3, it becomes possible to adjust the amount of ammonia gas injected in response to sudden changes in the NOx concentration at the denitrification device inlet when the boiler operating conditions change, and the boiler Even if the operating conditions change, the NOX concentration at the outlet of the denitrification device can be kept constant.

上記制御系における制御特性を第5図に示す。FIG. 5 shows the control characteristics of the above control system.

すなわち、運転状態が変化すると、(a)に示すように
脱硝反応器入口NOx総量が急変するが、この変化にお
いて幾分遅れがあるので、運転状態の変化時点で所定時
間、上記補正信号を付加する。
That is, when the operating condition changes, the total amount of NOx at the inlet of the denitrification reactor changes suddenly as shown in (a), but since there is some delay in this change, the above correction signal is added for a predetermined period of time when the operating condition changes. do.

これにより、第5図(b)に示すようにアンモニアガス
注入量が脱硝反応器入口NOx濃度変化に先立ち所定量
増加するので、脱硝反応器入口NOx濃度の急変時には
アンモニア注入量も必要このように本発明は石炭焚きボ
イラにおいて、例えば加圧形ミルの場合などでは起動時
においては給炭機を起動した時点、停止過程においては
ミルへの熱空気を遮断した時点などのように、運転状態
が変化した時点でNOx濃度が急変することに看目し、
上記の如き運転状態の変化時に予め予測した脱硝反応器
入口NOx濃度値変化量に合せた補正信号を上記変動の
落着く所定時間、加算して制御信号を補正するようにし
たので、ボイラの運転状態が変化しても脱硝装置出口で
のNOx濃度を一定に保つことができるようになるなど
の特徴を有する脱硝装置を提供することができる。
As a result, as shown in Fig. 5(b), the amount of ammonia gas injected increases by a predetermined amount prior to the change in the NOx concentration at the inlet of the denitrification reactor. In a coal-fired boiler, for example, in the case of a pressurized mill, the operating state is determined at the time of startup, such as when the coal feeder is started, and during the shutdown process, when the hot air to the mill is cut off. Notice that the NOx concentration suddenly changes at the time of change,
When the operating conditions change as described above, the control signal is corrected by adding a correction signal that matches the amount of change in the NOx concentration value at the inlet of the denitrification reactor predicted in advance for a predetermined period of time when the fluctuation settles down. It is possible to provide a denitrification device having features such as being able to maintain a constant NOx concentration at the outlet of the denitrification device even if conditions change.

なお、本発明は上記し且つ図面に示す実施例に限定する
ことなく、その要旨を変更しない範囲内で適宜変形して
実施し得ることは勿論であり、例えば、補正信号は運転
状態変化に応じて、脱硝反応器入口濃度変化値に合せた
複数の最適な信号レベルを設定しておき、運転状R変化
に応じて最適なものを選択して出力するようにすること
もできる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can of course be implemented with appropriate modifications within the scope of the gist. It is also possible to set a plurality of optimal signal levels according to the change value of the concentration at the inlet of the denitrification reactor, and to select and output the optimal signal level according to the change in the operating condition R.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱硝装置の構成を示すブロック図、第2図は脱
硝装置における従来の制御系の構成を示すブロック図、
第3図はその動作例を説明するためのタイムチャート、
第4図は本発明の一実施例を示すブロック図、第5図は
その動作例を示すタイムチャートである。 1・・・ボイラ火炉、2・・・押込通ff1t1.3・
・・脱硝反応器、4・・・誘引通風機、5・・・煙突、
6・・・ダクト、7・・・アンモニアガス発生設備、8
・・・アンモニアガス注入制御弁、9・・・アンモニア
ガス注入制御装置、41・・・NOx濃度発信器、42
・・・供給空気量発信器、43.46・・・乗算器、4
4・・・アンモニアガス量発信器、45・・・モル比演
算器、47・・・減算器、48・・・1lJill器、
49・・・補正信号発生器、50・・・リレー、51・
・・加算器。 出願人復代理人 弁理士 鈴江武彦
Fig. 1 is a block diagram showing the configuration of the denitrification equipment, Fig. 2 is a block diagram showing the configuration of a conventional control system in the denitrification equipment,
Figure 3 is a time chart for explaining an example of its operation.
FIG. 4 is a block diagram showing one embodiment of the present invention, and FIG. 5 is a time chart showing an example of its operation. 1... Boiler furnace, 2... Push through ff1t1.3.
... Denitrification reactor, 4... Induced draft fan, 5... Chimney,
6... Duct, 7... Ammonia gas generation equipment, 8
... Ammonia gas injection control valve, 9 ... Ammonia gas injection control device, 41 ... NOx concentration transmitter, 42
...supply air amount transmitter, 43.46...multiplier, 4
4... Ammonia gas amount transmitter, 45... Molar ratio calculator, 47... Subtractor, 48... 1lJill device,
49... Correction signal generator, 50... Relay, 51.
...Adder. Applicant Sub-Agent Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] ボイラの排ガス中に含まれる窒素酸化物を、注入したア
ンモニアガスと反応させることにより脱硝を行う脱硝装
置において、脱硝装置入口での排ガスの窒素酸化物量を
得る手段と、上記注入アンモニアガス量と窒素酸化物量
より要求アンモニアガス量をめる手段と、この要求アン
モニアガス量と上記注入アンモニアガス量との偏差をめ
、この偏差に応じた注入アンモニアガス量の制御出力を
発生する手段と、上記ボイラの運転状態変化時に応動し
て上記脱硝装置の脱硝反応遅れ特性に合せた補正出力を
所定時間与えて、上記窒素酸化物量を補正する手段とを
備えてなる脱硝装置。
In a denitrification device that denitrates nitrogen oxides contained in the exhaust gas of a boiler by reacting them with injected ammonia gas, a means for obtaining the amount of nitrogen oxides in the exhaust gas at the inlet of the denitrification device, and a means for obtaining the amount of nitrogen oxides in the exhaust gas at the inlet of the denitrification device, means for calculating the required ammonia gas amount from the oxide amount; means for determining the deviation between the required ammonia gas amount and the injected ammonia gas amount; and generating a control output for the injected ammonia gas amount in accordance with this deviation; and means for correcting the amount of nitrogen oxides by providing a correction output for a predetermined period of time in response to a change in the operating state of the denitrification apparatus in accordance with the denitrification reaction delay characteristic of the denitrification apparatus.
JP59074235A 1984-04-13 1984-04-13 Denitration apparatus Granted JPS60216829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59074235A JPS60216829A (en) 1984-04-13 1984-04-13 Denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074235A JPS60216829A (en) 1984-04-13 1984-04-13 Denitration apparatus

Publications (2)

Publication Number Publication Date
JPS60216829A true JPS60216829A (en) 1985-10-30
JPH0533088B2 JPH0533088B2 (en) 1993-05-18

Family

ID=13541298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074235A Granted JPS60216829A (en) 1984-04-13 1984-04-13 Denitration apparatus

Country Status (1)

Country Link
JP (1) JPS60216829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257222A (en) * 1985-05-10 1986-11-14 Ishikawajima Harima Heavy Ind Co Ltd Controller for amount of ammonia to be fed in denitration apparatus
JPH01288320A (en) * 1988-05-17 1989-11-20 Niigata Eng Co Ltd Controlling method of ammonia denitrification device
JPH1057769A (en) * 1996-08-23 1998-03-03 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling injection of denitrating ammonia into coal-fired boiler and device therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153869A (en) * 1976-06-17 1977-12-21 Kurabo Ind Ltd Method and device for controlling equipment for removal of nitrogen oxides
JPS5575730A (en) * 1978-12-01 1980-06-07 Hitachi Ltd Controlling method for denitrification ammonia gas in flue gas denitrification apparatus
JPS56163742A (en) * 1981-02-23 1981-12-16 Niigata Eng Co Ltd Control device for amount of ammonia addition in denitration of coke oven waste gas
JPS5810834U (en) * 1981-07-13 1983-01-24 三菱重工業株式会社 Ammonia injection control device
JPS5952515A (en) * 1982-09-21 1984-03-27 Babcock Hitachi Kk Method for controlling flow rate of ammonia in waste gas denitration apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810834B2 (en) * 1972-09-14 1983-02-28 日立化成工業株式会社 Hariawase Satsushi no Seizouhouhou

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153869A (en) * 1976-06-17 1977-12-21 Kurabo Ind Ltd Method and device for controlling equipment for removal of nitrogen oxides
JPS5575730A (en) * 1978-12-01 1980-06-07 Hitachi Ltd Controlling method for denitrification ammonia gas in flue gas denitrification apparatus
JPS56163742A (en) * 1981-02-23 1981-12-16 Niigata Eng Co Ltd Control device for amount of ammonia addition in denitration of coke oven waste gas
JPS5810834U (en) * 1981-07-13 1983-01-24 三菱重工業株式会社 Ammonia injection control device
JPS5952515A (en) * 1982-09-21 1984-03-27 Babcock Hitachi Kk Method for controlling flow rate of ammonia in waste gas denitration apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257222A (en) * 1985-05-10 1986-11-14 Ishikawajima Harima Heavy Ind Co Ltd Controller for amount of ammonia to be fed in denitration apparatus
JPH01288320A (en) * 1988-05-17 1989-11-20 Niigata Eng Co Ltd Controlling method of ammonia denitrification device
JPH1057769A (en) * 1996-08-23 1998-03-03 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling injection of denitrating ammonia into coal-fired boiler and device therefor

Also Published As

Publication number Publication date
JPH0533088B2 (en) 1993-05-18

Similar Documents

Publication Publication Date Title
CN107561941B (en) Full-working-condition standard-reaching emission control method for thermal power generating unit denitration system
US5855111A (en) Nitrogen oxide removal control apparatus
US5261337A (en) Combustion control method of refuse incinerator
JP2011099608A (en) Boiler combustion control device
JPS60216829A (en) Denitration apparatus
JPH0633743A (en) Denitration control device
JP2005169331A (en) Denitrification control method and program for the same
JP2001198438A (en) Ammonia injection amount control method for denitration apparatus
US5813212A (en) Nitrogen oxide removal control apparatus
JPS6119290B2 (en)
JPS5955334A (en) System for controlling injection of reducing agent in denitrator for stack gas
JPH0820070B2 (en) Nitrogen oxide reduction device
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
SU1719796A1 (en) Method of combustion automatic control
JP7220971B2 (en) Combustion control method for combustion equipment
JPH08261410A (en) Method and apparatus for reducing nitrogen oxide of pulverized coal burning boiler
JPS6125969B2 (en)
JPH03105114A (en) Controller for common final control element
JPS6234088Y2 (en)
JPS60263014A (en) Combustion controlling method
JPH11148638A (en) Furnace pressure controller for multi-fuel combustion boiler
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JPH08338263A (en) Denitration control device
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus
JPH05157204A (en) Fuel control device for auxiliary boiler for a plurality of boiler systems