JPH03229910A - Method to remove nitrogen oxide from diesel engine exhaust - Google Patents

Method to remove nitrogen oxide from diesel engine exhaust

Info

Publication number
JPH03229910A
JPH03229910A JP2309690A JP2309690A JPH03229910A JP H03229910 A JPH03229910 A JP H03229910A JP 2309690 A JP2309690 A JP 2309690A JP 2309690 A JP2309690 A JP 2309690A JP H03229910 A JPH03229910 A JP H03229910A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
engine
supercharger
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2309690A
Other languages
Japanese (ja)
Other versions
JPH0635819B2 (en
Inventor
Motonobu Kobayashi
基伸 小林
Akikore Uno
宇野 昭維
Futoshi Kinoshita
木下 太
Mitsuharu Hagi
光晴 萩
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Yanmar Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Yanmar Diesel Engine Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2309690A priority Critical patent/JPH0635819B2/en
Publication of JPH03229910A publication Critical patent/JPH03229910A/en
Publication of JPH0635819B2 publication Critical patent/JPH0635819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the cleaning performance of NOx when the NOx in the exhaust of an engine with a supercharger is reduced and removed by using a catalyst in a reaction receptacle under the existence of ammonia, by controlling the flow of ammonia on the basis of the measured values of a fuel consumption and intake air humidity. CONSTITUTION:An exhaust cleaning device A is provided with an intake air compression supercharger 4 and a reaction receptacle 5 on the exhaust pipe 3 of an engine main body 1. Also, an ammonia container 10 is connected to an ammonia injection nozzle 6 provided at the exhaust gas flow passage 3a on the upper stream side of the supercharger 4 through an ammonia regulating valve 8 and an ammonia transport pipe 7 provided interveniently with an ammonia flow meter 9. In this instance, a fuel flow meter 11 that measures the consumption quantity of fuel, and a humidity detector 12 that measures the humidity of intake air, are provided, and the total discharge quantity of NOx is calculated by means of an operator 13 on the basis of these outputs, and the quantity of ammonia to be supplied is determined by means of a ratio setter 14 on the basis of the calculation outcome of the above, and the ammonia regulating valve 8 is controlled through an ammonia flow controller 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジン排ガス中の窒素酸化物除去
方法に関するものである。詳しく述べると、ディーゼル
エンジンの働きを阻害せずに、その排出される排ガスの
性状の変動に対して、窒素酸化物を除去できると同時に
、窒素酸化物除去後の排ガス中に含まれるアンモニアを
極力制御することができる窒素酸化物の除去方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing nitrogen oxides from diesel engine exhaust gas. In detail, it is possible to remove nitrogen oxides in response to fluctuations in the properties of the exhaust gas emitted without interfering with the operation of the diesel engine, and at the same time, it is possible to remove ammonia contained in the exhaust gas after nitrogen oxide removal as much as possible. The present invention relates to a controllable method for removing nitrogen oxides.

(従来の技術) 従来、酸化雰囲気下における窒素酸化物除去方法として
はアンモニアを還元剤として用いる選択還元脱硝法が、
排ガス中の酸素濃度の影響を受けずに窒素酸化物とアン
モニアが選択的に反応するために、酸化雰囲気下におい
ても効果的な方法とされ、火力発電プラントのボイラ及
び加熱炉等の固定発生源の排気ガス浄化に広く適用され
てきた。
(Prior art) Conventionally, as a method for removing nitrogen oxides in an oxidizing atmosphere, a selective reduction denitrification method using ammonia as a reducing agent has been used.
Because nitrogen oxides and ammonia react selectively without being affected by the oxygen concentration in the exhaust gas, it is an effective method even in oxidizing atmospheres, and can be used at fixed sources such as boilers and heating furnaces in thermal power plants. It has been widely applied to exhaust gas purification.

一方、内燃機関からの排ガス中の窒素酸化物の低減につ
いても、アンモニア選択還元法が適用された例が種々開
示されている。例えば、燃料消費量に比例させて、アン
モニアを排ガス中に供給し、得られる混合ガスをペレッ
ト状触媒を充填した反応器に通過させて、窒素酸化物を
除去する方法(特公昭511−501001号公報参照
)等が開示されている。
On the other hand, various examples have been disclosed in which the ammonia selective reduction method is applied to reduce nitrogen oxides in exhaust gas from internal combustion engines. For example, a method in which nitrogen oxides are removed by supplying ammonia into exhaust gas in proportion to fuel consumption and passing the resulting mixed gas through a reactor filled with pellet catalyst (Japanese Patent Publication No. 511-501001) (see official bulletin) etc. have been disclosed.

しかし、ディーゼルエンジンの場合、ボイラーに比べて
エンジン負荷の変動が著しく、それに伴って排ガス量お
よび窒素酸化物濃度が急激に変化するために、この変化
に連動させて、過不足なくアンモニアを厳密に制御する
ことは、前記の従来の技術では十分といえず、それ故排
ガス中の窒素酸化物を高い効率で除去すると同時に、排
出アンモニアを極力制御するという点において問題が残
されているといえる。
However, in the case of a diesel engine, the engine load fluctuates significantly compared to a boiler, and the amount of exhaust gas and nitrogen oxide concentration change rapidly accordingly. The above-mentioned conventional techniques are not sufficient to control the amount of nitrogen oxides contained in the exhaust gas, and there remains a problem in removing nitrogen oxides from the exhaust gas with high efficiency while at the same time controlling the amount of ammonia discharged as much as possible.

又、排ガス中の窒素酸化物の除去率は反応器における反
応効率と関係していて、両者の関係はほぼ比例している
。そして、この反応効率を高めるには、排ガス中に供給
されたアンモニアが同ガス中の窒素酸化物と均一に混合
されることが重要である。
Further, the removal rate of nitrogen oxides in the exhaust gas is related to the reaction efficiency in the reactor, and the relationship between the two is almost proportional. In order to increase the efficiency of this reaction, it is important that the ammonia supplied to the exhaust gas be uniformly mixed with the nitrogen oxides in the exhaust gas.

そのために−船釣には、バッフルプレート、ベンチュリ
ーや充填物等による混合法が採用されており、又、過給
機との間における反応器上流側の排気管に多数のノズル
口を設けてアンモニアを供給する方法や、アンモニアの
供給口を噴射ノズルにして供給する方法が用いられてい
るものの、その混合される方法や装置がランジンそのも
のに弊害をもたらすものであってはならない。
For this purpose, mixing methods using baffle plates, venturis, packing materials, etc. are adopted for boat fishing, and a large number of nozzle ports are installed in the exhaust pipe on the upstream side of the reactor between the supercharger and the ammonia. Although methods for supplying ammonia and methods for supplying ammonia by using an injection nozzle at the supply port are used, the mixing method and device must not cause any harm to the lungin itself.

この点においてバッフルプレートやベンチュリー或いは
充填剤を用いる混合法では、圧力損失が大きい為にディ
ーゼルエンジンにおけるエンジン出力の低下を招き、エ
ンジンの燃費が悪くなり、エンジンそのものに弊害をも
たらす。
In this respect, the mixing method using a baffle plate, venturi, or filler causes a large pressure loss, leading to a decrease in engine output in a diesel engine, resulting in poor fuel efficiency of the engine, and causing harm to the engine itself.

又、過給機との間における反応器上流側の排ガス流路内
に多数のノズルを設けてアンモニアを供給する混合法で
は、排ガス中にアンモニアを均一に混合させることが難
しく、脱硝用触媒上における排ガス中の窒素酸化物の除
去効率は低下するだけで高くなることはなく、反応効率
が高いとは言い難い。
In addition, in the mixing method in which ammonia is supplied by providing a large number of nozzles in the exhaust gas flow path on the upstream side of the reactor between the turbocharger and the reactor, it is difficult to uniformly mix ammonia into the exhaust gas, and the The removal efficiency of nitrogen oxides in the exhaust gas only decreases and does not increase, and it is difficult to say that the reaction efficiency is high.

又、噴射ノズルからアンモニアを供給する混合法でも、
その噴射口に排ガス中に含まれているダイカストが付着
して、ノズルが塞がれる形になるため、アンモニアが閉
塞する場合もあって、頻繁なノズル掃除或いはノズル交
換が要求される。
Also, in the mixing method where ammonia is supplied from an injection nozzle,
Die-cast particles contained in the exhaust gas adhere to the injection port, causing the nozzle to become blocked, which may cause ammonia blockage, requiring frequent nozzle cleaning or replacement.

さらに、比較的小型のディーゼエンジンの場合では、そ
の排ガス処理システムが安価であることも重要である。
Furthermore, in the case of relatively small diesel engines, it is also important that the exhaust gas treatment system is inexpensive.

(発明が解決しようとする問題点) 本発明の目的はディーゼルエンジン排ガス中の窒素酸化
物をアンモニアと脱硝用触媒に至るまでに事前に十分均
一に混合させた後に触媒と接触させで、エンジンの働き
を阻害することなく、反応器における反応効率を高め、
排ガス性状の急激な変動に対しても窒素酸化物を効率良
く除去でき且つエンジン燃焼性能の変化による窒素酸化
物量の変化にも対応できると同時に窒素酸化物除去後に
含まれるアンモニアを極力制御でき、しかも経済的に安
価に行なえるディーゼルエンジン排ガス中の窒素酸化物
除去方法を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to mix nitrogen oxides in diesel engine exhaust gas with ammonia sufficiently uniformly before reaching the denitration catalyst, and then bring them into contact with the catalyst. Increases the reaction efficiency in the reactor without hindering the work,
It can efficiently remove nitrogen oxides even in the face of sudden changes in exhaust gas properties, and it can also respond to changes in the amount of nitrogen oxides due to changes in engine combustion performance.At the same time, it can control ammonia contained after nitrogen oxide removal as much as possible. An object of the present invention is to provide an economically inexpensive method for removing nitrogen oxides from diesel engine exhaust gas.

(問題点を解決するための手段) 本発明は上記目的の達成のため、第一発明では、排ガス
流路途中に過給機を有するディーゼルエンジンの排ガス
中の窒素酸化物をアンモニアの存在下に反応器内で触媒
を用いて還元除去するにあたり、エンジンの燃料消費量
そして吸入空気の湿度をそれぞれ測定し、これらの測定
値に基づいてアンモニアを流量制御し、過給機の排ガス
入口側に供給することを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention has a first invention in which nitrogen oxides in the exhaust gas of a diesel engine having a supercharger in the middle of the exhaust gas flow path are removed in the presence of ammonia. When reducing and removing ammonia using a catalyst in the reactor, the engine's fuel consumption and intake air humidity are measured, the flow rate of ammonia is controlled based on these measurements, and the ammonia is supplied to the exhaust gas inlet side of the supercharger. It is characterized by

そして第二発明では、排ガス流路途中に過給機を有する
ディーゼルエンジンの排ガス中の窒素酸化物をアンモニ
アの存在下に反応器内で触媒を用いて還元除去するにあ
たり、エンジンの燃料消費量、エンジン給気温度そして
吸入空気の湿度をそれぞれ測定し、これらの測定値に基
づいてアンモニアを流量制御し、過給機の排ガス入口側
に供給することを特徴とする。
In the second invention, when nitrogen oxides in the exhaust gas of a diesel engine having a supercharger in the exhaust gas flow path are reduced and removed using a catalyst in a reactor in the presence of ammonia, the fuel consumption of the engine, It is characterized by measuring the temperature of the engine supply air and the humidity of the intake air, controlling the flow rate of ammonia based on these measured values, and supplying the ammonia to the exhaust gas inlet side of the supercharger.

本発明者等が検討したところによると、ディーゼルエン
ジンから排出される窒素酸化物の総量は第1および第2
図に示す如く、燃料消費量及びエンジンの給気温度にほ
ぼ比例して増減するが、更に、第3図に示す如く吸入空
気の湿度にも比例してそれぞれ減少及び増加することが
知見された。
According to the studies conducted by the present inventors, the total amount of nitrogen oxides emitted from diesel engines is
As shown in the figure, it increases and decreases almost in proportion to the fuel consumption and engine intake air temperature, but it was also found that it decreases and increases in proportion to the humidity of the intake air, as shown in Figure 3. .

すなわち、第1図に示す如く窒素酸化物の排出量は燃料
消費量に比例するために、燃料消費量に対応してアンモ
ニアを供給することによりアンモニア供給量を制御する
ことが可能であるが、窒素酸化物濃度は大気条件すなわ
ちエンジンの給気温度のみならず吸入空気の湿度等によ
っても大きく影響を受けるために、これ等の給気温度及
び吸入空気の湿度を測定して、その測定値に基づいて、
窒素酸化物排出量をさらに補正することが重要である。
That is, as shown in FIG. 1, since the amount of nitrogen oxide emissions is proportional to the amount of fuel consumed, it is possible to control the amount of ammonia supplied by supplying ammonia in accordance with the amount of fuel consumed. The concentration of nitrogen oxides is greatly affected by atmospheric conditions, that is, not only the temperature of the engine's supply air but also the humidity of the intake air. based on,
It is important to further correct for nitrogen oxide emissions.

したがって、エンジンから排出される窒素酸化物の総量
は燃料消費量、吸入空気の湿度を、また加えてエンジン
給気温度を測定して直接に求め得た窒素酸化物総排出量
に比例してアンモニア供給量を決定する。
Therefore, the total amount of nitrogen oxides emitted from the engine is determined by the fuel consumption, the humidity of the intake air, and the amount of ammonia that can be directly determined by measuring the engine air supply temperature. Determine supply amount.

それにより、窒素酸化物の排出量および濃度が急激に変
化しても、その排出量および濃度に比例して、時間的な
遅れがなく最適量のアンモニアを正確に供給し、排ガス
中の窒素酸化物を効果的に除去できること、および窒素
酸化物除去後の排ガス中における残留アンモニアを極力
抑止できることを確認したものである。
As a result, even if the emission amount and concentration of nitrogen oxides change rapidly, the optimum amount of ammonia is accurately supplied without any time delay in proportion to the emission amount and concentration, and nitrogen oxide in the exhaust gas is oxidized. This test confirmed that nitrogen oxides can be effectively removed and that residual ammonia in the exhaust gas after nitrogen oxide removal can be suppressed as much as possible.

又、その流量制御されたアンモニアを過給機の排ガス入
口側内に供給することにより、排ガス中の窒素酸化物と
アンモニアを反応器に至るまでに事前に十分混合して、
反応効率を高めると共に窒素酸化物の除去効率をさらに
アップできることを確認したものである。
In addition, by supplying the ammonia with a controlled flow rate into the exhaust gas inlet side of the supercharger, nitrogen oxides and ammonia in the exhaust gas are sufficiently mixed before reaching the reactor.
This confirms that it is possible to further increase the reaction efficiency and the removal efficiency of nitrogen oxides.

(作用) アンモニアの供給量が、エンジンの燃料消費量と吸入空
気の湿度とさらには給気温度の測定値に基づいて求めた
排ガス中の窒素酸化物の量および濃度に比例して決定さ
れて、排ガス中における窒素酸化物の総量に対してより
正確な最適量のアンモニアが排ガス流路における過給機
の排ガス入口側に応答性良く供給され、過給機を通過す
る過程で十分且つ均一に混合された後に反応器に流れる
(Function) The amount of ammonia supplied is determined in proportion to the amount and concentration of nitrogen oxide in the exhaust gas, which is determined based on the engine's fuel consumption, intake air humidity, and intake air temperature measurements. , the more accurate optimal amount of ammonia is supplied to the exhaust gas inlet side of the turbocharger in the exhaust gas flow path with respect to the total amount of nitrogen oxides in the exhaust gas, and the ammonia is supplied sufficiently and uniformly in the process of passing through the turbocharger. After being mixed, it flows into the reactor.

それにより、ディーゼルエンジンの働きが阻害されずに
、反応器における反応効率が高効率化された状態で、エ
ンジン負荷に対応して常時効率的に窒素酸化物の除去が
行なわれ且つ同除去後におけるアンモニアの残留が極力
抑止されていることになる。
As a result, nitrogen oxides are constantly and efficiently removed in response to the engine load, with the diesel engine functioning unimpeded and the reaction efficiency in the reactor being made highly efficient. This means that residual ammonia is suppressed as much as possible.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第4図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第1発明を実施するのに開発
したものを例示しており、エンジン本体(1)のマニホ
ールド(2)と連通状の排気管(3)には吸入空気圧縮
用の過給機(4)と反応器(5)とが設けられている。
The exhaust gas purification device (A) provided in the engine body (1) shown in FIG. A supercharger (4) for compressing intake air and a reactor (5) are provided in the exhaust pipe (3) communicating with the exhaust pipe (3).

この過給機(4)はエンジンの出力を増加可能に、排気
ガスの圧力を利用してエンジンに供給する空気を圧縮す
る公知の機構構造のもので、排ガス流路(3a)側のタ
ービン翼と給気側のブロワ−翼とが軸で連結されていて
、排ガス流路(3a)側のタービン翼が排ガスの圧力で
回転することにより給気側のブロワ−翼も回転してエン
ジンの吸入空気を圧縮するようにしている。
This supercharger (4) has a known mechanical structure that compresses air supplied to the engine using the pressure of exhaust gas so as to increase the output of the engine, and has a turbine blade on the exhaust gas flow path (3a) side. and the blower blade on the air supply side are connected by a shaft, and when the turbine blade on the exhaust gas flow path (3a) side rotates due to the pressure of the exhaust gas, the blower blade on the air supply side also rotates, and the intake air is drawn into the engine. It compresses air.

又、排気管(3)における過給機(4)の上流側の排ガ
ス流路(3a)に設置されたアンモニア注入ノズル(6
)にはアンモニア輸送管(7)が接続され、このアンモ
ニア輸送管(7)にはアンモニア調整弁(8)およびア
ンモニア流量計(9)が設けられていると共にアンモニ
ア容器(10)が接続されている。
In addition, an ammonia injection nozzle (6) installed in the exhaust gas flow path (3a) on the upstream side of the supercharger (4) in the exhaust pipe (3)
) is connected to an ammonia transport pipe (7), and this ammonia transport pipe (7) is provided with an ammonia regulating valve (8) and an ammonia flow meter (9), and is connected to an ammonia container (10). There is.

そして、エンジン本体(1)に供給され名燃料の消費量
を測定する燃料流量計(11)とエンジン本体(1)の
吸入空気の湿度を測定する湿度検出器(12)は演算器
(13)に連絡され、この演算器(13)は比率設定器
(14)およびアンモニア流量制御器(15)を通じて
アンモニア調整弁(8)と連絡している。
The fuel flow meter (11) that is supplied to the engine body (1) and measures the amount of fuel consumed and the humidity detector (12) that measures the humidity of the intake air of the engine body (1) are connected to the computer (13). The arithmetic unit (13) is in communication with the ammonia regulating valve (8) through a ratio setter (14) and an ammonia flow rate controller (15).

0 すなわち、エンジン本体(1)の負荷量に応答して、燃
料流量計(11)と吸入空気の湿度検出器(12)から
の各信号を演算器(13)に入力する。
0 That is, in response to the load amount of the engine body (1), each signal from the fuel flow meter (11) and the intake air humidity detector (12) is input to the computing unit (13).

演算器(13)において、窒素酸化物の総排出量を算出
し、この信号を比率設定器(14)に人出し、比率設定
器(14)で予め設定されたアンモニア/窒素酸化物比
により供給するアンモニア量を決定する。
The calculation unit (13) calculates the total amount of nitrogen oxide emissions, sends this signal to the ratio setter (14), and supplies the ammonia/nitrogen oxide ratio preset by the ratio setter (14). Determine the amount of ammonia to be added.

そして、該比率設定器(14)の出力はアンモニア流量
信号として、アンモニア流量制御器(15)に入力され
、アンモニア調整弁(8)の開閉を制御し、過給機(4
)を経て反応器(5)に流れ込む排ガスに混入されるア
ンモニア量を制御する。
The output of the ratio setting device (14) is input as an ammonia flow rate signal to an ammonia flow rate controller (15), which controls the opening and closing of the ammonia regulating valve (8), and controls the opening and closing of the ammonia regulating valve (8).
) to control the amount of ammonia mixed into the exhaust gas flowing into the reactor (5).

排ガスはマニホールド(2)から排気管(3)および途
中の過給機(4)を経て、脱硝用触媒(16)を充填し
た反応器(5)に流れる。
The exhaust gas flows from the manifold (2) through the exhaust pipe (3) and the supercharger (4) in the middle to the reactor (5) filled with a denitrification catalyst (16).

アンモニアはアンモニア容器(10)よりアンモニア輸
送管(7)を経て、アンモニア調整弁(8)で最適な流
量に制御されて、排ガス流路(3a)における過給機(
4)の上流側において、アンモニ1 ア注入ノズル(6)により排ガス中に混入され、過給機
(4)のタービン翼で排ガスと十分に混合撹拌され、必
要によりガス分散板(17)により、混合分散された後
、反応器(5)に至り、触媒(16)を通過して、排ガ
ス中の窒素酸化物を還元除去する。
Ammonia passes from the ammonia container (10) through the ammonia transport pipe (7), is controlled to an optimal flow rate by the ammonia regulating valve (8), and is fed to the supercharger (
4), ammonia 1 is mixed into the exhaust gas by the ammonia injection nozzle (6), sufficiently mixed and stirred with the exhaust gas by the turbine blade of the supercharger (4), and if necessary, by the gas distribution plate (17). After being mixed and dispersed, it reaches a reactor (5), passes through a catalyst (16), and reduces and removes nitrogen oxides in the exhaust gas.

第5図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A、)は本発明の第2発明を実施するのに開
発したものを例示しており、その構成は第5図に例示し
た排ガス浄化装置(A)と基本的に同構成のものである
ため、共通する構成については説明を省略し、相違する
構成について以下に説明する。
The exhaust gas purification device (A,) provided in the engine body (1) shown in FIG. Since it has basically the same configuration as the illustrated exhaust gas purification device (A), the explanation of the common configuration will be omitted, and the different configuration will be explained below.

排気管ガスタービン(4)をエンジン本体(1)と連絡
する給気管(18)には給気温度検出器(19)が設け
られ、この給気温度検出器(19)は燃料流量計(11
)および湿度検出器(12)と同様に演算器(13)に
連絡されている。
A supply air temperature detector (19) is provided in the supply air pipe (18) that connects the exhaust pipe gas turbine (4) with the engine body (1), and this supply air temperature detector (19) is connected to the fuel flow meter (11).
) and the humidity detector (12) as well as the computing unit (13).

この排ガス浄化装置(A1)はエンジン本体(1)の負
荷量に応答して、燃料流量計(11)と2 湿度検出器(12)と給気温度検出器(19)からの各
信号を演算器(13)に入力する。演算器(13)は窒
素酸化物の総排出量を演算゛・しこの信号を比率設定器
(14)に入力し、比率設定器(14)で予め設定され
たアンモニア/窒素酸化物比により供給するアンモニア
量を決定する。この比率設定器(14)の出力はアンモ
ニア流量信号としてアンモニア流量制御器(15)に入
力され、アンモニア調整弁(8)の開閉を制御し、反応
器(5)に流れ込む排ガスに混入されるアンモニア量を
制御する。
This exhaust gas purification device (A1) responds to the load amount of the engine body (1) and calculates each signal from the fuel flow meter (11), humidity detector (12), and supply air temperature detector (19). input into the device (13). The calculator (13) calculates the total amount of nitrogen oxides discharged, inputs this signal to the ratio setter (14), and supplies the ammonia/nitrogen oxides ratio preset by the ratio setter (14). Determine the amount of ammonia to be added. The output of this ratio setting device (14) is input as an ammonia flow rate signal to an ammonia flow rate controller (15), which controls the opening and closing of the ammonia regulating valve (8), thereby controlling the ammonia mixed in the exhaust gas flowing into the reactor (5). Control quantity.

それにより、アンモニアはアンモニア調整弁(8)で最
適な流量に制御されて、排ガス流路(3a)における過
給機(4)の入口側において、アンモニア注入ノズル(
6)により排ガス中に混入され、過給機(4)のタービ
ン翼で排ガスと十分に混合撹拌され、必要によりガス分
散板(17)により、混合分散された後、反応器(5)
に至り、触媒(16)を通過して、排ガス中の窒素酸化
物を還元除去する。
Thereby, the ammonia is controlled to an optimal flow rate by the ammonia regulating valve (8), and the ammonia injection nozzle (
6) is mixed into the exhaust gas, thoroughly mixed and stirred with the exhaust gas by the turbine blade of the supercharger (4), mixed and dispersed by the gas distribution plate (17) if necessary, and then transferred to the reactor (5).
The exhaust gas then passes through a catalyst (16) to reduce and remove nitrogen oxides in the exhaust gas.

又、本発明において、用いられる触媒の形状と3 しては、ペレット状2球状2粒状、板状、パイプ状及び
ハニカム状等が挙げられる。
Further, in the present invention, examples of the shape of the catalyst used include pellet-like, bi-spherical, bi-granular, plate-like, pipe-like, and honeycomb-like shapes.

特に、幾何学的表面積が大きいため必要触媒量が少なく
て済み、又触媒層の圧力損失が小さいという理由でハニ
カム状が好ましい。
In particular, a honeycomb shape is preferred because the required amount of catalyst is small due to its large geometric surface area, and the pressure loss in the catalyst layer is small.

本発明の対象となる触媒組成については、特に限定すべ
き理由はないが、チタンを主成分とする触媒やゼオライ
ト系触媒が好ましい。
There is no particular reason to limit the composition of the catalyst that is the object of the present invention, but catalysts containing titanium as a main component and zeolite catalysts are preferred.

特に、チタンを含む酸化物をA成分とし、これが60〜
99.5重量%含まれ、バナジウム、タングステン、モ
リブデン、マンガン、銅、鉄、コバルト。
In particular, the A component is an oxide containing titanium, and this is 60~
Contains 99.5% by weight of vanadium, tungsten, molybdenum, manganese, copper, iron, and cobalt.

セリウム、及びスズよりなる群から選ばれた少なくとも
一種の元素の酸化物をB成分とし、これが0.5〜40
重量%の範囲に含まれてなる触媒が好ましい結果を与え
る。
The B component is an oxide of at least one element selected from the group consisting of cerium and tin.
A catalyst comprising a range of % by weight gives favorable results.

触媒A成分はチタンを含む酸化物であれば好ましい結果
を与え、例えば酸化チタン、チタンとケイ素の二元系複
合酸化物(以下、TiO2−8iO7とする)。チタン
とジルコニウムの二元系複合酸化物、チタン、ケイ素及
びジルコニウムからなる4 三元系複合酸化物等が挙げられる。A成分の比表面積は
10i/g以上、特に20rrf/ g以上が好ましい
結果を与える。
Favorable results can be obtained if the catalyst A component is an oxide containing titanium, such as titanium oxide or a binary composite oxide of titanium and silicon (hereinafter referred to as TiO2-8iO7). Examples include binary composite oxides of titanium and zirconium, and ternary composite oxides consisting of titanium, silicon, and zirconium. Preferable results are obtained when the specific surface area of component A is 10i/g or more, particularly 20rrf/g or more.

本発明に使用される還元剤としては、アンモニアガス、
アンモニア水、その他の尿素やショウ酸アンモニウムの
ように熱分解してアンモニアになるアンモニウム塩等が
用いられる。
The reducing agent used in the present invention includes ammonia gas,
Ammonium salts such as aqueous ammonia, other urea, and ammonium salts that thermally decompose into ammonia such as ammonium sholate are used.

本発明の対象となるディーゼルエンジンから排出される
排ガスの組成としては、通常、アンモニア10〜1,0
00ppm、酸素2〜21容量%、炭酸ガス5〜15容
量%、水分5〜15容量%、煤塵0.02〜1g/Nm
3、及び窒素酸化物200〜3.000ppm程度に含
有するものであるが、ディーゼルエンジンやガスエンジ
ン等の内燃機関から排出される排ガスであれば良く、特
に組成範囲を限定するものではない。
The composition of the exhaust gas discharged from the diesel engine that is the object of the present invention is usually 10 to 1,0 ammonia.
00ppm, oxygen 2-21% by volume, carbon dioxide 5-15% by volume, moisture 5-15% by volume, dust 0.02-1g/Nm
3, and about 200 to 3,000 ppm of nitrogen oxides, but the composition range is not particularly limited as long as it is an exhaust gas discharged from an internal combustion engine such as a diesel engine or a gas engine.

処理条件としては、反応温度が150°C〜650℃、
特に200°C〜600℃が好ましい。
The processing conditions include a reaction temperature of 150°C to 650°C;
Particularly preferred is 200°C to 600°C.

空間速度は200(1−100000t++−1、特に
−5,000〜5(1,0OOh+−1の範囲が好まし
い。
The space velocity is preferably in the range of 200 (1-100,000 t++-1, particularly -5,000 to 5 (1,0OOh+-1).

5 アンモニアの添加量は窒素酸化物1容量部に対して0.
3〜1.2容量部が好ましいが、通常、未反応アンモニ
アを極力抑制する必要があるためにアンモニア/窒素酸
化物のモル比を1以下として使用されることが特に好ま
しい。
5. The amount of ammonia added is 0.0% per part by volume of nitrogen oxide.
Although 3 to 1.2 parts by volume is preferable, it is particularly preferable to use the ammonia/nitrogen oxide molar ratio of 1 or less because it is usually necessary to suppress unreacted ammonia as much as possible.

以下に具体例を挙げて本発明をさらに詳細に説明するが
、本発明はこれら具体例のみに限定されるものではない
The present invention will be explained in more detail with reference to specific examples below, but the present invention is not limited to these specific examples.

具体例■ 第4図に例示した排ガス浄化装置(A)を用い、発電用
のディーゼルエンジンの排気管(3)と連通状の反応器
(5)にはV2O52重量%、WO37重量%を含有す
るT i O2系ハニカム触媒(150mm角相当直径
3.2mm、セル肉厚0.5mm。
Specific example ■ Using the exhaust gas purification device (A) illustrated in Fig. 4, the reactor (5) communicating with the exhaust pipe (3) of a diesel engine for power generation contains 52% by weight of V2O and 37% by weight of WO. T i O2-based honeycomb catalyst (150 mm square equivalent diameter 3.2 mm, cell wall thickness 0.5 mm.

長さ450mm)を6×6本2層に充填した。450 mm in length) were packed in two layers of 6 x 6 pieces.

同装置(A)により、アンモニア/窒素酸化物モル比が
0.85になるように演算器(13)、及び比率設定器
(14)を作動させてアンモニアを排気管内の排ガス中
に注入し、排ガス処理量3500〜550ON  /h
+、排ガス排ガス温度3媒0〜4306 酸化物濃度700〜950ppm,の範囲に変動させて
エンジンを運転した。
Using the same device (A), operate the calculator (13) and the ratio setter (14) so that the ammonia/nitrogen oxide molar ratio is 0.85, and inject ammonia into the exhaust gas in the exhaust pipe, Exhaust gas processing amount 3500-550ON/h
+, exhaust gas The engine was operated while varying the exhaust gas temperature in the range of 0 to 4306 and the oxide concentration in the range of 700 to 950 ppm.

その時の脱硝率は83〜86%、反応器出口における排
ガス中のアンモニア濃度は0.5〜1.Oppmであっ
た。
At that time, the denitrification rate was 83-86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5-1. It was Oppm.

具体例■ 第5図に例示した排ガス浄化装置(A1)を用い、具体
例工と同様の方法で脱硝反応を行なった。
Specific Example ■ Using the exhaust gas purification apparatus (A1) illustrated in FIG. 5, a denitrification reaction was carried out in the same manner as in the specific example.

この時の脱硝率は82〜85%、反応器出口における排
ガス中のアンモニア濃度は0.4〜1.lppmであっ
た。
The denitrification rate at this time was 82-85%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.4-1. It was lppm.

具体例I及び■記載の脱硝方法は脱硝率の変動幅が少な
く窒素酸化物を高効率で除去できると同時に、二次公害
となり得るアンモニアの放出も極めて少なく又、その反
応器における反応効率も、事前に排ガス中の窒素酸化物
とアンモニアが十分に均一に混合されていることにより
脱硝用触媒上での反応効率が高くて優れた方法である。
The denitrification methods described in Specific Examples I and (2) can remove nitrogen oxides with high efficiency with a small fluctuation range in the denitrification rate, and at the same time release extremely little ammonia, which can cause secondary pollution, and the reaction efficiency in the reactor is also This is an excellent method because the nitrogen oxides and ammonia in the exhaust gas are sufficiently and uniformly mixed in advance, resulting in high reaction efficiency on the denitrification catalyst.

(発明の効果) したがって、本発明によれば次の利点がある。(Effect of the invention) Therefore, the present invention has the following advantages.

7 ■排ガス性状の急激な変化およびエンジンの負荷の変動
にともなう窒素酸化物量の急激な変化に迅速に応答して
、窒素酸化物を高いレベルで効率よく除去することがで
き、しかも窒素酸化物除去後の排ガスとともに放出され
る同ガス中のアンモニア量を最小限に抑止できて二次公
害の心配もなく実用上の利益大である。
7. Nitrogen oxides can be removed efficiently at a high level by quickly responding to sudden changes in the amount of nitrogen oxides due to changes in exhaust gas properties and changes in engine load. The amount of ammonia in the gas that is released together with the exhaust gas can be suppressed to a minimum, and there is no need to worry about secondary pollution, which is of great practical benefit.

■請求項1により、特に二項口の測定因子で前記の効果
を得ることができ、装置の省力化に有効である。
(2) According to claim 1, the above-mentioned effects can be obtained especially with the two-term measurement factor, which is effective in saving labor of the apparatus.

■ディーゼルエンジンに対し新たな圧力損失を生じさせ
ることがないからディーゼルエンジンの出力を低下せし
めることがない。
■Since no new pressure loss is caused to the diesel engine, the output of the diesel engine will not be reduced.

■アンモニア供給口の注入ノズルを任意の大きさに選択
できることにより、排ガス中のダストにより注入ノズル
が閉塞する心配も解消され掃除等のメンテナンスも不用
である。
- Since the injection nozzle of the ammonia supply port can be selected to any size, there is no need to worry about the injection nozzle being blocked by dust in the exhaust gas, and maintenance such as cleaning is unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はディーゼルエンジンの燃料消費量と窒素酸化物
排出量の関係を示すグラフ。第2図はデ8 イーゼルエンジンの吸入空気の温度と窒素酸化物濃度の
関係を示すグラフ。第3図はディーゼルエンジンの吸入
空気の絶対湿度と窒素酸化物濃度の関係を示すグラフ。 第4図および第5図は本発明方法を行うための排ガス浄
化装置を備えたディーゼルエンジンの概略図である。 図中 (1)はエンジン本体 (3)は排気管 (3B)は排ガス流路 (4)は過給機 (5)は反応器 (6)はアンモニア注入ノズル (7)はアンモニア輸送管 (8)はアンモニア調整弁 (9)はアンモニア流量計 (10)はアンモニア容器 (11)は燃料流量計 (12)は湿度検出器 (13)は演算器 9 は比率設定器 はアンモニア流量制御器 は触媒 は給気管 は給気温度検出器
Figure 1 is a graph showing the relationship between diesel engine fuel consumption and nitrogen oxide emissions. Figure 2 is a graph showing the relationship between the intake air temperature and nitrogen oxide concentration of the De8 easel engine. Figure 3 is a graph showing the relationship between the absolute humidity and nitrogen oxide concentration of the intake air of a diesel engine. 4 and 5 are schematic diagrams of a diesel engine equipped with an exhaust gas purification device for carrying out the method of the present invention. In the figure (1), the engine body (3) is the exhaust pipe (3B), the exhaust gas flow path (4) is the supercharger (5), the reactor (6) is the ammonia injection nozzle (7), the ammonia transport pipe (8) is ) is the ammonia regulating valve (9) is the ammonia flow meter (10) is the ammonia container (11) is the fuel flow meter (12) is the humidity detector (13) is the calculator 9 is the ratio setting device is the ammonia flow controller is the catalyst The supply air pipe is the supply air temperature detector

Claims (2)

【特許請求の範囲】[Claims] (1)排ガス流路途中に過給機を有するディーゼルエン
ジンの排ガス中の窒素酸化物をアンモニアの存在下に反
応器内で触媒を用いて還元除去するにあたり、エンジン
の燃料消費量そして吸入空気の湿度をそれぞれ測定し、
これらの測定値に基づいてアンモニアを流量制御し、過
給機の排ガス入口側に供給することを特徴とするディー
ゼルエンジン排ガス中の窒素酸化物除去方法。
(1) When nitrogen oxides in the exhaust gas of a diesel engine with a supercharger in the exhaust gas flow path are reduced and removed using a catalyst in a reactor in the presence of ammonia, the amount of fuel consumed by the engine and the amount of intake air are reduced. Measure the humidity,
A method for removing nitrogen oxides from diesel engine exhaust gas, which comprises controlling the flow rate of ammonia based on these measured values and supplying the ammonia to the exhaust gas inlet side of a supercharger.
(2)排ガス流路途中に過給機を有するディーゼルエン
ジンの排ガス中の窒素酸化物をアンモニアの存在下に反
応器内で触媒を用いて還元除去するにあたり、エンジン
の燃料消費量、エンジン給気温度そして吸入空気の湿度
をそれぞれ測定し、これらの測定値に基づいてアンモニ
アを流量制御し、過給機の排ガス入口側に供給すること
を特徴とするディーゼルエンジン排ガス中の窒素酸化物
除去方法。
(2) When nitrogen oxides in the exhaust gas of a diesel engine with a supercharger in the exhaust gas flow path are reduced and removed using a catalyst in a reactor in the presence of ammonia, engine fuel consumption and engine air supply A method for removing nitrogen oxides from diesel engine exhaust gas, which comprises measuring the temperature and humidity of intake air, controlling the flow rate of ammonia based on these measured values, and supplying the ammonia to the exhaust gas inlet side of a supercharger.
JP2309690A 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas Expired - Lifetime JPH0635819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309690A JPH0635819B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309690A JPH0635819B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JPH03229910A true JPH03229910A (en) 1991-10-11
JPH0635819B2 JPH0635819B2 (en) 1994-05-11

Family

ID=12100914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309690A Expired - Lifetime JPH0635819B2 (en) 1990-01-31 1990-01-31 Method for removing nitrogen oxides from diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JPH0635819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42875E1 (en) * 2002-09-20 2011-11-01 Lawrence Livermore National Security, Llc Staged combustion with piston engine and turbine engine supercharger
JP2014020290A (en) * 2012-07-18 2014-02-03 Osaka Gas Co Ltd Reductant injection device and denitrification equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42875E1 (en) * 2002-09-20 2011-11-01 Lawrence Livermore National Security, Llc Staged combustion with piston engine and turbine engine supercharger
JP2014020290A (en) * 2012-07-18 2014-02-03 Osaka Gas Co Ltd Reductant injection device and denitrification equipment

Also Published As

Publication number Publication date
JPH0635819B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
KR950012137B1 (en) Method of removing nitrogen oxides in exhaust gases from a diesel engine
CN102165157B (en) Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component
CN105114158B (en) A kind of selective-catalytic-reduction denitrified system and method suitable for medium and small-scale vessel
CN207654927U (en) A kind of coke oven flue gas desulfurization and dedusting denitration coprocessing system
CN107448266A (en) The automatic adding method of marine exhaust denitration urea and its device
JP2007051924A (en) MEASURING INSTRUMENT OF NH3 AND NOx IN EXHAUST GAS
CN114790956B (en) Marine ammonia fuel engine emission reduction device and control method
JPH03229911A (en) Method to remove nitrogen oxide from diesel engine exhaust
JPH03229910A (en) Method to remove nitrogen oxide from diesel engine exhaust
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
CN209663032U (en) A kind of jet dynamic control flue gas SCR denitration system
US11396836B1 (en) Reductant dosing control system
JPH11179155A (en) Apparatus and method for feeding ammonia in denitrification reactor
CN212651632U (en) Flue gas denitration system for diluting ammonia gas by desulfurized flue gas
CN207377629U (en) Marine exhaust denitration urea automatic adding device
CN206054060U (en) A kind of gaseous ammonia for exhaust gas cleaner peculiar to vessel generates system
CN207951084U (en) Pelletizing denitrating flue gas processing system
JPH02204615A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
JP2012062818A (en) Exhaust emission control device for engine
CN107376644B (en) Urea mixed flow structure of tail gas treatment system
CN112403182A (en) Analytic tower and flue gas heating system
CN211753792U (en) Ammonia spraying system for flue gas treatment
CN212927979U (en) Test bench for testing catalytic activity of SCR catalyst
CN219848977U (en) Denitration device of ship power plant flue gas
US20230250744A1 (en) Aftertreatment system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16