JPH01288320A - Controlling method of ammonia denitrification device - Google Patents

Controlling method of ammonia denitrification device

Info

Publication number
JPH01288320A
JPH01288320A JP63118263A JP11826388A JPH01288320A JP H01288320 A JPH01288320 A JP H01288320A JP 63118263 A JP63118263 A JP 63118263A JP 11826388 A JP11826388 A JP 11826388A JP H01288320 A JPH01288320 A JP H01288320A
Authority
JP
Japan
Prior art keywords
denitrification
ammonia
exhaust gas
detected
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63118263A
Other languages
Japanese (ja)
Inventor
Yutaka Higuchi
豊 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP63118263A priority Critical patent/JPH01288320A/en
Publication of JPH01288320A publication Critical patent/JPH01288320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a rise time by calculating the denitrification ratio by measuring the concentration of NOx in an exhaust gas in an intake and an outlet of an ammonia denitrification device and increasing the supply amount of ammonia based on the difference between the aimed denitrification ratio to the detected ratio. CONSTITUTION:As soon as an engine starts the operation and an exhaust gas begins to flow in a denitrification device, the concentration of NOx in the exhaust gas is detected by a detector 4 set in an intake of the denitrification device and the detected signal X3 is held in a holding element 7. Then, the NOx concentration is detected by a detector 5 in an outlet of the denitrification device. The detected concentration X4 and the held detected signal X3 are processed by a computing element 8 so as to calculate denitrification ratio (n). When an aimed denitrification ratio is assumed to be n0, the difference of the both n0-n=n is the amount of adsorbed ammonia. The necessary ammonia amount is thus calculated backward from (n) in the computing element 8 and a signal so as to increase the supply amount of ammonia in the (n) is fed forward to a controlling element 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内燃機関等の排ガス中に含まれるNOx成分
を触媒に吸着させたアンモニアと反応させることによっ
て分解させるアンモニア脱硝装置の制御方法に係り、特
に機関等の運転開始時に、装置の脱硝率を速やかに立上
らせることのできるアンモニア供給量の制御方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control method for an ammonia denitrification device that decomposes NOx components contained in exhaust gas from an internal combustion engine, etc. by reacting them with ammonia adsorbed on a catalyst. In particular, the present invention relates to a method for controlling the amount of ammonia supplied that can quickly increase the denitrification rate of an apparatus at the time of starting operation of an engine or the like.

[従来の技術] アンモニア脱硝装置は、内燃機関等が発生する排ガス中
のNOx成分を、触媒に吸着させたアンモニアと反応さ
せて分解させるものである。このようなアンモニア脱硝
装置における従来のアンモニア供給の制御では、脱硝装
置の人口におけるNOx濃度を計測し、排気ガス量との
演算を行い、設計脱硝率に合ったアンモニアを供給する
方法が採用されていた。
[Prior Art] An ammonia denitrification device decomposes NOx components in exhaust gas generated by an internal combustion engine or the like by reacting them with ammonia adsorbed on a catalyst. Conventional ammonia supply control in such ammonia denitrification equipment involves measuring the NOx concentration in the population of the denitrification equipment, calculating this with the amount of exhaust gas, and supplying ammonia that matches the designed denitrification rate. Ta.

[発明が解決しようとする課屈] 前述のようなアンモニア脱硝装置においては、アンモニ
アの触媒に対する吸着量が脱硝性能に合ったものでなけ
れば、予定の脱硝率を得ることはできない。−数的には
、このような脱硝装置は連続的に使用されるので、アン
モニアの吸着不足が生じるのは機関の運転を開始してか
ら例えば3〜4時間の間のみである。しかしながら、コ
ージェネレーションのディーゼル発電装置の様に、電力
需要に合せて発停を繰返すような使い方をする場合には
、前述したアンモニアの吸着不足が生じ、予定の脱硝率
で運転される時間が短くなってしまうという問題があっ
た。
[Issues to be Solved by the Invention] In the ammonia denitrification apparatus as described above, the intended denitrification rate cannot be obtained unless the amount of ammonia adsorbed onto the catalyst matches the denitrification performance. - Numerically, such a denitrification device is used continuously, so that insufficient adsorption of ammonia occurs only, for example, during 3 to 4 hours after the start of operation of the engine. However, when using a diesel power generator for cogeneration that repeatedly starts and stops depending on the power demand, the above-mentioned ammonia adsorption is insufficient, and the time that it is operated at the planned denitrification rate is shortened. There was a problem that it became.

本発明は、アンモニア脱硝装置の制御方法において、機
関の運転開始直後にアンモニア供給量を増加させて触媒
に対するアンモニアの吸着を早め、これによって脱硝率
の立上り時間を従来よりも短縮させることを目的とする
ものである。
An object of the present invention is to increase the amount of ammonia supplied immediately after the start of operation of the engine in a control method for an ammonia denitrification device to hasten the adsorption of ammonia to the catalyst, thereby shortening the rise time of the denitrification rate compared to the conventional method. It is something to do.

[課厘を解決するための手段] 本発明に係るアンモニア脱硝装置の制御方法は、機関が
排出する排ガス中のNo8を触媒に吸着させたアンモニ
アと反応させるアンモニア脱硝装置の制御方法において
、機関の運転開始時にアンモニア脱硝装置の入口及び出
口における排ガス中のNOx濃度を計測して脱硝率を算
出し、該脱硝率と目標脱硝率との差に基づいてアンモニ
アの供給量を増加させることを特徴としている。
[Means for Solving Problems] A control method for an ammonia denitrification device according to the present invention is a method for controlling an ammonia denitrification device in which No. 8 in exhaust gas discharged by an engine is reacted with ammonia adsorbed on a catalyst. At the start of operation, the NOx concentration in the exhaust gas at the inlet and outlet of the ammonia denitrification device is measured to calculate the denitrification rate, and the amount of ammonia supplied is increased based on the difference between the denitrification rate and the target denitrification rate. There is.

[作用] 機関の運転開始後、アンモニア脱硝装置に排ガスを送り
込み、その入口及び出口における排ガス中のNOx濃度
を計測して実際の脱硝率を算出する。この脱硝率と目標
脱硝率との差に応じたアンモニア量を逆算し、その分だ
け脱硝装置に供給するアンモニアの量を増加させれば、
短時間で目標脱硝率に到達することができる。
[Operation] After the engine starts operating, exhaust gas is sent to the ammonia denitrification device, and the actual NOx removal rate is calculated by measuring the NOx concentration in the exhaust gas at the inlet and outlet. If you calculate the amount of ammonia according to the difference between this denitrification rate and the target denitrification rate and increase the amount of ammonia supplied to the denitrification equipment by that amount,
The target denitrification rate can be reached in a short time.

[実施例] 本発明の一実施例を第1図及び第2図によって説明する
[Example] An example of the present invention will be described with reference to FIGS. 1 and 2.

第1図は、図示しないアンモニア脱硝装置(以下、脱硝
装置と呼ぶ。)を制御する本実施例の制御装置1のブロ
ック図である。この制御装置1は、図示しない機関から
図示しない脱硝装置に流れる排ガス量を検出する流量検
出器2と、アンモニアガスの流量検出器3とから検出信
号Xi。
FIG. 1 is a block diagram of a control device 1 of this embodiment that controls an ammonia denitration device (hereinafter referred to as a denitration device), which is not shown. This control device 1 receives detection signals Xi from a flow rate detector 2 that detects the amount of exhaust gas flowing from an engine (not shown) to a denitrification device (not shown) and an ammonia gas flow rate detector 3.

X2を入力されるようになっており、ざらに脱硝装置の
入口と出口に設けられて排ガス中のNOx濃度を検出す
る検出器4.5からはNo、濃度の検出信号X、、X4
を人力されるようになっている。制御装置1は、これら
の各種検出信号x1〜X4から最適のアンモニアガス流
量を算出し、流流量制御用の弁6を駆動して脱硝装置に
供給されるアンモニアガスの量を最適に調節するもので
ある。
X2 is input, and the detector 4.5, which is installed at the inlet and outlet of the denitrification equipment and detects the NOx concentration in the exhaust gas, outputs No, concentration detection signals X, , X4.
is now being done manually. The control device 1 calculates the optimal ammonia gas flow rate from these various detection signals x1 to X4, and drives the flow rate control valve 6 to optimally adjust the amount of ammonia gas supplied to the denitrification device. It is.

まず、機関が運転を開始し、脱硝装置に排ガスが流れは
じめると同時に、脱硝装置入口の検出器4によって同装
置に流入する排ガス中のNoXfi度を検出し、その検
出信号x3を保持要素7にホールドする。次に、脱硝装
置出口の検出器5によって同装置から流出していく排ガ
ス中のNOx濃度を検出する。この検出信号x4と、ホ
ールドした前記検出信号x3を演算要素8で処理して脱
硝装置の実際の脱硝率ηを算出する。脱硝装置の目標脱
硝率を設計脱硝率η0とすれば、脱硝開始直後の立上り
時においてはり。〉ηであり、両者の差η。−η=Δη
が吸着しているアンモニアとなる。従って、演算要素8
においてΔηから必要なアンモニア量を逆算し、Δηの
分だけアンモニア供給量を増加させるように調節計9に
信号をフィードフォワードさせればよい。
First, when the engine starts operating and exhaust gas begins to flow into the denitrification device, the detector 4 at the inlet of the denitrification device detects the NoXfi degree in the exhaust gas flowing into the denitrification device, and sends the detection signal x3 to the holding element 7. Hold. Next, the NOx concentration in the exhaust gas flowing out from the denitrification device is detected by the detector 5 at the outlet of the denitrification device. This detection signal x4 and the held detection signal x3 are processed by the calculation element 8 to calculate the actual denitrification rate η of the denitrification device. If the target denitrification rate of the denitrification equipment is the design denitrification rate η0, the beam will rise immediately after the start of denitrification. 〉η, and the difference between the two is η. −η=Δη
becomes adsorbed ammonia. Therefore, calculation element 8
The necessary amount of ammonia may be calculated backward from Δη, and the signal may be fed forward to the controller 9 so as to increase the amount of ammonia supplied by Δη.

ところで、この時、排ガスの流量検出器2からの検出信
号x1は、リニアライザ10を介して比率設定器11に
人力されている。即ち、比率設定器11に設定された一
定の比率が前記検出信号x1に乗ぜられ、調節計9に与
えられる。他方、制御対象であるアンモニアガスの流量
検出器3から出力された検出信号X2は適宜の伝達関数
で処理された後に調節計9に入力されているので、比率
設定器11から調節計9に入力される前記信号x1は、
前記演算要素8からのフィードフォワード信号と共にア
ンモニアガスの流量設定信号となる。その結果、調節計
9が出力する制御信号によって弁6が操作され、アンモ
ニアガスの流量は排ガスの流量と一定の比率で前記Δη
の分だけ増加するように!I制御されることになる。
By the way, at this time, the detection signal x1 from the exhaust gas flow rate detector 2 is manually input to the ratio setter 11 via the linearizer 10. That is, the detection signal x1 is multiplied by a certain ratio set in the ratio setter 11, and the resultant signal is applied to the controller 9. On the other hand, the detection signal X2 output from the flow rate detector 3 of the ammonia gas to be controlled is input to the controller 9 after being processed by an appropriate transfer function, so it is input from the ratio setting device 11 to the controller 9. The signal x1 to be
Together with the feedforward signal from the calculation element 8, this becomes an ammonia gas flow rate setting signal. As a result, the valve 6 is operated by the control signal output from the controller 9, and the flow rate of the ammonia gas is adjusted to the above Δη at a constant ratio to the flow rate of the exhaust gas.
so that it increases by the amount of! I will be controlled.

このように、実際の脱硝率と目標脱硝率の差に応じてア
ンモニアの供給量を増加させれば、脱硝率は短時間で目
標値に到達する。、第2図は機関の運転時間と脱硝率の
関係を示すグラフであり、従来の方法と本実施例による
方法とを比較するものである。従来の方法は、前述した
通り、脱硝装置人口のNOx濃度と排ガス量からアンモ
ニア供給量を決めるものであるから、第2図に■で示す
通り一般にアンモニア供給量は設計脱硝率(例えば85
%)に合せて一定とされていた。従って同図中@で示す
通り、従来のIIJ御方法によると、脱硝率の立ち上り
には長い時間がかかり、設計脱硝率に達するのにこの例
では約3時間もかかってしまう。これに対して本実施例
による制御方法によれば、アンモニアの供給は■のよう
になるので、■で示すように脱硝率の立ち上りはきわめ
て早く、この例だと30分程度で設計脱硝率に到達して
いる。従って、運転・停止を繰返す設備にもアンモニア
脱硝装置を採用することができ、予定通りの脱硝率を比
較的安定して得ることができる。
In this way, if the ammonia supply amount is increased according to the difference between the actual denitrification rate and the target denitrification rate, the denitrification rate will reach the target value in a short time. FIG. 2 is a graph showing the relationship between engine operating time and denitrification rate, and compares the conventional method and the method according to this embodiment. As mentioned above, in the conventional method, the ammonia supply amount is determined from the NOx concentration of the denitrification equipment population and the exhaust gas amount, so the ammonia supply amount is generally determined based on the design denitrification rate (for example, 85
%). Therefore, as shown by @ in the figure, according to the conventional IIJ control method, it takes a long time for the NOx removal rate to rise, and in this example, it takes about 3 hours to reach the designed NOx removal rate. On the other hand, according to the control method according to this embodiment, the ammonia supply is as shown in (■), so the rise in the NOx removal rate is extremely quick as shown in (■), and in this example, the designed NOx removal rate is reached in about 30 minutes. It has been reached. Therefore, the ammonia denitrification device can be used even in equipment that is repeatedly operated and stopped, and the expected denitrification rate can be obtained relatively stably.

次に、脱硝率が目標値に達すれば、脱硝装置出口の検出
器5は停止し、検出器4によって脱硝装置入口のNo、
濃度のみの計測に切換える。実施例では流量検出器が2
台の場合を示したが、これを1台としてサンプリングを
切換えながら制御することも可能である。そして、この
検出信号x3と排ガスlの検出信号x1とを演算要素8
で処理し、その演算結果を調節計9に送って、設計脱硝
率に合ったアンモニアが供給されるように弁6の開度を
調整する。
Next, when the denitrification rate reaches the target value, the detector 5 at the denitrification equipment outlet stops, and the detector 4 detects the No.
Switch to concentration only measurement. In the example, there are two flow rate detectors.
Although the case of one unit is shown, it is also possible to control the sampling while switching the sampling. Then, this detection signal x3 and the detection signal x1 of the exhaust gas l are combined into a calculation element 8.
The calculation result is sent to the controller 9, and the opening degree of the valve 6 is adjusted so that ammonia matching the designed denitrification rate is supplied.

[発明の効果] 本発明に係るアンモニア脱硝装置の制御方法によれば、
機関の運転開始直後における実際の脱硝率と目標値との
差に基づいてアンモニアの供給量を増大させるようにし
ているので、脱硝率の立ち上り時間が従来に比べて大幅
に短縮されるという効果がある。
[Effects of the Invention] According to the method for controlling an ammonia denitrification device according to the present invention,
Since the ammonia supply amount is increased based on the difference between the actual NOx removal rate and the target value immediately after the engine starts operating, the rise time of the NOx removal rate is significantly shortened compared to the conventional method. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するブロック図、第2
図は機関の運転時間と脱硝率の関係を示す図で、同実施
例と従来例とを比較するためのグラフである。 !・−制御装置、 4−アンモニア脱硝装置の入口における排ガス中のN 
Ox 111度を計測する検出器、5−同出口における
排ガス中のNOx濃度を計測する検出器、 8−脱硝率を算出する演算要素。 特許出願人 株式会社新潟鉄工所 代理人・弁理士 西  村  教  先筒1図 脱Fi4装置 7B預二嘉
FIG. 1 is a block diagram explaining one embodiment of the present invention, and FIG.
The figure shows the relationship between the operating time of the engine and the denitrification rate, and is a graph for comparing the same example and the conventional example. ! -Control device, 4-N in the exhaust gas at the inlet of the ammonia denitration equipment
A detector that measures Ox 111 degrees; 5-A detector that measures NOx concentration in the exhaust gas at the same outlet; 8-A calculation element that calculates the denitrification rate. Patent Applicant: Niigata Iron Works Co., Ltd. Agent/Patent Attorney: Norihiro Nishimura, First cylinder 1 figure removal Fi4 device 7B, Yukiyoshi

Claims (1)

【特許請求の範囲】[Claims] 機関が排出する排ガス中のNO_xを触媒に吸着させた
アンモニアと反応させるアンモニア脱硝装置の制御方法
において、機関の運転開始時にアンモニア脱硝装置の入
口及び出口における排ガス中のNO_x濃度を計測して
脱硝率を算出し、該脱硝率と目標脱硝率との差に基づい
てアンモニアの供給量を増加させることを特徴とするア
ンモニア脱硝装置の制御方法。
In a control method for an ammonia denitrification device that reacts NO_x in the exhaust gas emitted by the engine with ammonia adsorbed on a catalyst, the NO_x concentration in the exhaust gas at the inlet and outlet of the ammonia denitrification device is measured at the start of engine operation to determine the denitrification rate. A method for controlling an ammonia denitrification apparatus, characterized in that the amount of ammonia supplied is increased based on the difference between the denitrification rate and a target denitrification rate.
JP63118263A 1988-05-17 1988-05-17 Controlling method of ammonia denitrification device Pending JPH01288320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118263A JPH01288320A (en) 1988-05-17 1988-05-17 Controlling method of ammonia denitrification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118263A JPH01288320A (en) 1988-05-17 1988-05-17 Controlling method of ammonia denitrification device

Publications (1)

Publication Number Publication Date
JPH01288320A true JPH01288320A (en) 1989-11-20

Family

ID=14732300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118263A Pending JPH01288320A (en) 1988-05-17 1988-05-17 Controlling method of ammonia denitrification device

Country Status (1)

Country Link
JP (1) JPH01288320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318132A (en) * 1995-05-29 1996-12-03 Nisshin Steel Co Ltd Method for denitrating waste gas and denitrator
EP1348477A1 (en) * 2002-03-29 2003-10-01 Mitsubishi Fuso Truck and Bus Corporation NOx cleaning apparatus of internal combustion engine
CN108159881A (en) * 2018-01-10 2018-06-15 中国大唐集团科学技术研究院有限公司华东分公司 A kind of SCR denitration following control system and method based on optimization operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333977A (en) * 1976-09-10 1978-03-30 Unitika Ltd Automatically controlling method for quantity of introduced nh3 in denitration plant for flue gas
JPS6034719A (en) * 1983-08-04 1985-02-22 Babcock Hitachi Kk Controlling device of ammonia injection for denitration apparatus
JPS60197225A (en) * 1984-03-19 1985-10-05 Mitsubishi Heavy Ind Ltd Catalytic denitration apparatus
JPS60216829A (en) * 1984-04-13 1985-10-30 Mitsubishi Heavy Ind Ltd Denitration apparatus
JPS61268341A (en) * 1985-05-20 1986-11-27 Mitsubishi Heavy Ind Ltd Denitration control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333977A (en) * 1976-09-10 1978-03-30 Unitika Ltd Automatically controlling method for quantity of introduced nh3 in denitration plant for flue gas
JPS6034719A (en) * 1983-08-04 1985-02-22 Babcock Hitachi Kk Controlling device of ammonia injection for denitration apparatus
JPS60197225A (en) * 1984-03-19 1985-10-05 Mitsubishi Heavy Ind Ltd Catalytic denitration apparatus
JPS60216829A (en) * 1984-04-13 1985-10-30 Mitsubishi Heavy Ind Ltd Denitration apparatus
JPS61268341A (en) * 1985-05-20 1986-11-27 Mitsubishi Heavy Ind Ltd Denitration control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318132A (en) * 1995-05-29 1996-12-03 Nisshin Steel Co Ltd Method for denitrating waste gas and denitrator
EP1348477A1 (en) * 2002-03-29 2003-10-01 Mitsubishi Fuso Truck and Bus Corporation NOx cleaning apparatus of internal combustion engine
CN108159881A (en) * 2018-01-10 2018-06-15 中国大唐集团科学技术研究院有限公司华东分公司 A kind of SCR denitration following control system and method based on optimization operation

Similar Documents

Publication Publication Date Title
EP0820799A3 (en) System for and method of removing NOx from exhaust gases
KR0151597B1 (en) Method and arrangement for controlling the fuel for an internal combustion engine having a catalyzer
JP2554836B2 (en) Denitration control device
JP2004197746A (en) Advanced ammonia feed control for selective catalytic reduction
US7069719B2 (en) Air-fuel ratio control apparatus for an internal combustion engine
WO2006026606A2 (en) Control system for an engine aftertreatment system
EP0799985A3 (en) Air-fuel ratio control system for internal combustion engines
JPH01288320A (en) Controlling method of ammonia denitrification device
JPH0693841A (en) Control device for exhaust secondary air supply device in internal combustion engine
JPH04346819A (en) Denitration control device and method
JP4690597B2 (en) Combustion type abatement system
JPH10263360A (en) Method and device controlling introduced quantity of nitrogen oxide removing medium
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
SE9702757D0 (en) Device and method for reducing harmful emissions from an internal combustion engine
JP2635643B2 (en) Denitration control device for gas turbine plant
JPS6344924A (en) Denitration treatment of exhaust gas
JP3564596B2 (en) Ammonia injection amount control method for denitration equipment
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus
JPH0611379B2 (en) Exhaust heat recovery heat exchanger
JP3243643B2 (en) Exhaust gas denitration method and apparatus
JP2000246054A (en) Method for controlling amount of feeding of ammonia in denitrification apparatus
JP2004052593A (en) Denitration equipment
JPH01168319A (en) Nox reducer of exhaust gas of power generating diesel engine
JPS637086B2 (en)
JPH06343826A (en) Denitrification controller