JPH03229911A - Method to remove nitrogen oxide from diesel engine exhaust - Google Patents

Method to remove nitrogen oxide from diesel engine exhaust

Info

Publication number
JPH03229911A
JPH03229911A JP2309790A JP2309790A JPH03229911A JP H03229911 A JPH03229911 A JP H03229911A JP 2309790 A JP2309790 A JP 2309790A JP 2309790 A JP2309790 A JP 2309790A JP H03229911 A JPH03229911 A JP H03229911A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
engine
supercharger
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2309790A
Other languages
Japanese (ja)
Other versions
JPH0635820B2 (en
Inventor
Motonobu Kobayashi
基伸 小林
Akikore Uno
宇野 昭維
Futoshi Kinoshita
木下 太
Mitsuharu Hagi
光晴 萩
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Yanmar Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Yanmar Diesel Engine Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2309790A priority Critical patent/JPH0635820B2/en
Publication of JPH03229911A publication Critical patent/JPH03229911A/en
Publication of JPH0635820B2 publication Critical patent/JPH0635820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the cleaning performance of NOx when the NOx in the exhaust of an engine with a supercharger is reduced and removed within a reaction receptacle under the existence of ammonia, by conducting the flow control of ammonia on the basis of the measured values of an engine output, exhaust temperature and intake air humidity. CONSTITUTION:An exhaust cleaner A is provided with an intaken air compression supercharger 6 and a reaction receptacle 7 at the exhaust pipe 4 of an engine main body 1. Also, an ammonia container 12 is connected to an ammonia injection nozzle 8 provided at an exhaust gas flow passage 4a on the upper stream side of the supercharger 6 through an ammonia regulating valve 10 and an ammonia transport pipe 9 provided interveniently with an ammonia flow meter 11. In this instance, an output meter 2 or an output proportion signaler 2a, an exhaust temperature detector 5 and an intaken air humidity detector 13 are provided, and the total discharge quantity of NOx is calculated by means of an operator 14 on the basis of these outputs, and the quantity of ammonia to be supplied is determined by means of a ratio setter 15 on the basis of this calculation outcome, and the ammonia requlating valve 10 is controlled through an ammonia flow controller 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジン排ガス中の窒素酸化物除去
方法に関するものである。詳しく述べると、ディーゼル
エンジンの働きを阻害せずに、その排出される排ガスの
性状の変動に対して、窒素酸化物を除去できると同時に
、窒素酸化物除去後の排ガス中に含まれるアンモニアを
極力制御することができる窒素酸化物の除去方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing nitrogen oxides from diesel engine exhaust gas. In detail, it is possible to remove nitrogen oxides in response to fluctuations in the properties of the exhaust gas emitted without interfering with the operation of the diesel engine, and at the same time, it is possible to remove ammonia contained in the exhaust gas after nitrogen oxide removal as much as possible. The present invention relates to a controllable method for removing nitrogen oxides.

(従来の技術) 従来、酸化雰囲気下における窒素酸化物除去方法として
はアンモニアを還元剤として用いる選択還元脱硝法が、
排ガス中の酸素濃度の影響を受けずに窒素酸化物とアン
モニアが選択的に反応するために、酸化雰囲気下におい
ても効果的な方法とされ、火力発電プラントのボイラ及
び加熱炉等の固定発生源の排気ガス浄化に広く適用され
てきた。
(Prior art) Conventionally, as a method for removing nitrogen oxides in an oxidizing atmosphere, a selective reduction denitrification method using ammonia as a reducing agent has been used.
Because nitrogen oxides and ammonia react selectively without being affected by the oxygen concentration in the exhaust gas, it is an effective method even in oxidizing atmospheres, and can be used at fixed sources such as boilers and heating furnaces in thermal power plants. It has been widely applied to exhaust gas purification.

一方、内燃機関からの排ガス中の窒素酸化物の低減につ
いても、アンモニア選択還元法が適用された例が種々開
示されている。例えば、エンジンの燃料調節ガバナ、給
気温度及び給気量に基づいて、排ガス中に供給されるア
ンモニア流量を制御する方法(特開昭52−48722
号公報参照)等が開示されている。
On the other hand, various examples have been disclosed in which the ammonia selective reduction method is applied to reduce nitrogen oxides in exhaust gas from internal combustion engines. For example, a method of controlling the flow rate of ammonia supplied to exhaust gas based on an engine fuel regulating governor, intake air temperature, and intake air amount (Japanese Patent Laid-Open No. 52-48722
(Refer to the Publication No.) etc. have been disclosed.

しかし、ディーゼルエンジンの場合、ボイラーに比べて
エンジン負荷の変動が著しく、それに伴って排ガス量お
よび窒素酸化物濃度が急激に変化するために、この変化
に連動させて、過不足なくアンモニアを厳密に制御する
ことは、前記の従来の技術では十分といえず、それ故排
ガス中の窒素酸化物を高い効率で除去すると同時に、排
出アンモニアを極力制御するという点において問題が残
されているといえる。
However, in the case of a diesel engine, the engine load fluctuates significantly compared to a boiler, and the amount of exhaust gas and nitrogen oxide concentration change rapidly accordingly. The above-mentioned conventional techniques are not sufficient to control the amount of nitrogen oxides contained in the exhaust gas, and there remains a problem in removing nitrogen oxides from the exhaust gas with high efficiency while at the same time controlling the amount of ammonia discharged as much as possible.

又、排ガス中の窒素酸化物の除去率は反応器における反
応効率と関係していて、両者の関係はほぼ比例している
。そして、この反応効率を高めるには、排ガス中に供給
されたアンモニアか同ガス中の窒素酸化物と均一に混合
されることが重要である。
Further, the removal rate of nitrogen oxides in the exhaust gas is related to the reaction efficiency in the reactor, and the relationship between the two is almost proportional. In order to increase this reaction efficiency, it is important that the ammonia supplied to the exhaust gas is uniformly mixed with the nitrogen oxides in the same gas.

そのために−船釣には、バッフルプレート、ベンチュリ
ーや充填物などによる混合法が採用されており、又、過
給機との間における反応器上流側の排気管に多数のノズ
ル口を設けてアンモニアを供給する方法や、アンモニア
の供給口を噴射ノズルにして供給する方法が用いられて
いる。その混合させる方法や装置がエンジンそのものに
弊害をもたらすものであってはならない。
For this purpose, mixing methods using baffle plates, venturis, and packing materials are used for boat fishing, and a large number of nozzle ports are installed in the exhaust pipe on the upstream side of the reactor between the supercharger and the ammonia. A method of supplying ammonia or a method of supplying ammonia by using an ammonia supply port as an injection nozzle are used. The mixing method and device must not cause any harm to the engine itself.

この点においてバッフルプレートやベンチュリー或いは
充填物を用いる混合法では、圧力損失が大きい為にディ
ーゼルエンジンにおけるエンジン出力の低下を招き、エ
ンジンの燃費が悪くなり、エンジンそのものに弊害をも
たらす。
In this respect, the mixing method using a baffle plate, venturi, or filler causes a large pressure loss, leading to a decrease in engine output in a diesel engine, resulting in poor fuel efficiency of the engine, and causing harm to the engine itself.

又、過給機との間における反応器上流側の排ガス流路内
に多数のノズルを設けてアンモニアを供給する混合法で
は、排ガス中にアンモニアを均一に混合させることが難
しく、脱硝用触媒上における排ガス中の窒素酸化物の除
去効率は低下するだけで高くなることはなく、反応効率
が高いとは言い難い。
In addition, in the mixing method in which ammonia is supplied by providing a large number of nozzles in the exhaust gas flow path on the upstream side of the reactor between the turbocharger and the reactor, it is difficult to uniformly mix ammonia into the exhaust gas, and the The removal efficiency of nitrogen oxides in the exhaust gas only decreases and does not increase, and it is difficult to say that the reaction efficiency is high.

又、噴射ノズルからアンモニアを供給する混合法でも、
その噴射口が排ガス中に含まれているダストで塞がれる
形になるため、アンモニアの噴射状態は悪くなるばかり
かノズルが閉塞する場合もあって、頻繁なノズル掃除或
いはノズル交換が要求される。
Also, in the mixing method where ammonia is supplied from an injection nozzle,
As the injection port becomes blocked by dust contained in the exhaust gas, the ammonia injection condition not only worsens, but the nozzle may also become clogged, requiring frequent nozzle cleaning or nozzle replacement. .

さらに、比較的小型のディーゼルエンジンの場合では、
その排ガス処理システムが安価であることも重要である
Furthermore, in the case of relatively small diesel engines,
It is also important that the exhaust gas treatment system is inexpensive.

(発明が解決しようとする問題点) 本発明の目的はディーゼルエンジン排ガス中の窒素酸化
物をアンモニアと脱硝用触媒に至るまでに事前に十分均
一に混合させた後に触媒と接触させて、エンジンの働き
を阻害することなく、反応器における反応効率を高め、
排ガス性状の急激な変動に対しても窒素酸化物を効率良
く除去でき、且つエンジン燃焼性能の変化による窒素酸
化物量の変化にも対応できると同時に窒素酸化物除去後
に含まれるアンモニアを極力制御でき、しかも経済的に
安価に行なえるディーゼルエンジン排ガス中の窒素酸化
物除去方法を提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to mix nitrogen oxides in diesel engine exhaust gas sufficiently uniformly with ammonia before reaching the denitrification catalyst, and then bring them into contact with the catalyst. Increases the reaction efficiency in the reactor without hindering the work,
It can efficiently remove nitrogen oxides even in the face of rapid changes in exhaust gas properties, and it can also respond to changes in the amount of nitrogen oxides due to changes in engine combustion performance. At the same time, it can control ammonia contained after nitrogen oxide removal as much as possible. Moreover, it is an object of the present invention to provide a method for removing nitrogen oxides from diesel engine exhaust gas that can be carried out economically and at low cost.

(問題点を解決するための手段) 本発明は上記目的の達成のため、第一発明では、排ガス
流路途中に過給機を有するディーゼルエンジンの排ガス
中の窒素酸化物をアンモニアの存在下に反応器内で触媒
を用いて還元除去するにあたり、エンジン出力、排気ガ
ス温度そして吸入空気の湿度をそれぞれ測定し、これら
の測定値に基づいてアンモニアを流量制御し、過給機の
排ガス人口側に供給することを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention has a first invention in which nitrogen oxides in the exhaust gas of a diesel engine having a supercharger in the middle of the exhaust gas flow path are removed in the presence of ammonia. When reducing and removing ammonia using a catalyst in the reactor, the engine output, exhaust gas temperature, and intake air humidity are measured, and the flow rate of ammonia is controlled based on these measurements, and the ammonia is delivered to the exhaust gas side of the supercharger. It is characterized by supplying.

そして第二発明では、排ガス流路途中に過給機を有する
ディーゼルエンジンの排ガス中の窒素酸化物をアンモニ
アの存在下に反応器内で触媒を用いて還元除去するにあ
たり、エンジン出力、排気ガス温度、エンジン給気温度
そして吸入空気の湿度をそれぞれ測定し、これらの測定
値に基づいてアンモニアを流量制御し、過給機の排ガス
入口側に供給することを特徴とする。
In the second invention, when nitrogen oxides in the exhaust gas of a diesel engine having a supercharger in the exhaust gas flow path are reduced and removed using a catalyst in a reactor in the presence of ammonia, engine output and exhaust gas temperature are determined. , the temperature of the engine supply air and the humidity of the intake air are measured, and the flow rate of ammonia is controlled based on these measured values, and the ammonia is supplied to the exhaust gas inlet side of the supercharger.

本発明者等が検討したところによると、ディーゼルエン
ジンから排出される窒素酸化物の総量は第1乃至3図に
示す如く、エンジンの出力、エンジンの排気ガス温度お
よび給気温度にほぼ比例して増減するが、更に、第4図
に示す如く吸入空気の湿度にも比例してそれぞれ減少及
び増加することが知見された。
According to studies conducted by the present inventors, the total amount of nitrogen oxides emitted from a diesel engine is approximately proportional to the engine output, engine exhaust gas temperature, and intake air temperature, as shown in Figures 1 to 3. However, as shown in FIG. 4, it was found that the humidity also decreased and increased in proportion to the humidity of the intake air.

すなわち、第1図及び第2図に示す如く窒素酸化物の排
出量はエンジンの出力や排気ガス温度に比例するために
、エンジン出力や排気ガス温度に対応してアンモニアを
供給することによりアンモニア供給量を制御することが
可能であるが、窒素酸化物濃度は大気条件すなわちエン
ジンの給気温度のみならず吸入空気の湿度等によっても
大きく影響を受けるために、これ等の給気温度及び吸入
空気の湿度を測定して、その測定値により、窒素酸化物
排出量をさらに補正することが重要である。
In other words, as shown in Figures 1 and 2, the amount of nitrogen oxide emissions is proportional to engine output and exhaust gas temperature, so ammonia can be supplied by supplying ammonia in accordance with engine output and exhaust gas temperature. Although it is possible to control the amount of nitrogen oxides, the concentration of nitrogen oxides is greatly affected by atmospheric conditions, that is, not only the engine intake air temperature but also the intake air humidity. It is important to measure the humidity of the air and further correct the nitrogen oxide emissions based on the measured value.

特に、エンジンの出力によりアンモニア供給量を制御す
る場合、エンジンや過給機の汚れで窒素酸化物排出量と
出力の相関関係が経時的に変化するために、第2図に示
す如くエンジン排気ガス温度を測定し、その測定値によ
り窒素酸化物排出量を補正することが必要である。
In particular, when controlling the ammonia supply amount based on engine output, the correlation between nitrogen oxide emissions and output changes over time due to dirt in the engine or supercharger, so engine exhaust gas It is necessary to measure the temperature and correct the nitrogen oxide emissions based on the measured value.

したがって、エンジンから排出される窒素酸化物の総量
はエンジンの出力、排気ガス温度、吸入空気の湿度を、
また加えてエンジン給気温度を測定して直接に求め得た
窒素酸化物総排出量に比例してアンモニア供給量を決定
する。
Therefore, the total amount of nitrogen oxides emitted from the engine depends on the engine output, exhaust gas temperature, and intake air humidity.
In addition, the amount of ammonia supplied is determined in proportion to the total amount of nitrogen oxide emissions, which can be directly determined by measuring the engine air supply temperature.

それにより、窒素酸化物の排出量および濃度が急激に変
化しても、その排出量および濃度に比例して、時間的な
遅れがなく最適量のアンモニアを正確に供給し、排ガス
中の窒素酸化物を効果的に除去できること、および窒素
酸化物除去後の排ガス中における残留アンモニアを極力
抑止できることを確認したものである。
As a result, even if the emission amount and concentration of nitrogen oxides change rapidly, the optimum amount of ammonia is accurately supplied without any time delay in proportion to the emission amount and concentration, and nitrogen oxide in the exhaust gas is oxidized. This test confirmed that nitrogen oxides can be effectively removed and that residual ammonia in the exhaust gas after nitrogen oxide removal can be suppressed as much as possible.

又、その流量制御されたアンモニアを過給機の排ガス入
口側に供給することにより、排ガス中の窒素酸化物とア
ンモニアを反応器に至るまでに事前に十分混合して、反
応効率を高めると共に窒素酸化物の除去効率をさらにア
ップできることを確認したものである。
In addition, by supplying the flow-controlled ammonia to the exhaust gas inlet side of the supercharger, nitrogen oxides and ammonia in the exhaust gas are sufficiently mixed before reaching the reactor, increasing reaction efficiency and reducing nitrogen This confirms that the removal efficiency of oxides can be further increased.

(作用) アンモニアの供給量が、エンジンの出力と排気ガス温度
と吸入空気の湿度とさらには給気温度の測定値に基づい
て求めた排ガス中の窒素酸化物の量および濃度に比例し
て決定されて、排ガス中における窒素酸化物の総量に対
してより正確な最適量のアンモニアが排ガス流路におけ
る過給機の排ガス入口側に応答性良く供給され、過給機
を通過する過程で十分且つ均一に混合された後に反応器
に流れる。
(Function) The amount of ammonia supplied is determined in proportion to the amount and concentration of nitrogen oxide in the exhaust gas, which is determined based on the measured values of engine output, exhaust gas temperature, intake air humidity, and supply air temperature. As a result, a more accurate and optimal amount of ammonia is supplied to the exhaust gas inlet side of the turbocharger in the exhaust gas flow path with respect to the total amount of nitrogen oxides in the exhaust gas, and the process of passing through the turbocharger is sufficient and After being uniformly mixed, it flows into the reactor.

それにより、ディーゼルエンジンの働きが阻害されずに
、反応器における反応効率が高効率化された状態で、エ
ンジン負荷に対応して常時効率的に窒素酸化物の除去が
行なわれ且つ同除去後におけるアンモニアの残留が極力
抑止されていることになる。
As a result, nitrogen oxides are constantly and efficiently removed in response to the engine load, with the diesel engine functioning unimpeded and the reaction efficiency in the reactor being made highly efficient. This means that residual ammonia is suppressed as much as possible.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第5図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第1発明を実施するのに開発
したものを例示しており、エンジン本体(1)には出力
計(2)又は被駆動機(1a)の出力比例信号器(2a
)が設けられ、またエンジン本体(1)のマニホールド
(3)と連通状の排気管(4)には排ガス温度検出器(
5)と吸入空気圧縮用の過給機(6)と反応器(7)と
が設けられている。
The exhaust gas purification device (A) provided in the engine body (1) shown in FIG. Output proportional signal device (2a) of meter (2) or driven machine (1a)
), and an exhaust gas temperature detector (
5), a supercharger (6) for compressing intake air, and a reactor (7).

この過給機(6)はエンジンの出力を増加可能に、排気
ガスの圧力を利用してエンジンに供給する空気を圧縮す
る公知の機構構造のもので、排ガス流路(4a)側のタ
ービン翼と給気側のブロワ−翼とが軸で連結されていて
、排ガス流路(4a)側のタービン翼が排ガスの圧力で
回転することにより給気側のブロワ−翼も回転してエン
ジンの吸入空気を圧縮するようにしている。
This supercharger (6) has a known mechanical structure that compresses the air supplied to the engine using the pressure of exhaust gas so as to increase the output of the engine, and has a turbine blade on the exhaust gas flow path (4a) side. and the blower blade on the air supply side are connected by a shaft, and when the turbine blade on the exhaust gas flow path (4a) side rotates due to the pressure of the exhaust gas, the blower blade on the air supply side also rotates, and the intake air is drawn into the engine. It compresses air.

又、排気管(4)における過給機(6)の排ガス入口側
流路(4a)に設置されたアンモニア注入ノズル(8)
にはアンモニア輸送管(9)が接続0 サレ、このアンモニア輸送管(9)にはアンモニア調整
弁(10)およびアンモニア流量計(11)が設けられ
ていると共にアンモニア容器(12)が接続されている
Moreover, an ammonia injection nozzle (8) installed in the exhaust gas inlet side flow path (4a) of the supercharger (6) in the exhaust pipe (4).
An ammonia transport pipe (9) is connected to the ammonia transport pipe (9), which is equipped with an ammonia regulating valve (10) and an ammonia flow meter (11), and is connected to an ammonia container (12). There is.

そして、出力計(2)又は出力比例信号器(2a)と排
ガス温度検出器(5)とエンジン本体(1)の吸入空気
の湿度を測定する湿度検出器(13)は演算器(14)
に連絡され、この演算器(14)は比率設定器(15)
およびアンモニア流量制御器(16)を通じてアンモニ
ア調整弁(1o)と連絡している。
The output meter (2) or the output proportional signal device (2a), the exhaust gas temperature detector (5), and the humidity detector (13) that measures the humidity of the intake air of the engine body (1) are connected to the computing unit (14).
This calculator (14) is connected to the ratio setter (15).
and communicates with an ammonia regulating valve (1o) through an ammonia flow controller (16).

すなわち、エンジン本体(1)の負荷量に応答して、エ
ンジン出力計(2)又は出力比例信号器(2a)と排ガ
ス温度検出器(5)と吸入空気の湿度検出器(13)か
らの各信号を演算器(14)に入力する。演算器(14
)において、窒素酸化物の総排出量を算出し、この信号
を比率設定器(15)に入力し、比率設定器(15)で
予め設定されたアンモニア/窒素酸化物比により供給す
るアンモニア量を決定する。
That is, in response to the load on the engine body (1), each signal from the engine output meter (2) or output proportional signal device (2a), exhaust gas temperature sensor (5), and intake air humidity sensor (13) is The signal is input to the calculator (14). Arithmetic unit (14
), calculate the total amount of nitrogen oxide emissions, input this signal to the ratio setter (15), and set the amount of ammonia to be supplied according to the ammonia/nitrogen oxide ratio set in advance by the ratio setter (15). decide.

そして、該比率設定器(15)の出力はアンモニ1 ア流量信号として、アンモニア流量制御器(16)に入
力され、アンモニア調整弁(1o)の開閉を制御し、過
給機(6)を経て反応器(7)に流れ込む排ガスに混入
されるアンモニア量を制御する。
The output of the ratio setter (15) is input as an ammonia flow rate signal to the ammonia flow rate controller (16), which controls the opening and closing of the ammonia regulating valve (1o), and then passes through the supercharger (6). The amount of ammonia mixed into the exhaust gas flowing into the reactor (7) is controlled.

排ガスはマニホールド(3)から排気管(4)および途
中の過給機(6)を経て、触媒(17)を充填した反応
器(7)に流れる。
Exhaust gas flows from the manifold (3) through an exhaust pipe (4) and an intermediate supercharger (6) to a reactor (7) filled with a catalyst (17).

アンモニアはアンモニア容器(12)より7ンモニア輸
送管(9)を経て、アンモニア調整弁(10)で最適な
流量に制御されて、排ガス流路(4a)における過給機
(6)の入口側において、アンモニア注入ノズル(8)
により排ガス中に混入され、過給機(6)のタービン翼
で排ガスと十分に混合撹拌され、必要によりガス分散板
(18)により、混合分散された後、反応器(7)に至
り、触媒(17)を通過して、排ガス中の窒素酸化物を
還元除去する。
Ammonia passes through the ammonia transport pipe (9) from the ammonia container (12), is controlled to an optimal flow rate by the ammonia regulating valve (10), and is delivered to the inlet side of the supercharger (6) in the exhaust gas flow path (4a). , ammonia injection nozzle (8)
is mixed into the exhaust gas by the turbine blades of the supercharger (6), mixed and dispersed by the gas distribution plate (18) if necessary, and then reaches the reactor (7) where the catalyst (17) to reduce and remove nitrogen oxides in the exhaust gas.

第6図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A1)は本発明の第2発明を実施するのに開
発したものを例示しており、その2 構成は第5図に例示した排ガス浄化装置(A)と基本的
に同構成のものであるため、共通する構成については説
明を省略し、相違する構成について以下に説明する。
The exhaust gas purification device (A1) provided in the engine body (1) shown in FIG. 6 is an example of one developed to carry out the second invention of the present invention, and the second configuration is shown in FIG. Since it has basically the same configuration as the illustrated exhaust gas purification device (A), the explanation of the common configuration will be omitted, and the different configuration will be explained below.

排気管ガスタービン(6)をエンジン本体(1)と連絡
する給気管(19)には給気温度検出器(20)が設け
られ、この給気温度検出器(20)は出力計(2)又は
出力比例信号器(2a)と排ガス温度検出器(5)と湿
度検出器(13)と同様に演算器(14)に連絡されて
いる。
A supply air temperature detector (20) is provided in the supply air pipe (19) that connects the exhaust pipe gas turbine (6) with the engine body (1), and this supply air temperature detector (20) is connected to the output meter (2). Alternatively, the output proportional signal device (2a), the exhaust gas temperature detector (5), and the humidity detector (13) are connected to the computing unit (14).

この排ガス浄化装置(A1)はエンジン本体(1)の負
荷量に応答して、エンジン出力計(2)又は出力比例信
号器(2a)と排ガス温度検出器(5)と湿度検出器(
13)と給気温度検出器(20)からの各信号を演算器
(14)に入力する。演算器(14)は窒素酸化物の総
排出量を演算しこの信号を比率設定器(15)に入力し
、比率設定器(15)で予め設定されたアンモニア/窒
素酸化物比により供給するアンモニア量を決定する。こ
の比率設定器(15)の出力はアンモニア流量信号とし
てア3 ンモニア流量制御器(16)に入力され、アンモニア調
整弁(10)の開閉を制御し、反応器(7)に流れ込む
排ガスに混入されるアンモニア量を制御する。それによ
り、アンモニアはアンモニア調整弁(10)で最適な流
量に制御されて、排ガス流路(4a)における過給機(
6)の入口側において、アンモニア注入ノズル(8)に
より排ガス中に混入され、過給機(6)のタービン翼で
排ガスと十分に混合撹拌され、必要によりガス分散板(
18)により、混合分散された後、反応器(7)に至り
、触媒(17)を通過して、排ガス中の窒素酸化物を還
元除去する。
This exhaust gas purification device (A1) responds to the load amount of the engine main body (1) and includes an engine output meter (2) or an output proportional signal device (2a), an exhaust gas temperature detector (5), and a humidity detector (
13) and the supply air temperature detector (20) are input to the calculator (14). The calculator (14) calculates the total amount of nitrogen oxides discharged, inputs this signal to the ratio setter (15), and supplies ammonia according to the ammonia/nitrogen oxide ratio preset by the ratio setter (15). Determine the amount. The output of this ratio setter (15) is input as an ammonia flow rate signal to the ammonia flow rate controller (16), which controls the opening and closing of the ammonia regulating valve (10) and is mixed into the exhaust gas flowing into the reactor (7). Control the amount of ammonia used. Thereby, the ammonia is controlled to the optimum flow rate by the ammonia regulating valve (10), and the ammonia is
6), it is mixed into the exhaust gas by the ammonia injection nozzle (8), sufficiently mixed with the exhaust gas by the turbine blade of the supercharger (6), and if necessary, the gas distribution plate (
After being mixed and dispersed by 18), it reaches a reactor (7), passes through a catalyst (17), and reduces and removes nitrogen oxides in the exhaust gas.

又、本発明において、用いられる触媒の形状としては、
ペレット状2球状1粒状、板状、パイプ状及びハニカム
状等が挙げられる。
In addition, in the present invention, the shape of the catalyst used is as follows:
Examples include pellet shape, two spheres, one grain shape, plate shape, pipe shape, and honeycomb shape.

特に、幾何学的表面積が大きいため必要触媒量が少なく
て済み、又触媒層の圧力損失が小さいという理由でハニ
カム状が好ましい。
In particular, a honeycomb shape is preferred because the required amount of catalyst is small due to its large geometric surface area, and the pressure loss in the catalyst layer is small.

本発明の対象となる触媒組成については、特に限定すべ
き理由はないが、チタンを特徴とする特許 触媒やゼオライト系触媒が好ましい。
There is no particular reason to limit the catalyst composition to which the present invention is applied, but patented catalysts featuring titanium and zeolite-based catalysts are preferred.

特に、チタンを含む酸化物をA成分とし、これが60〜
99.5重量%含まれ、バナジウム、タングステン、モ
リブデン、マンガン、銅、鉄、コバルト。
In particular, the A component is an oxide containing titanium, and this is 60~
Contains 99.5% by weight of vanadium, tungsten, molybdenum, manganese, copper, iron, and cobalt.

セリウム、及びスズよりなる群から選ばれた少なくとも
一種の元素の酸化物をB成分とし、これが0.5〜40
重量%の範囲に含まれてなる触媒が好ましい結果を与え
る。
The B component is an oxide of at least one element selected from the group consisting of cerium and tin.
A catalyst comprising a range of % by weight gives favorable results.

触媒A成分はチタンを含む酸化物であれば好ましい結果
を与え、例えば酸化チタン、チタンとケイ素の二元系複
合酸化物(以下、T i O2S i O2とする)。
Favorable results can be obtained if the catalyst A component is an oxide containing titanium, such as titanium oxide or a binary composite oxide of titanium and silicon (hereinafter referred to as T i O2S i O2).

チタンとジルコニウムの二元系複合酸化物、チタン、ケ
イ素及びジルコニウムからなる三元系複合酸化物等が挙
げられる。A成分の比表面積は10ffl/g以上、特
に20rrf/g以上が好ましい結果を与える。
Examples include binary composite oxides of titanium and zirconium, ternary composite oxides consisting of titanium, silicon, and zirconium, and the like. Preferably, the specific surface area of component A is 10 ffl/g or more, particularly 20 rrf/g or more.

本発明に使用される還元剤としては、アンモニアガス、
アンモニア水、その他の尿素やショウ酸アンモニウムの
ように熱分解してアンモニアになるアンモニウム塩等が
用いられる。
The reducing agent used in the present invention includes ammonia gas,
Ammonium salts such as aqueous ammonia, other urea, and ammonium salts that thermally decompose into ammonia such as ammonium sholate are used.

5 本発明の対象となるディーゼルエンジンから排出される
排ガスの組成としては、通常、アンモニア10〜1.0
00pHm、酸素2〜21容量%、炭酸ガス5〜15容
量%、水分5〜15容量%、煤塵0.02〜1g/Nm
3、及び窒素酸化物200〜3.000ppm程度に含
有するものであるが、ディーゼルエンジンやガスエンジ
ン等の内燃機関から排出される排ガスであれば良く、特
に組成範囲を限定するものではない。
5 The composition of the exhaust gas discharged from the diesel engine that is the object of the present invention is usually 10 to 1.0 ammonia.
00 pHm, oxygen 2-21% by volume, carbon dioxide 5-15% by volume, moisture 5-15% by volume, dust 0.02-1g/Nm
3, and about 200 to 3,000 ppm of nitrogen oxides, but the composition range is not particularly limited as long as it is an exhaust gas discharged from an internal combustion engine such as a diesel engine or a gas engine.

処理条件としては、反応温度が150°C〜650℃、
特に200℃〜600℃が好ましい。
The processing conditions include a reaction temperature of 150°C to 650°C;
Particularly preferred is 200°C to 600°C.

空間速度は2000〜100.000hr−1、特に5
.000〜50000h+−1の範囲が好ましい。
Space velocity is 2000-100.000 hr-1, especially 5
.. The range of 000 to 50000h+-1 is preferable.

アンモニアの添加量は窒素酸化物1容量部に対して0.
3〜1.2容量部が好ましいが、通常、未反応アンモニ
アを極力抑制する必要があるためにアンモニア/窒素酸
化物のモル比を1以下として使用されることが特に好ま
しい。
The amount of ammonia added is 0.00% per part by volume of nitrogen oxide.
Although 3 to 1.2 parts by volume is preferable, it is particularly preferable to use the ammonia/nitrogen oxide molar ratio of 1 or less because it is usually necessary to suppress unreacted ammonia as much as possible.

以下に具体例を挙げて本発明をさらに詳細に説明するが
、本発明はこれら具体例のみに限定され6 るものではない。
The present invention will be explained in more detail by giving specific examples below, but the present invention is not limited to these specific examples.

具体例I 第5図に例示した排ガス浄化装置(A)を用い、発電用
のディーゼルエンジンの排気管(4)と連通状の反応器
(7)には■2052重量%、WO27重量%を含有す
るTiO2系ハニカム触媒(150mm角相当直径3.
2mm、セル肉厚0.5mm。
Specific example I Using the exhaust gas purification device (A) illustrated in Fig. 5, the reactor (7) communicating with the exhaust pipe (4) of a diesel engine for power generation contains ■2052% by weight and 27% by weight of WO. TiO2-based honeycomb catalyst (150 mm square equivalent diameter 3.
2mm, cell wall thickness 0.5mm.

長さ450 mm )を6×6本2層に充填した。6 x 6 pieces (length 450 mm) were packed in two layers.

同装置(A)により、アンモニア/窒素酸化物モル比が
0.85になるように演算器(14)、及び比率設定器
(15)を作動させてアンモニアを排気管内の排ガス中
に注入し、排ガス処理量3500〜550ON  /h
t、排ガス温度380〜430℃入口窒素酸化物濃度7
00〜950ppm、の範囲に変動させてエンジンを運
転した。
Using the same device (A), operate the calculator (14) and the ratio setter (15) so that the ammonia/nitrogen oxide molar ratio is 0.85, and inject ammonia into the exhaust gas in the exhaust pipe, Exhaust gas processing amount 3500-550ON/h
t, exhaust gas temperature 380-430℃ inlet nitrogen oxide concentration 7
The engine was operated with the concentration varied within the range of 0.00 to 950 ppm.

その時の脱硝率は83〜86%、反応器出口における排
ガス中のアンモニア濃度は0.5〜1.Oppmであっ
た。
At that time, the denitrification rate was 83-86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5-1. It was Oppm.

具体例■ 第6図に例示した排ガス浄化装置(A1)を用7 1 い、具体例Iと同様の方法で脱硝反応を行なった。Specific example■ Using the exhaust gas purification device (A1) illustrated in Figure 6, 1 A denitrification reaction was carried out in the same manner as in Example I.

この時の脱硝率は84〜86%、反応器出口における排
ガス中のアンモニア濃度は0.5〜0.8ppmであっ
た。
The denitrification rate at this time was 84 to 86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5 to 0.8 ppm.

具体例■及び■記載の脱硝方法は脱硝率の変動幅が少な
く窒素酸化物を高効率で除去できると同時に、二次公害
となり得るアンモニアの放出も極めて少なく、又その反
応器における反応効率も、事前に排ガス中の窒素酸化物
とアンモニアが十分に均一に混合されていることにより
脱硝用触媒上での反応効率が高くて優れた方法である。
The denitrification methods described in specific examples (1) and (2) have a small fluctuation range in the denitrification rate and can remove nitrogen oxides with high efficiency. At the same time, the release of ammonia that can cause secondary pollution is extremely small, and the reaction efficiency in the reactor is also low. This is an excellent method because the nitrogen oxides and ammonia in the exhaust gas are sufficiently and uniformly mixed in advance, resulting in high reaction efficiency on the denitrification catalyst.

(発明の効果) したがって、本発明によれば次の利点がある。(Effect of the invention) Therefore, the present invention has the following advantages.

排ガス性状の急激な変化およびエンジンの負荷の変動に
ともなう窒素酸化物量の急激な変化に迅速に応答して、
窒素酸化物を高いレベルで効率よく除去することができ
、しかも窒素酸化物除去後の排ガスとともに放出される
同ガス中のアンモニア量を最小限に抑止できて二次公害
の心配もなく実用上の利益大である。
In response to rapid changes in exhaust gas properties and the amount of nitrogen oxides caused by fluctuations in engine load,
Nitrogen oxides can be removed efficiently at a high level, and the amount of ammonia released in the exhaust gas after nitrogen oxide removal can be minimized, making it practical for practical use without worrying about secondary pollution. It is highly profitable.

8 ■ディーゼルエンジンに対し新たな圧力損失を生じさせ
ることがないことからディーゼルエンジンの出力を低下
せしめることがない。
8 ■ Since no new pressure loss is caused to the diesel engine, the output of the diesel engine will not be reduced.

■アンモニア供給口の注入ノズルを任意の大きさに選択
できることにより、排ガス中のダストにより注入ノズル
が閉塞する心配も解消され掃除等のメンテナンスも不用
にできる。
- Since the injection nozzle of the ammonia supply port can be selected to any size, there is no need to worry about the injection nozzle being blocked by dust in the exhaust gas, and maintenance such as cleaning can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はディーゼルエンジンの出力と窒素酸化物排出量
の関係を示すグラフ。第2図は排気ガス温度と窒素酸化
物排出量の関係を示すグラフ。第3図はディーゼルエン
ジンの吸入空気の温度と窒素酸化物濃度の関係を示すグ
ラフ。第4図はディーゼルエンジンの吸入空気の絶対湿
度と窒素酸化物濃度の関係を示すグラフ。第5図および
第6図は本発明方法を行うための排ガス浄化装置を備え
たディーゼルエンジンの概略図である。 図中 (1)はエンジン本体 (2)は出力計 9 (2a)は出力比例信号器 (4)は排気管 (4a)は排ガス流路 (5)は排ガス温度検出器 (6)は過給機 (7)は反応器 (8)はアンモニア注入ノズル (9)はアンモニア輸送管 (0)はアンモニア調整弁 (11)はアンモニア流量計 (12)はアンモニア容器 (13)は湿度検出器 (4)は演算器 (5)は比率設定器 (6)はアンモニア流量制御器 (7)は触媒 (9)は給気管 (20)は給気温度検出器 0 区 妖 区 \才 派
Figure 1 is a graph showing the relationship between diesel engine output and nitrogen oxide emissions. Figure 2 is a graph showing the relationship between exhaust gas temperature and nitrogen oxide emissions. Figure 3 is a graph showing the relationship between the intake air temperature and nitrogen oxide concentration of a diesel engine. FIG. 4 is a graph showing the relationship between the absolute humidity of intake air of a diesel engine and the concentration of nitrogen oxides. 5 and 6 are schematic diagrams of a diesel engine equipped with an exhaust gas purification device for carrying out the method of the present invention. In the figure (1) is the engine body (2) is the output meter 9 (2a) is the output proportional signal device (4) is the exhaust pipe (4a) is the exhaust gas flow path (5) is the exhaust gas temperature detector (6) is the supercharging The machine (7) is the reactor (8), the ammonia injection nozzle (9) is the ammonia transport pipe (0), the ammonia regulating valve (11) is the ammonia flow meter (12), the ammonia container (13) is the humidity detector (4) ) is the calculator (5) is the ratio setter (6) is the ammonia flow rate controller (7) is the catalyst (9) is the supply air pipe (20) is the supply air temperature detector

Claims (2)

【特許請求の範囲】[Claims] (1)排ガス流路途中に過給機を有するディーゼルエン
ジンの排ガス中の窒素酸化物をアンモニアの存在下に反
応路内で触媒を用いて還元除去するにあたり、エンジン
出力、排気ガス温度そして吸入空気の湿度をそれぞれ測
定し、これらの測定値に基づいてアンモニアを流量制御
し、過給機の排ガス入口側に供給することを特徴とする
ディーゼルエンジン排ガス中の窒素酸化物除去方法。
(1) When nitrogen oxides in the exhaust gas of a diesel engine with a supercharger in the exhaust gas flow path are reduced and removed using a catalyst in the reaction path in the presence of ammonia, engine output, exhaust gas temperature, and intake air A method for removing nitrogen oxides from diesel engine exhaust gas, the method comprising: measuring the humidity of each gas, controlling the flow rate of ammonia based on these measured values, and supplying the ammonia to the exhaust gas inlet side of a supercharger.
(2)排ガス流路途中に過給機を有するディーゼルエン
ジンの排ガス中の窒素酸化物をアンモニアの存在下に反
応器内で触媒を用いて還元除去するにあたり、エンジン
出力、排気ガス温度、エンジン給気温度そして吸入空気
の湿度をそれぞれ測定し、これらの測定値に基づいてア
ンモニアを流量制御し、過給機の排ガス入口側に供給す
ることを特徴とするディーゼルエンジン排ガス中の窒素
酸化物除去方法。
(2) When reducing and removing nitrogen oxides in the exhaust gas of a diesel engine with a supercharger in the exhaust gas flow path using a catalyst in a reactor in the presence of ammonia, engine output, exhaust gas temperature, engine supply A method for removing nitrogen oxides from diesel engine exhaust gas, which is characterized by measuring air temperature and humidity of intake air, controlling the flow rate of ammonia based on these measured values, and supplying the ammonia to the exhaust gas inlet side of a supercharger. .
JP2309790A 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas Expired - Lifetime JPH0635820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309790A JPH0635820B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309790A JPH0635820B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JPH03229911A true JPH03229911A (en) 1991-10-11
JPH0635820B2 JPH0635820B2 (en) 1994-05-11

Family

ID=12100947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309790A Expired - Lifetime JPH0635820B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JPH0635820B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000376A1 (en) * 1995-06-19 1997-01-03 Caterpillar Inc. A METHOD FOR TREATING AN EXHAUST GAS STREAM FOR THE REMOVAL OF NOx
JP2004503706A (en) * 2000-06-14 2004-02-05 ボルボ ラストヴァグナル アクチボラゲット Urea injection device for exhaust gas turbine housing
US6739124B2 (en) * 2000-12-18 2004-05-25 Purem Abgassystem Gmbh & Co. Kg Exhaust gas purification system
WO2011074310A1 (en) * 2009-12-16 2011-06-23 三菱重工業株式会社 Exhaust gas purification method and exhaust gas purification system for reciprocating internal combustion engine
JP2011132947A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
US8815188B2 (en) * 2012-08-15 2014-08-26 Ford Global Technologies, Llc Method and device for monitoring a reducing agent solution composition in the exhaust gas system of an internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000376A1 (en) * 1995-06-19 1997-01-03 Caterpillar Inc. A METHOD FOR TREATING AN EXHAUST GAS STREAM FOR THE REMOVAL OF NOx
US5653101A (en) * 1995-06-19 1997-08-05 Caterpillar Inc. Method for treating an exhaust gas stream for the removal on NOx
JP2004503706A (en) * 2000-06-14 2004-02-05 ボルボ ラストヴァグナル アクチボラゲット Urea injection device for exhaust gas turbine housing
JP4659330B2 (en) * 2000-06-14 2011-03-30 ボルボ ラストヴァグナル アクチボラゲット Urea injection device for exhaust gas turbine housing
US6739124B2 (en) * 2000-12-18 2004-05-25 Purem Abgassystem Gmbh & Co. Kg Exhaust gas purification system
WO2011074310A1 (en) * 2009-12-16 2011-06-23 三菱重工業株式会社 Exhaust gas purification method and exhaust gas purification system for reciprocating internal combustion engine
CN102695855A (en) * 2009-12-16 2012-09-26 三菱重工业株式会社 Exhaust gas purification method and exhaust gas purification system for reciprocating internal combustion engine
JP2011132947A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
US8815188B2 (en) * 2012-08-15 2014-08-26 Ford Global Technologies, Llc Method and device for monitoring a reducing agent solution composition in the exhaust gas system of an internal combustion engine

Also Published As

Publication number Publication date
JPH0635820B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
KR950012137B1 (en) Method of removing nitrogen oxides in exhaust gases from a diesel engine
CN102165157B (en) Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component
CN1989321A (en) Method for determining nox reduction ratio in exhaust emission control device
US20090133384A1 (en) NOx CONTROL SYSTEMS AND METHODS FOR CONTROLLING NOx EMISSIONS
JP2004197746A (en) Advanced ammonia feed control for selective catalytic reduction
CN105114158B (en) A kind of selective-catalytic-reduction denitrified system and method suitable for medium and small-scale vessel
CN107448266A (en) The automatic adding method of marine exhaust denitration urea and its device
JP2007051924A (en) MEASURING INSTRUMENT OF NH3 AND NOx IN EXHAUST GAS
CN104662269A (en) Exhaust purification system for internal combustion engine
JPH03229911A (en) Method to remove nitrogen oxide from diesel engine exhaust
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
KR102107906B1 (en) Selective catalytic reduction system and power plant with the same
JPH03229910A (en) Method to remove nitrogen oxide from diesel engine exhaust
WO2014051500A1 (en) Arrangement and method for oxidative aftertreatment of exhausts from a combustion engine
KR101671526B1 (en) After treatment system for engine
CN207377629U (en) Marine exhaust denitration urea automatic adding device
JP2012062818A (en) Exhaust emission control device for engine
CN206054060U (en) A kind of gaseous ammonia for exhaust gas cleaner peculiar to vessel generates system
KR101902345B1 (en) Selective catalytic reduction system and power plant with the same
JPH02204615A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
CN219848977U (en) Denitration device of ship power plant flue gas
US11725555B1 (en) Aftertreatment system
CN114790956B (en) Marine ammonia fuel engine emission reduction device and control method
US11396836B1 (en) Reductant dosing control system
KR20150092916A (en) Active SCR System for 2-Stroke Diesel Engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16