JP3243643B2 - Exhaust gas denitration method and apparatus - Google Patents

Exhaust gas denitration method and apparatus

Info

Publication number
JP3243643B2
JP3243643B2 JP04583191A JP4583191A JP3243643B2 JP 3243643 B2 JP3243643 B2 JP 3243643B2 JP 04583191 A JP04583191 A JP 04583191A JP 4583191 A JP4583191 A JP 4583191A JP 3243643 B2 JP3243643 B2 JP 3243643B2
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
ammonia
load
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04583191A
Other languages
Japanese (ja)
Other versions
JPH0523545A (en
Inventor
敏次 佐瀬
道昭 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP04583191A priority Critical patent/JP3243643B2/en
Publication of JPH0523545A publication Critical patent/JPH0523545A/en
Application granted granted Critical
Publication of JP3243643B2 publication Critical patent/JP3243643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排ガスから窒
素酸化物を除去する脱硝装置、特にディーゼル機関に適
した排ガス脱硝装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration apparatus for removing nitrogen oxides from exhaust gas of an internal combustion engine, and more particularly to an exhaust gas denitration apparatus suitable for a diesel engine.

【0002】[0002]

【従来技術】従来、排気ガス脱硝装置のアンモニア注入
制御は、エンジンの起動信号を発停信号発信器より受け
取ってバルブを開き、アンモニアの注入を開始し、停止
信号を受け取ってバルブを閉じて注入を終了するように
なっている。
2. Description of the Related Art Conventionally, ammonia injection control of an exhaust gas denitration system is performed by receiving a start signal of an engine from a start / stop signal transmitter, opening a valve, starting injection of ammonia, receiving a stop signal, closing the valve and injecting the ammonia. To end.

【0003】また、特開平1−168318号公報に
は、ディーゼルエンジンの排ガスダクトに設けた脱硝装
置をバイパスするバイパスダクトを設け、このバイパス
ダクト後流側の排ガスダクトに排ガス温度測定用の温度
計を設け、該温度計のガス温度信号とエンジン運転信号
と脱硝装置運転温度設定温度信号とを比較し、アンモニ
ア用バルブの開閉を制御する装置が開示されている。
In Japanese Patent Application Laid-Open No. 1-168318, a bypass duct is provided for bypassing a denitration device provided in an exhaust gas duct of a diesel engine, and a thermometer for measuring exhaust gas temperature is provided in the exhaust gas duct downstream of the bypass duct. A device for controlling the opening and closing of an ammonia valve by comparing a gas temperature signal of the thermometer, an engine operation signal, and a denitration device operation temperature setting temperature signal is disclosed.

【0004】また、特開平2−223623号公報に
は、アンモニア供給量を予めシーケンサによって学習さ
せ、それに基づいて必要量のアンモニアを供給する発電
ディーゼルエンジン排ガスのNOx装置が開示されてい
る。
Further, Japanese Patent Application Laid-Open No. 223623/1990 discloses a NOx device for exhaust gas of a diesel engine for power generation in which a sequencer is used to previously learn an amount of supplied ammonia and supplies a necessary amount of ammonia based on the learned amount.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
のバルブのみを開閉してアンモニアを供給すものでは、
窒素酸化物の発生量に対応したアンモニア流量の微妙な
制御ができないため、窒素酸化物の排出量の制御が行え
ず、リークアンモニアが増加するなどの問題があった。
However, in the case of supplying ammonia by opening and closing only the above-mentioned conventional valve,
Since it is not possible to finely control the flow rate of ammonia corresponding to the amount of generated nitrogen oxides, it is not possible to control the amount of discharged nitrogen oxides, thereby increasing the amount of leaked ammonia.

【0006】また、従来より窒素酸化物の発生量の変化
に対応してアンモニア流量を調整する制御が行われてい
るが、この方法では、常に窒素酸化物濃度や排気ガス風
量等を測定し、アンモニア供給量を計算する必要があ
り、NOx計の調整やガス採取管の清掃などのメンテナ
ンスコストが高くなるという問題があった。
Conventionally, control for adjusting the flow rate of ammonia in response to a change in the amount of generated nitrogen oxides has been performed. In this method, however, the concentration of nitrogen oxides, the amount of exhaust gas, and the like are constantly measured. There is a problem that it is necessary to calculate the ammonia supply amount, and maintenance costs such as adjustment of the NOx meter and cleaning of the gas sampling pipe are increased.

【0007】また、特開平2−223623号公報のも
のは、アンモニア供給量を予めシーケンサによって学習
させ、それに基づいて必要量のアンモニアを供給する
が、その装置構成及び制御方法が複雑で、運転や調整が
困難であるという問題がある。本発明は上述の点に鑑み
てなされたもので、上記問題点を除去し、構成が簡単
で、内燃機関の負荷の変化に追従して適切な流量のアン
モニアを排気ガス中に供給できる排ガス脱硝装置を提供
することにある。
In Japanese Patent Application Laid-Open No. 223623/1990, the supply amount of ammonia is learned by a sequencer in advance and the required amount of ammonia is supplied based on the learned amount. There is a problem that adjustment is difficult. The present invention has been made in view of the above points, and eliminates the above-mentioned problems, has a simple structure, and can supply an appropriate flow rate of ammonia to exhaust gas according to a change in load of an internal combustion engine. It is to provide a device.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明は、内燃機関の排ガス中にアンモニアを注入し、
該アンモニアが注入された排ガスを窒素酸化物触媒反応
塔に通し、排ガス中の窒素酸化物を除去する排ガス脱硝
方法において、内燃機関の負荷に対して排出される窒素
酸化物量と一定酸素濃度に換算した場合の規制濃度にお
ける許容窒素酸化物量とをそれぞれ負荷の一次関数とし
て求め、この窒素酸化物量と許容窒素酸化物量の差から
排ガス中の窒素酸化物濃度が規制濃度以下になるまでの
アンモニア供給量を負荷に対する一次関数式で算出し、
負荷の変化に応じて該算出したアンモニア量を供給する
ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for injecting ammonia into exhaust gas of an internal combustion engine,
In the exhaust gas denitration method of removing the nitrogen oxides in the exhaust gas by passing the exhaust gas into which the ammonia is injected through a nitrogen oxide catalytic reaction tower, the exhaust gas is converted into a nitrogen oxide amount and a constant oxygen concentration with respect to the load of the internal combustion engine. The allowable nitrogen oxide amount at the regulated concentration in the case of performing the above is obtained as a linear function of the load, and the ammonia supply amount until the nitrogen oxide concentration in the exhaust gas becomes equal to or less than the regulated concentration is obtained from the difference between the nitrogen oxide amount and the allowable nitrogen oxide amount. Is calculated by a linear function equation with respect to the load,
The calculated amount of ammonia is supplied according to a change in load.

【0009】また、内燃機関の排ガスを排出する排ガス
ダクトに窒素酸化物触媒反応塔を接続すると共に、該内
燃機関と窒素酸化物触媒反応塔の間の排ガスダクトに窒
素酸化物の還元剤としてアンモニアを供給するアンモニ
ア供給装置を接続した排ガス脱硝装置において、内燃機
関の負荷に対して排出される窒素酸化物量と一定酸素濃
度に換算した場合の規制濃度における許容窒素酸化物量
とをそれぞれ負荷の一次関数としてとして求め、この窒
素酸化物量と許容窒素酸化物量の差から排ガス中の窒素
酸化物濃度を規制濃度以下とするアンモニア供給量を負
荷を一次関数として算出する一次関数式の係数を記憶
し、該係数値を用い負荷の変化に応じて前記アンモニア
供給量を算出する演算手段と、該演算手段の算出出力に
より前記アンモニア供給装置からのアンモニア供給量を
制御し窒素酸化物濃度を規制値以下とする制御手段とを
設けたこと特徴とする。
A nitrogen oxide catalyst reaction tower is connected to an exhaust gas duct for discharging exhaust gas from an internal combustion engine, and ammonia is used as a nitrogen oxide reducing agent in an exhaust gas duct between the internal combustion engine and the nitrogen oxide catalyst reaction tower. In an exhaust gas denitration device connected to an ammonia supply device that supplies nitrogen, the amount of nitrogen oxides discharged with respect to the load of the internal combustion engine and the allowable amount of nitrogen oxides at the regulated concentration when converted to a constant oxygen concentration are linear functions of the load, respectively. The coefficient of a linear function formula for calculating the load of ammonia as a linear function to make the nitrogen oxide concentration in the exhaust gas equal to or less than the regulated concentration from the difference between this nitrogen oxide amount and the allowable nitrogen oxide amount is stored, Calculating means for calculating the ammonia supply amount in accordance with a change in load using a coefficient value; Characterized by a control nitrogen oxide concentration of ammonia supply from the charging device provided with a control means for the following regulation value.

【0010】[0010]

【作用】内燃機関より排出された排ガスは供給されたア
ンモニアと混合し、窒素酸化物触媒反応塔に流入し、こ
こで触媒の作用により、窒素酸化物の除去すなわち脱硝
が行われる。
The exhaust gas discharged from the internal combustion engine is mixed with the supplied ammonia and flows into the nitrogen oxide catalytic reaction tower, where nitrogen oxides are removed, that is, denitration is performed by the action of the catalyst.

【0011】排ガス中に注入するアンモニアの供給量
は、内燃機関の負荷に対して排出される窒素酸化物の量
と一定酸素濃度に換算した場合の規制濃度における窒素
酸化物の量との差から、負荷に対する一次関数として算
出し、該算出結果に基づいてアンモニアを排ガス中に注
入するので、アンモニアは常に排ガス中の窒素酸化物の
量に対応して適正量が供給されることになり、効率のよ
い安定した脱硝が行われることになる。
The supply amount of ammonia to be injected into the exhaust gas is determined by the difference between the amount of nitrogen oxide discharged to the load of the internal combustion engine and the amount of nitrogen oxide at the regulated concentration when converted to a constant oxygen concentration. Is calculated as a linear function of the load, and ammonia is injected into the exhaust gas based on the calculation result. Therefore, an appropriate amount of ammonia is always supplied in accordance with the amount of nitrogen oxides in the exhaust gas. Good and stable denitration will be performed.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明の排ガス脱硝装置の構成例を示す図
である。図1の排ガス脱硝装置は発電機11を駆動する
ディーゼル機関1の排ガス脱硝装置の構成を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of an exhaust gas denitration apparatus of the present invention. The exhaust gas denitration device of FIG. 1 shows the configuration of the exhaust gas denitration device of the diesel engine 1 that drives the generator 11.

【0013】ディーゼル機関1の排気口には、排ガスダ
クト9により窒素酸化物触媒反応塔、即ち脱硝塔2が接
続されている。排ガスダクト9の途中で且つ脱硝塔の上
流側にアンモニア注入器8を設置する。ディーゼル機関
1に直結した発電機11の負荷信号線6は、アンモニア
供給量演算器5に接続され、該アンモニア供給量演算器
はアンモニア流量調整弁コントローラ4に接続されてい
る。
An exhaust port of the diesel engine 1 is connected to a nitrogen oxide catalytic reaction tower, that is, a denitration tower 2 by an exhaust gas duct 9. An ammonia injector 8 is installed in the exhaust gas duct 9 and upstream of the denitration tower. The load signal line 6 of the generator 11 directly connected to the diesel engine 1 is connected to the ammonia supply amount calculator 5, and the ammonia supply amount calculator is connected to the ammonia flow control valve controller 4.

【0014】前記アンモニア注入器8はアンモニア流量
調整弁7を通してアンモニア貯留ボンベ3に連結されて
いる。前記アンモニア流量調整弁7は前記アンモニア流
量調整弁コントローラ4に接続されている。
The ammonia injector 8 is connected to the ammonia storage cylinder 3 through the ammonia flow control valve 7. The ammonia flow control valve 7 is connected to the ammonia flow control valve controller 4.

【0015】前記脱硝塔2の出口は排ガス排出ダクト1
0を通して図示しない煙突等に接続され、脱硝塔2によ
り脱硝された排ガスは大気に放出されるようになってい
る。以下、上記構成の排ガス脱硝装置の動作を説明す
る。
The outlet of the denitration tower 2 is an exhaust gas discharge duct 1
The exhaust gas denitrated by the denitration tower 2 is connected to a chimney or the like (not shown) through 0 and discharged to the atmosphere. Hereinafter, the operation of the exhaust gas denitration apparatus having the above configuration will be described.

【0016】上記のように内燃機関(ディーゼル機関
1)の排ガスに窒素酸化物を還元するための還元剤とし
てアンモニアを注入混合し、窒素酸化物触媒反応塔によ
り脱硝するようにした装置において、該装置を設ける内
燃機関の種々の項目について内燃機関の負荷に対する値
を測定した結果図2及び図3に示す。
As described above, in an apparatus in which ammonia is injected and mixed into the exhaust gas of an internal combustion engine (diesel engine 1) as a reducing agent for reducing nitrogen oxides and denitration is performed by a nitrogen oxide catalytic reaction tower. FIGS. 2 and 3 show the results of measuring the values of various items of the internal combustion engine provided with the device with respect to the load of the internal combustion engine.

【0017】図2(a)は負荷に対する窒素酸化物濃度
NOxを示す図であり、図2(b)は負荷に対する排ガ
ス風量を示す図である。窒素酸化物量は次式(1)で計
算される。 (窒素酸化物)=(窒素酸化物濃度)×(排ガス風量)・・・・(1) 従って、窒素酸化物の量は図2(c)に示すように、略
一次関数で表される。
FIG. 2A is a diagram showing the nitrogen oxide concentration NOx with respect to the load, and FIG. 2B is a diagram showing the exhaust gas flow rate with respect to the load. The amount of nitrogen oxide is calculated by the following equation (1). (Nitrogen oxide) = (Nitrogen oxide concentration) × (Exhaust gas flow rate) (1) Accordingly, as shown in FIG. 2C, the amount of nitrogen oxide is represented by a substantially linear function.

【0018】又、特定の酸素濃度に換算して表した窒素
酸化物濃度で規制値(低減目標値)が表される場合の許
容窒素酸化物量は次式(2)で表される。 (許容窒素酸化物量)=(許容酸化物濃度)×(排ガス風量)×(21− O2)/(21−O2O)・・・・・・・・(2) ここでO2Oは特定の酸素濃度〔%〕を示し、O2は任意
の酸素濃度を示し、21は空気中の酸素濃度を示す。デ
ィーゼル機関の排ガス中の窒素酸化物の排出規準は酸素
濃度換算(O2O)で13%に設定されている。
The allowable nitrogen oxide amount when the regulation value (reduction target value) is expressed by the nitrogen oxide concentration converted to a specific oxygen concentration is expressed by the following equation (2). (Allowable nitrogen oxide amount) = (Allowable oxide concentration) × (Exhaust gas flow amount) × (21−O 2 ) / (21−O 2 O) (2) where O 2 O is A specific oxygen concentration [%] is shown, O 2 is an arbitrary oxygen concentration, and 21 is an oxygen concentration in the air. The emission standard for nitrogen oxides in exhaust gas from diesel engines is set at 13% in terms of oxygen concentration (O 2 O).

【0019】図3(a)は負荷に対する酸素濃度を示し
図であり、図3(b)は負荷に対する(許容酸化物濃
度、即ち規制値)×(21−O2)/(21−O2O)を
示す図である。
FIG. 3A shows the oxygen concentration with respect to the load, and FIG. 3B shows the (allowable oxide concentration, that is, the regulated value) × (21-O 2 ) / (21-O 2 ) with respect to the load. FIG.

【0020】また、図3(c)は負荷に対する許容窒素
酸化物量の計算結果を示す図である。図3(c)に示す
ように、特定酸化物濃度に換算した窒素酸化物濃度の規
制値に対する窒素酸化物量は、負荷に対する一次関数で
表される。
FIG. 3 (c) is a view showing a calculation result of an allowable nitrogen oxide amount with respect to a load. As shown in FIG. 3C, the nitrogen oxide amount with respect to the regulated value of the nitrogen oxide concentration converted to the specific oxide concentration is represented by a linear function with respect to the load.

【0021】アンモニアによる選択式脱硝作用では、ア
ンモニアと窒素酸化物の反応がモル比1:1で行われ
る。従って、上記窒素酸化物濃度を満足するために必要
なアンモニア量は、次式(3)で表される。 (必要アンモニア量)=(窒素酸化物量)−(許容窒素酸化物量)・(3)
In the selective denitration by ammonia, the reaction between ammonia and nitrogen oxides is performed at a molar ratio of 1: 1. Therefore, the amount of ammonia necessary to satisfy the nitrogen oxide concentration is represented by the following equation (3). (Required ammonia) = (nitrogen oxide)-(allowable nitrogen oxide) · (3)

【0022】上記アンモニア量を算出する上記式(3)
の右辺の(窒素酸化物量)及び(許容窒素酸化物量)は
ともに一次式で近似されるので、その減算結果も一次式
で近似できる。即ち、排ガス中の窒素酸化物濃度を規制
値以下にするために必要なアンモニア供給量は、負荷に
対する一次式で近似できることになる。
Equation (3) for calculating the amount of ammonia
Since both the (nitrogen oxide amount) and the (allowable nitrogen oxide amount) on the right side of are approximated by a linear expression, the result of the subtraction can also be approximated by a linear expression. In other words, the amount of ammonia supply necessary to make the nitrogen oxide concentration in the exhaust gas equal to or less than the regulation value can be approximated by a linear expression with respect to the load.

【0023】上記のように、内燃機関の負荷に対して、
排出される窒素酸化物の量及び特定酸素濃度に換算した
場合の規制(目標)濃度における窒素酸化物の量がそれ
ぞれ略一次関数であらわされることがわかる。このこと
から、脱硝に必要なアンモニア供給量は、内燃機関の負
荷の一次関数として設定し、供給すればよい。
As described above, with respect to the load of the internal combustion engine,
It can be seen that the amount of nitrogen oxides discharged and the amount of nitrogen oxides at the regulated (target) concentration when converted to a specific oxygen concentration are each represented by a substantially linear function. For this reason, the ammonia supply amount required for denitration may be set and supplied as a linear function of the load of the internal combustion engine.

【0024】図1に示す構成の排ガス脱硝装置におい
て、この排ガス脱硝装置を設置するディーゼル機関1の
負荷に対するNOx濃度{図2(a)参照}及び負荷に
対する排ガス風量を{図2(b)参照}を実測して求め
る。この負荷に対するNOx濃度及び排ガス風量から式
(1)を用いて負荷に対して一次関数として表される窒
素酸化物量を求める{図2(c)参照}。
In the exhaust gas denitration apparatus having the structure shown in FIG. 1, the NOx concentration with respect to the load of the diesel engine 1 in which the exhaust gas denitration apparatus is installed {see FIG. 2 (a)} and the exhaust gas flow rate with respect to the load {see FIG. 2 (b). Measure 実 and find it. From the NOx concentration and the exhaust gas flow rate with respect to the load, the amount of nitrogen oxide expressed as a linear function with respect to the load is calculated using Equation (1) (see FIG. 2C).

【0025】また、上記ディーゼル機関1の負荷に対す
る酸素濃度を実測して求める{図3(a)参照}。この
負荷に対する酸素濃度から図3(b)示すような負荷に
対する(許容酸化物濃度)×(21−O2)/(21−
2O)を求める。そして、式(2)を用いて負荷に対し
て一次関数として表される許容窒素酸化物量を求める
{図3(c)参照}。
Further, the oxygen concentration with respect to the load of the diesel engine 1 is actually measured (see FIG. 3A). From the oxygen concentration for this load, (allowable oxide concentration) × (21−O 2 ) / (21−) for a load as shown in FIG.
O 2 O). Then, the allowable nitrogen oxide amount expressed as a linear function with respect to the load is obtained by using the equation (2) (see FIG. 3C).

【0026】上記窒素酸化物量と許容窒素酸化物量との
差から式(3)に示すように供給アンモニア量を求め
る。この場合、上記のように窒素酸化物量も窒素酸化物
量も負荷の一次関数と表されるから、両者の差から供給
アンモニア量を算出する式は負荷に対する一次関数式と
なる。この負荷から供給アンモニア量を算出する一次関
数式の係数をアンモニア供給量演算器5の内部メモリに
記憶しておく。
From the difference between the nitrogen oxide amount and the allowable nitrogen oxide amount, the amount of supplied ammonia is determined as shown in equation (3). In this case, since both the nitrogen oxide amount and the nitrogen oxide amount are expressed as linear functions of the load as described above, the equation for calculating the amount of supplied ammonia from the difference between the two is a linear function equation for the load. The coefficient of the linear function formula for calculating the supply ammonia amount from this load is stored in the internal memory of the ammonia supply amount calculator 5.

【0027】上記のように、供給アンモニア量を算出す
る式の係数をアンモニア供給量演算器5の内部メモリに
記憶しておくことにより、アンモニア供給量演算器5に
負荷信号線6から負荷値が入力されると、この負荷値に
必要なアンモニア供給量を算出し、その結果をアンモニ
ア流量調整弁コントローラ4に出力する。
As described above, the coefficient of the formula for calculating the amount of supplied ammonia is stored in the internal memory of the ammonia supply amount calculator 5 so that the load value can be transmitted from the load signal line 6 to the ammonia supply amount calculator 5. When input, the amount of ammonia supply required for this load value is calculated, and the result is output to the ammonia flow control valve controller 4.

【0028】アンモニア流量調整弁コントローラ4はア
ンモニア流量調整弁7の開度を調整し、アンモニア貯留
ボンベ3からアンモニア流量調整弁7及びアンモニア注
入器8を介して排ガスダクト9内にアンモニア供給量演
算器5で算出された供給アンモニア量を注入する。
The ammonia flow control valve controller 4 adjusts the opening of the ammonia flow control valve 7, and supplies an ammonia supply amount calculator from the ammonia storage cylinder 3 into the exhaust gas duct 9 via the ammonia flow control valve 7 and the ammonia injector 8. The amount of supplied ammonia calculated in step 5 is injected.

【0029】これにより、排ガスダクト9内に注入され
たアンモニアは排ガスと混合され、脱硝塔2に流入す
る。そして排ガス中の窒素酸化物は、脱硝塔2内の触媒
によりアンモニアと反応し、水と窒素に分解、即ち脱硝
される。脱硝された排ガスは煙突塔を介して大気中に放
出される。
As a result, the ammonia injected into the exhaust gas duct 9 is mixed with the exhaust gas and flows into the denitration tower 2. The nitrogen oxides in the exhaust gas react with ammonia by the catalyst in the denitration tower 2 and are decomposed into water and nitrogen, that is, denitrated. The denitrated exhaust gas is released into the atmosphere via a chimney tower.

【0030】なお、上記実施例では、内燃機関(ディー
ゼル機関)の負荷を用いる例を示したが、この負荷に代
えて燃料消費量又は内燃機関に連結した機械の負荷、即
ち発電装置では発電電力量や電流等、またポンプ等の機
械ではトルク等を用いることができる。
In the above embodiment, an example is shown in which the load of the internal combustion engine (diesel engine) is used. However, instead of this load, the fuel consumption or the load of the machine connected to the internal combustion engine, that is, the generated power It is possible to use an amount, an electric current and the like, and a torque and the like in a machine such as a pump.

【0031】また、アンモニアの供給は脱硝塔の触媒の
内部温度が予め設定された温度範囲内の時、行うように
するとよい。
The supply of ammonia is preferably performed when the internal temperature of the catalyst of the denitration tower is within a preset temperature range.

【0032】なお、上記実施例ではディーゼル機関につ
いて説明したが、本発明はこれに限定されるものではな
く、内燃機関全般に使用することが可能である。
Although the above embodiment has been described with reference to a diesel engine, the present invention is not limited to this, and can be used for all internal combustion engines.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば下記
のような優れた効果が得られる。 (1)アンモニアは常に排ガス中の窒素酸化物の量に対
応して適正量が排ガス中に供給されるので、効率のよい
安定した脱硝が行えると同時に、アンモニアリークの危
険性が低減できる。 (2)アンモニア流量の制御は、負荷信号のみで行うた
め、制御のために排ガス中の窒素酸化物を検出するNO
x計が不要になり、装置が簡略化される。 (3)アンモニア供給量が一次関数としてあらわされる
ので、演算器に設定する係数の変更が容易で、演算器の
構成も容易で、且つ制御が確実になる。
As described above, according to the present invention, the following excellent effects can be obtained. (1) Since an appropriate amount of ammonia is always supplied to the exhaust gas in accordance with the amount of nitrogen oxides in the exhaust gas, efficient and stable denitration can be performed, and the risk of ammonia leak can be reduced. (2) Since the ammonia flow rate is controlled only by the load signal, NO for detecting nitrogen oxides in the exhaust gas for control is used.
The x-meter is not required, and the apparatus is simplified. (3) Since the ammonia supply amount is expressed as a linear function, it is easy to change the coefficient set in the arithmetic unit, the configuration of the arithmetic unit is easy, and the control is reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱硝装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a denitration apparatus of the present invention.

【図2】内燃機関の負荷に対する種々の値を示す図で、
図2(a)は負荷に対するNOx濃度、図2(b)は負
荷に対する排ガス風量、図2(c)負荷に対するNOx
量の関係をそれぞれ示す。
FIG. 2 is a diagram showing various values with respect to a load of an internal combustion engine;
2A shows the NOx concentration with respect to the load, FIG. 2B shows the exhaust gas flow rate with respect to the load, and FIG.
The relationship between the quantities is shown.

【図3】内燃機関の負荷に対する種々の値を示す図で、
図3(a)は負荷に対するO2濃度、図3(b)は負荷
に対する規制値×(21ーO2)/(21ー13)、負
荷に対する許容窒素酸化物量負荷NOx量の関係をそれ
ぞれ示す。
FIG. 3 is a diagram showing various values with respect to a load of an internal combustion engine;
3A shows the relationship between the O 2 concentration with respect to the load, FIG. 3B shows the relationship between the regulated value with respect to the load × (21−O 2 ) / (21-13), and the allowable nitrogen oxide amount and the load NOx amount with respect to the load. .

【符号の説明】[Explanation of symbols]

1 ディーゼル 2 脱硝塔 3 アンモニア貯留ボンベ 4 アンモニア流量調整弁コントローラ 5 アンモニア供給量演算器 6 負荷信号線 7 アンモニア流量調整弁 8 アンモニア注入器 9 排ガスダクト 10 排ガス排出ダクト 11 発電器 DESCRIPTION OF SYMBOLS 1 Diesel 2 Denitration tower 3 Ammonia storage cylinder 4 Ammonia flow control valve controller 5 Ammonia supply amount calculator 6 Load signal line 7 Ammonia flow control valve 8 Ammonia injector 9 Exhaust gas duct 10 Exhaust gas exhaust duct 11 Generator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−210017(JP,A) 特開 平2−259223(JP,A) 特開 平1−180220(JP,A) 特開 昭60−90029(JP,A) 特開 昭63−302120(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/94 B01D 53/74 F01N 3/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-210017 (JP, A) JP-A-2-259223 (JP, A) JP-A-1-180220 (JP, A) JP-A-60-1985 90029 (JP, A) JP-A-63-302120 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/94 B01D 53/74 F01N 3/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の排ガス中にアンモニアを注入
し、該アンモニアが注入された排ガスを窒素酸化物触媒
反応塔に通し、排ガス中の窒素酸化物を除去する排ガス
脱硝方法において、 前記内燃機関の負荷に対して排出される窒素酸化物量と
一定酸素濃度に換算した場合の規制濃度における許容窒
素酸化物量とをそれぞれ負荷の一次関数としてとして求
め、この窒素酸化物量と許容窒素酸化物量の差から排ガ
ス中の窒素酸化物濃度を規制濃度以下にするアンモニア
供給量を負荷に対する一次関数として算出し、負荷の変
化に応じて該算出したアンモニア量を供給することを特
徴とする排ガス脱硝方法。
An exhaust gas denitration method for injecting ammonia into exhaust gas of an internal combustion engine and passing the ammonia-injected exhaust gas through a nitrogen oxide catalytic reaction tower to remove nitrogen oxides in the exhaust gas. The amount of nitrogen oxides discharged for the load and the allowable amount of nitrogen oxides at the regulated concentration when converted to a constant oxygen concentration are obtained as linear functions of the load, and the difference between this amount of nitrogen oxides and the amount of allowable nitrogen oxides is determined. An exhaust gas denitration method comprising: calculating an ammonia supply amount that makes the nitrogen oxide concentration in exhaust gas equal to or less than a regulated concentration as a linear function of a load; and supplying the calculated ammonia amount according to a change in load.
【請求項2】 内燃機関の排ガスを排出する排ガスダク
トに窒素酸化物触媒反応塔を接続すると共に、該内燃機
関と窒素酸化物触媒反応塔の間の排ガスダクトに窒素酸
化物の還元剤としてアンモニアを供給するアンモニア供
給装置を接続した排ガス脱硝装置において、 前記内燃機関の負荷に対して排出される窒素酸化物量と
一定酸素濃度に換算した場合の規制濃度における許容窒
素酸化物量とをそれぞれ負荷の一次関数として求め、こ
の窒素酸化物量と許容窒素酸化物量の差から排ガス中の
窒素酸化物濃度を規制濃度以下とするアンモニア供給量
を負荷の一次関数として算出する式の係数を記憶し、該
係数を用い負荷の変化に応じて前記アンモニア供給量を
算出する演算手段と、 該演算手段の算出出力により前記アンモニア供給装置か
らのアンモニア供給量を制御し窒素酸化物濃度を規制値
以下とする制御手段とを設けたこと特徴とする排ガス脱
硝装置。
2. An exhaust gas duct for discharging exhaust gas from an internal combustion engine is connected to a nitrogen oxide catalyst reaction tower, and an ammonia gas as a reducing agent for nitrogen oxide is supplied to an exhaust gas duct between the internal combustion engine and the nitrogen oxide catalyst reaction tower. In an exhaust gas denitration device connected to an ammonia supply device for supplying nitrogen gas, the amount of nitrogen oxides discharged to the load of the internal combustion engine and the allowable amount of nitrogen oxides at a regulated concentration when converted to a constant oxygen concentration are respectively determined as primary loads. Obtained as a function, the coefficient of the equation for calculating the ammonia supply amount to make the nitrogen oxide concentration in the exhaust gas equal to or less than the regulated concentration from the difference between this nitrogen oxide amount and the allowable nitrogen oxide amount as a linear function of load is stored, Calculating means for calculating the ammonia supply amount in accordance with a change in the load used; and an output from the ammonia supply device based on a calculated output of the calculating means. Exhaust gas denitration apparatus characterized by providing a control means for controlling the pneumoniae supply amount or less regulation value of nitrogen oxide concentration.
【請求項3】 請求項2の排ガス脱硝装置において、内
燃機関の負荷に代えて、内燃機関の燃料消費量を用いる
ことを特徴とする排ガス脱硝装置。
3. The exhaust gas denitration apparatus according to claim 2, wherein the fuel consumption of the internal combustion engine is used instead of the load of the internal combustion engine.
【請求項4】 請求項2の排ガス脱硝装置において、内
燃機関の負荷に代えて、内燃機関に連結した機器の負荷
を用いることを特徴とする排ガス脱硝装置。
4. The exhaust gas denitration apparatus according to claim 2, wherein a load of a device connected to the internal combustion engine is used instead of the load of the internal combustion engine.
【請求項5】 請求項2又は3又は4に記載の燃料消費
量或いは負荷とアンモニア量の比例定数について、内燃
機関の種類や窒素酸化物低減目標値などによってアンモ
ニア供給量演算手段で任意に設定することを特徴とする
排ガス脱硝装置。
5. The ammonia supply amount calculating means according to claim 2, 3, or 4 arbitrarily sets the proportionality constant between the fuel consumption amount or the load and the ammonia amount according to the type of the internal combustion engine, the nitrogen oxide reduction target value, and the like. An exhaust gas denitration apparatus characterized in that:
【請求項6】 請求項2又は3又は4又は5において、
前記アンモニアの供給は前記窒素酸化物触媒反応塔の触
媒の温度が設定された温度範囲の時に行うことを特徴と
する排ガス脱硝装置。
6. The method according to claim 2 or 3 or 4 or 5,
The exhaust gas denitration apparatus according to claim 1, wherein the supply of the ammonia is performed when the temperature of the catalyst in the nitrogen oxide catalytic reaction tower is within a set temperature range.
JP04583191A 1991-02-18 1991-02-18 Exhaust gas denitration method and apparatus Expired - Fee Related JP3243643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04583191A JP3243643B2 (en) 1991-02-18 1991-02-18 Exhaust gas denitration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04583191A JP3243643B2 (en) 1991-02-18 1991-02-18 Exhaust gas denitration method and apparatus

Publications (2)

Publication Number Publication Date
JPH0523545A JPH0523545A (en) 1993-02-02
JP3243643B2 true JP3243643B2 (en) 2002-01-07

Family

ID=12730177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04583191A Expired - Fee Related JP3243643B2 (en) 1991-02-18 1991-02-18 Exhaust gas denitration method and apparatus

Country Status (1)

Country Link
JP (1) JP3243643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189703B2 (en) * 2013-10-09 2017-08-30 三菱日立パワーシステムズ株式会社 Ammonia injection amount control device and ammonia injection amount control method

Also Published As

Publication number Publication date
JPH0523545A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
US6427439B1 (en) Method and system for NOx reduction
JP4471643B2 (en) Advanced ammonia supply control for selective catalyst reduction
RU2354833C2 (en) Method and device to adjust reducer addition
US8652410B2 (en) Control method and arrangement for selective catalytic reduction
KR940015237A (en) NOx removal control device
JP2853385B2 (en) Secondary air supply device for internal combustion engine
US6293092B1 (en) NOx adsorber system regeneration fuel control
US10145284B2 (en) Exhaust after-treatment system including sliding mode ammonia controller
GB2344772A (en) Method to desulphurise a NOx trap
JP3243643B2 (en) Exhaust gas denitration method and apparatus
JP2006046289A (en) Method for controlling exhaust emission control device
JP3002819B2 (en) Method and apparatus for controlling the amount of nitrogen oxide removal medium introduced
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JPH04346819A (en) Denitration control device and method
JP3342497B2 (en) Method and apparatus for controlling combustion equipment for catalytically purifying exhaust gas, and combustion equipment
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
JPH0545767B2 (en)
JPH01168319A (en) Nox reducer of exhaust gas of power generating diesel engine
JPH0521615Y2 (en)
JPH03229911A (en) Method to remove nitrogen oxide from diesel engine exhaust
JPH01113565A (en) Air-fuel ratio control device for spark-ignition engine
JPH0645617Y2 (en) Reducing agent control device for denitration equipment
JPH01180220A (en) Denitrification control device for gas turbine plant
JPH0521616Y2 (en)
JPH0612175Y2 (en) Denitration equipment for engine exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees