JPS5955334A - System for controlling injection of reducing agent in denitrator for stack gas - Google Patents

System for controlling injection of reducing agent in denitrator for stack gas

Info

Publication number
JPS5955334A
JPS5955334A JP57164059A JP16405982A JPS5955334A JP S5955334 A JPS5955334 A JP S5955334A JP 57164059 A JP57164059 A JP 57164059A JP 16405982 A JP16405982 A JP 16405982A JP S5955334 A JPS5955334 A JP S5955334A
Authority
JP
Japan
Prior art keywords
nox
signal
reduction ratio
reducing agent
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57164059A
Other languages
Japanese (ja)
Other versions
JPH0351453B2 (en
Inventor
Tatsuro Saotome
早乙女 達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57164059A priority Critical patent/JPS5955334A/en
Publication of JPS5955334A publication Critical patent/JPS5955334A/en
Publication of JPH0351453B2 publication Critical patent/JPH0351453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Abstract

PURPOSE:To provide both performances of control for maintaining a specified denitration reduction ratio and control for maintaining specified NOx in the inlet of a chimney and to enable automatic changing over of both by adding the control signal for maintaining the specified NOx value in the inlet of the chimney to the signal from a reduction ratio setter. CONSTITUTION:The total NOx amt. calculated by a multiplier 11 from the output signals of a signal transmitter 9 for the flow rate of air for combustion and a detector for NOx in the gas at the outlet of a fuel economizer and the signal from a reduction ratio setter 13 are calculated with a multiplier 12, and the output thereof is used as a demand signal for the amt. of gaseous NH3 for denitration in controlling NOx at the specified denitration reduction ratio. On the other hand, the signal of a detector 24 for NOx at the inlet of a chimney and the set signal of the NOx value at the inlet of the chimney are calculated with a calculator 26, and the deviation thereof is inputted through a multiplier 27 which adjusts the gain so as to meet load to a proportional plus integral calculator 28. The output of the calculator 28 is inputted to an adder 28 by which said output is added to the signal from the setter 13 and is converted to the set value for specified denitration reduction ratio from optional partial load, whereby the control for maintaining the specified NOx value at the inlet of the chimney is accomplished.

Description

【発明の詳細な説明】 この発明は排煙脱硝装置に係り、特に還元剤注入量調節
弁を備え、排ガス中の窒素酸化物(以下、NOxと記す
)を低減するに好適な排煙脱硝装置の還元剤注入制御方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flue gas denitrification device, and particularly to a flue gas denitrification device equipped with a reducing agent injection amount control valve and suitable for reducing nitrogen oxides (hereinafter referred to as NOx) in flue gas. The present invention relates to a reducing agent injection control system.

従来、排煙脱硝装置のNOxの基本的な制御方式として
は、「排ガス流量」×「節炭器出口のNOx値」により
算定するNOx総量に、還元比率(いわゆるモル比)を
掛算して算出する還元剤例えばアンモニアガス注入量要
求信号と、実際のアンモニアガス注入量のフィードバッ
ク信号との偏差演算(または比率演算)を行ない、この
偏差の比例積分演算信号によって、アンモニアガスの注
入量を制御する方式が一般に行なわれている。これはU
1カス中のNOxの総量に対して常に一定還元比率のア
ンモニアガス注入量を測って、全負荷範囲で所定の脱硝
性能を維持しようとするものである。
Conventionally, the basic control method for NOx in flue gas denitrification equipment is to multiply the total amount of NOx, which is calculated by "exhaust gas flow rate" x "NOx value at the exit of the economizer," by the reduction ratio (so-called molar ratio). For example, a deviation calculation (or ratio calculation) is performed between the ammonia gas injection amount request signal and the feedback signal of the actual ammonia gas injection amount, and the ammonia gas injection amount is controlled by the proportional-integral calculation signal of this deviation. This method is commonly used. This is U
This method attempts to maintain a predetermined denitrification performance over the entire load range by always measuring the amount of ammonia gas injected at a constant reduction ratio with respect to the total amount of NOx in one scum.

しかし最近では、このような脱硝性能を常時一定に維持
する方式とは別に、煙突入口のNOx値を検出してフィ
ードバックし、煙突入口のNOx値を環境規制値と一致
させた所定値に制御しようといういわゆる煙突入口NO
x一定の制御を行う方式が増加してきている。上記の目
的は、脱硝装置の最終目的である煙突入口NOx値を環
境規制上から所定値に常時維持することにより、部分負
荷におけるアンモニアガス注入量を抑制した経済運用を
図ることを主眼とするものである。このように従来方式
には上記の三方式があり、現在そのいずれかの方式を採
用している。
However, recently, in addition to this method of constantly maintaining the denitrification performance at a constant level, attempts have been made to detect and feed back the NOx value at the smoke inlet to control the NOx value at the smoke inlet to a predetermined value that matches the environmental regulation value. The so-called smoke inlet NO.
The number of systems that perform constant x control is increasing. The above purpose is to achieve economical operation by suppressing the amount of ammonia gas injection at partial loads by constantly maintaining the NOx value at the smoke inlet, which is the final purpose of the denitrification equipment, at a predetermined value in accordance with environmental regulations. It is. As described above, there are three conventional methods as described above, and one of these methods is currently employed.

以下、第1図〜第3図により従来のNOx制御系統を説
明する。第1図は、脱硝装置のフロー説明図、第2図は
、脱硝還元比率一定のNOx制御系統図を示す。第1図
において、ボイラ1からの排ガスは節炭器2を通り、脱
硝反応器3へ導入される。
Hereinafter, a conventional NOx control system will be explained with reference to FIGS. 1 to 3. FIG. 1 is a flow explanatory diagram of the denitrification device, and FIG. 2 is a NOx control system diagram with a constant denitrification and reduction ratio. In FIG. 1, exhaust gas from a boiler 1 passes through a economizer 2 and is introduced into a denitrification reactor 3.

−M 死刑の脱硝アンモニアガスは、脱硝アンモニアガ
ス量調節弁4を通って脱硝反応器3へ注入される。脱硝
反応器3で還元処理された排ガスは、煙突へ導かれ、大
気中へ放出される。一方、燃焼用空気は強制押込通風a
(以下、FDPと記す)7によって空気予熱器8を通り
、ボイラ1に導がれる。
-M The denitrified ammonia gas for death is injected into the denitrification reactor 3 through the denitrified ammonia gas amount control valve 4. The exhaust gas that has been reduced in the denitrification reactor 3 is led to the chimney and released into the atmosphere. On the other hand, the combustion air is forced draft a
(hereinafter referred to as FDP) 7, the air passes through an air preheater 8 and is guided to the boiler 1.

節炭器2の出口の排ガスNOxは、節炭器出口ガスNO
x検出器6により、脱硝反応器3への注入アンモニアガ
ス量は、アンモニアガス流量発信器5により、また燃焼
用空気流量から図示してない関数発生器10によって排
ガス流量に交換するところの燃焼用空気流量は、燃焼用
空気流量発信器9により、さらに煙突入口NOxは、煙
突入口NOx検出器24によりそれぞれ検出される。従
来のNOx制御の基本的制御方式の一つである脱硝還元
比率(モル比)一定の制御は、処理ガス流量(燃焼用空
気流から変換作成)と節炭器出口NOx値との積である
NOx総量に対し、一定の還元比率における還元剤のア
ンモニアガス量を注入して、全負荷範囲において所定の
脱硝効果を挙げようとするものである。
The exhaust gas NOx at the outlet of the economizer 2 is the exhaust gas NOx at the outlet of the economizer 2.
The amount of ammonia gas injected into the denitrification reactor 3 is determined by the x detector 6, and the amount of ammonia gas injected into the denitrification reactor 3 is determined by the ammonia gas flow rate transmitter 5, and the combustion air flow rate is changed to the exhaust gas flow rate by a function generator 10 (not shown). The air flow rate is detected by the combustion air flow rate transmitter 9, and the smoke inlet NOx is detected by the smoke inlet NOx detector 24. One of the basic control methods of conventional NOx control, the control to keep the denitration reduction ratio (molar ratio) constant is the product of the process gas flow rate (converted from the combustion air flow) and the NOx value at the exit of the economizer. The aim is to achieve a predetermined denitrification effect over the entire load range by injecting an amount of ammonia gas as a reducing agent at a constant reduction ratio with respect to the total amount of NOx.

つぎに第2図によって、従来の制御方式のうち脱硝還元
比率一定のNOx制御系統を説明する。上記燃焼用空気
流量発信器9の信号は、上記関数発生器10により処理
ガス流量に変換され、掛算器11に入力される。一方の
節炭器出口NOx値信号は節炭器出口ガスNOx検出器
6から発信されて掛算器11に入力され、「処理ガス流
量」×「節炭器出口NOx値」=「NOx総量」が算定
される。該NOx総量は、掛算器12へ入力され、ここ
で還元比率設定器13により与えられる還元比率(モル
比)が掛算されて脱硝アンモニアガス量要求信号となり
、該要求信号は、上記掛算器12に接続する加算器31
に入力する。一方、上記掛算器11の出力端に微分器2
0を接続し、NOx総量が負荷変動によって変化したこ
とを検出の上、その出力信号をゲイン調整器21により
増幅して、信号制限器22により上下限の制限を行うと
ともに、変化率制限器23によって信号変化速度の制限
を加えた後、これを上記加算器31に入力させ、上記制
限された脱硝アンモニアガス量要求信号と加算して偏差
演算器14に入力させる。該偏差演算器14には、アン
モニアガス流量発信器5からの信号がフィードバック信
号として入力し、上記両者の偏差演算結果が比例積分演
算器15に入力して、この比例積分演算出力が脱硝アン
モニアガス量調整弁4の開度指令信号となって、加算器
17および切替器18を通り脱硝アンモニアガス量調節
弁4を駆動する。上記加算器17は、関数発生器16と
ともに用い、掛算器12からの脱硝アンモニアガス量要
求信号による先行+SFJ度信号として」1記脱硝アン
モニアガス量調節弁4の開度を規制するものである。ま
た上記切替器J8は、自動または手動切替器であって、
脱硝アンモニアガス量調節弁4を手動によって操作する
ときに、信号発生器19からの信号によって上記脱硝ア
ンモニアカス量調節弁4を操作する。上記方式では、負
荷変動時にNOx総量が急変する場合、上記脱硝反応器
3内におけるNOxとアンモニアガスとの還元反応の時
間遅れにより一時的に脱硝性能が低下するのを防ぐため
、負荷上昇時には名目に、また角荷降下時には少な目に
アンモニアカス滑を調節することにょリ、負荷変動時に
おける脱硝性能の維持を図るものである。この制御方式
は、常時、還元比率を一定に保って脱−硝性能を維持し
ようとするものであり、脱硝装置の最終目的としての煙
突入口のNOx値は、この制御結果としてのみ与えられ
る。
Next, with reference to FIG. 2, a NOx control system with a constant denitrification/reduction ratio among conventional control systems will be explained. The signal from the combustion air flow rate transmitter 9 is converted into a processing gas flow rate by the function generator 10 and input to a multiplier 11 . One of the economizer outlet NOx value signals is transmitted from the economizer outlet gas NOx detector 6 and input to the multiplier 11, and the "processed gas flow rate" x "the economizer outlet NOx value" = "total amount of NOx" Calculated. The total amount of NOx is input to the multiplier 12, where it is multiplied by the reduction ratio (molar ratio) given by the reduction ratio setting device 13 to obtain a denitrification ammonia gas amount request signal, and the request signal is input to the multiplier 12. Adder 31 to connect
Enter. On the other hand, a differentiator 2 is connected to the output terminal of the multiplier 11.
0 is connected, and after detecting that the total amount of NOx has changed due to load fluctuation, the output signal is amplified by the gain adjuster 21, the upper and lower limits are limited by the signal limiter 22, and the change rate limiter 23 After limiting the signal change rate by , this is input to the adder 31 , added to the limited denitrification ammonia gas amount request signal, and input to the deviation calculator 14 . The signal from the ammonia gas flow rate transmitter 5 is input as a feedback signal to the deviation calculator 14, and the above two deviation calculation results are input to the proportional-integral calculator 15, and the proportional-integral calculation output is the denitrified ammonia gas The signal becomes an opening command signal for the amount adjusting valve 4, passes through the adder 17 and the switch 18, and drives the denitrified ammonia gas amount adjusting valve 4. The adder 17 is used together with the function generator 16 to regulate the opening degree of the denitrified ammonia gas amount control valve 4 as a predetermined +SFJ degree signal based on the denitrified ammonia gas amount request signal from the multiplier 12. Further, the switching device J8 is an automatic or manual switching device,
When manually operating the denitrification ammonia gas amount control valve 4, the denitrification ammonia gas amount control valve 4 is operated in response to a signal from the signal generator 19. In the above method, when the total amount of NOx suddenly changes when the load fluctuates, in order to prevent the denitrification performance from temporarily decreasing due to a time delay in the reduction reaction between NOx and ammonia gas in the denitrification reactor 3, the nominal amount is reduced when the load increases. In addition, when the square cargo is lowered, the ammonia sludge is adjusted to a small level in order to maintain the denitrification performance during load fluctuations. This control method attempts to maintain the denitrification performance by keeping the reduction ratio constant at all times, and the NOx value at the smoke inlet, which is the final objective of the denitrification device, is given only as a result of this control.

従来の制」方式の別の方式として、第3図に示すような
脱硝装置の制御目標すなわち最終目的である煙突入口の
NOx値を環境規制上の一定値に維持しようとする制御
方式がある。この方式は、該第3図において、煙突入口
NoX/lfの信号は煙突入口NOx検出器24から取
出し、信号設定器25からの煙突入口のNOx設定値信
号とともに偏差演算器26に入力して偏差演算を行ない
、その出力を掛算器27に入力する。該掛算器27は、
上記関数発生器10に対して第2図の従来例において示
した信号ラインとは別の信号ラインを介して接続し、ゲ
イン調整を行なった後、比例積分演算器28を経て、上
記掛算器12に入力させるまでの構成を、上記第2図の
従来例における還元比率設定器13と置き換えたもので
、その他の溝或は上記第2図と同一である。
As another method of the conventional control method, there is a control method as shown in FIG. 3, which attempts to maintain the NOx value at the smoke inlet, which is the control target or ultimate goal of the denitrification device, at a constant value according to environmental regulations. In this method, in FIG. 3, the signal of the smoke inlet No The calculation is performed and the output thereof is input to the multiplier 27. The multiplier 27 is
The function generator 10 is connected to the multiplier 12 through a signal line different from the signal line shown in the conventional example of FIG. The configuration up to inputting information is replaced with the return ratio setting device 13 in the conventional example shown in FIG. 2 above, and other grooves are the same as those in FIG. 2 above.

上記のように、従来の制一方式では、脱硝還元比率一定
とするNOx制御、または煙突入口のNOx値を一定と
するNOx制御のいずれかの方式を採用しているが、上
記三方式の目的を双方とも達成するような要望、すなわ
ち脱硝装置の計画性能を常時一定に維持する制御ができ
るとともに、低負荷範囲では煙突入口のNOx値を必要
以上に1糸下させることなく、環境規制上の規定値に制
御することによって、脱硝アンモニアガスの注入量を抑
制した経済運用をも行ない得る制御ができる方式の開発
が要望されていた。
As mentioned above, the conventional one-way control system employs either NOx control that keeps the denitrification/reduction ratio constant or NOx control that keeps the NOx value at the smoke inlet constant. In other words, it is possible to maintain the planned performance of the denitrification equipment at a constant level at all times, and in the low load range, the NOx value at the smoke inlet is not lowered more than necessary, thereby meeting the environmental regulations. There has been a demand for the development of a control system that can control the amount of denitrified ammonia gas to be controlled to a specified value and economically operate the amount of denitrified ammonia gas.

この発明の目的は、上記の要望に応え、上記三方式の性
能を兼ね備えるとともに、両者の切替えを任意の部分負
荷において、自動的かつ連続的に移行させ得る排煙脱硝
装置の還元剤注入制御方式を提供するにある。
The purpose of the present invention is to meet the above demands and provide a reducing agent injection control system for flue gas denitrification equipment that combines the performance of the three systems described above and that can automatically and continuously switch between the two at any partial load. is to provide.

要するにこの発明は、NOx制御の基本#r+I 、1
1方式の一つである下記の方式、すなわちNOx総量(
「処理ガス流産」×[節炭器出目NOx値」)に脱硝還
元比率(モル比)を掛けて算定するアノモニアカス〆に
入量要求値と、実際のアンモニアガス注入量との偏差を
比例積分演算し、該演算出力信号をもってアンモニアガ
ス注入量を決定するNOx制御方式において、脱硝還元
比率(モル比)の設定回路に着目し、これを全負荷範囲
で常に一定値に維持するのでなく、任意の部分負荷から
自動的に還元比率を低下させて、低負荷範囲で煙突入口
NOx値を必要以上に降下させることなく環境規制上の
規定値に制御しようとするものであって、その手段とし
て還元比率設定信号回路に加算器29を挿入し、該加算
器29において、煙突入°口N0xI11!のフィード
バック信号とその設定値との偏差を比例積分演算した演
算出力信号、すなわち煙突入口N0XIii!一定制御
信号を入力し、上記還元比率設定器13からの信号に加
算し、任意の部分負荷において自動的かつ連続的に還元
比率一定のNOx制御から煙突入口のN0X1直一定の
制御へ、また、この逆に煙突人口NoX(Fi一定の制
御から還元比率一定のNOx制御へ移行させることがで
きる。
In short, this invention is based on the basics of NOx control #r+I, 1
The following method is one of the methods, namely, the total amount of NOx (
The deviation between the required amount of ammonia gas and the actual amount of ammonia gas injected is calculated by multiplying the denitrification reduction ratio (molar ratio) by "processed gas miscarriage" x [NOx value output from the economizer] and the actual amount of ammonia gas injected. In the NOx control method, which calculates the amount of ammonia gas to be injected using the calculated output signal, we focused on the setting circuit for the denitration reduction ratio (molar ratio). This method automatically lowers the reduction ratio from a partial load to control the smoke inlet NOx value to the specified value according to environmental regulations in a low load range without lowering it more than necessary. An adder 29 is inserted into the ratio setting signal circuit, and in the adder 29, the smoke entry point N0xI11! The calculated output signal is the proportional integral calculation of the deviation between the feedback signal and its set value, that is, the smoke inlet N0XIii! Input a constant control signal and add it to the signal from the reduction ratio setting device 13 to automatically and continuously change the NOx control with a constant reduction ratio at any partial load to the control with a constant NOX1 direct control at the smoke inlet; Conversely, it is possible to shift from control with a constant chimney population NoX (Fi) to NOx control with a constant reduction ratio.

以下、前述の従来の二つのニーズの両方の制御機能を具
備し、両者の一方または任意の部分負荷において自動的
に両者の切替えが可1指となるようなこの発明を図面に
基づいて説明する。第4図は、この発明の一実施例の側
副系統図を示す。なお、図中、第1図〜第3図と同一ま
たは同等の部位には同一の符号を付ける。まず上述の従
来例第3図と異なる点についてのみ、構成を記すと、加
算器2つを介して還元比率設定器13を掛算器12に接
続し、上記加算器29の入力端および出力端をモニタリ
レー30に接続するとともに、該モニタリレー30を比
例積分演算器28に接、読して、該比例積分演算器28
つぎに作用を説明する。脱硝装置入口のNOx総量を燃
焼用空気流量発潴器9の出力信号から関数発生器10に
より変換する処理ガス流量と、節炭器出口ガスNOx演
出器6からのNOx値とを掛算器11において掛算算定
し、掛算器12へ入力する。このNOx総量に対する脱
硝還元比率を還元比率設定器13からの信号により加算
器29を通。て掛算器12へ与え、該掛算器12の出力
を脱硝アンモニアガス量要求信号として脱硝還元比率一
定のNOx制御を行うことができる。一方、脱硝還元比
率の設定信号回路、すなわち還元比率設定器13からの
信号ラインに設ける加算器29は、煙突入口のNOx値
一定制御回路からの信号、すなわち煙突入口NOx検出
器24からの信号を偏差演算器26へ入力し、信号設定
器25から与えられる煙突入口NOx値設定信号ととも
に上記偏差演算器26によって偏差演算を行ない、その
偏差を負荷に見合ってゲイン調整(NOx偏差量に変換
)をする掛算器27を経て比例積分演算器28に入力す
る。該比例積分演算器28の出力信号によって煙突入口
のNoX1直を規定値にしようとする制御信号を加算器
29に入力し、かつ該加算器29に」二記還元比率設定
器13からの信号を入力して加算し、任意の部分負荷か
ら脱硝還元比率一定設定直に換えて、煙突入口NOx値
一定制御信号を発生させ、これを掛算器12においてN
Ox総量に掛算し、脱硝アンモニアガス量要求信号とし
て煙突入口NO4直一定の制御を達成するものである。
Hereinafter, this invention will be explained based on the drawings, which has the control functions for both of the above-mentioned conventional needs and can automatically switch between the two at one or any partial load. . FIG. 4 shows a collateral system diagram of one embodiment of the present invention. In the drawings, the same or equivalent parts as in FIGS. 1 to 3 are given the same reference numerals. First, the configuration will be described only with respect to the points that differ from the conventional example shown in FIG. Connect the monitor relay 30, connect the monitor relay 30 to the proportional-integral calculator 28, and read the proportional-integral calculator 28.
Next, the effect will be explained. The total amount of NOx at the inlet of the denitrification device is converted by the function generator 10 from the output signal of the combustion air flow rate generator 9, and the processing gas flow rate is converted by the NOx value from the economizer outlet gas NOx generator 6 in the multiplier 11. The multiplication is calculated and input to the multiplier 12. The denitrification and reduction ratio with respect to the total amount of NOx is determined through an adder 29 based on a signal from the reduction ratio setting device 13. The output of the multiplier 12 is used as a denitrification ammonia gas amount request signal to perform NOx control with a constant denitrification and reduction ratio. On the other hand, the adder 29 provided in the signal line from the denitration reduction ratio setting signal circuit, that is, the reduction ratio setting device 13, receives the signal from the smoke inlet NOx value constant control circuit, that is, the signal from the smoke inlet NOx detector 24. It is input to the deviation calculator 26, and the deviation is calculated by the deviation calculator 26 together with the smoke inlet NOx value setting signal given from the signal setting device 25, and the gain is adjusted (converted to NOx deviation amount) according to the load. The signal is inputted to a proportional-integral calculator 28 via a multiplier 27. A control signal is inputted to the adder 29 to set No. input and add it, directly change the denitrification reduction ratio constant setting from any partial load, generate a smoke inlet NOx value constant control signal, and use this in the multiplier 12 to set the NOx value constant.
This signal is multiplied by the total amount of Ox and used as a denitrification ammonia gas amount request signal to achieve constant control of the smoke inlet NO4.

以上説明したように、この発明によれば、脱硝還元比率
一定によるNOx制御と、煙突入口NOx値一定制一の
両方の1生能を具備するとともに、任意の部分負荷によ
って両者を自動的に切替えることができるという効果が
得られる。
As explained above, according to the present invention, it is possible to have both NOx control using a constant denitrification reduction ratio and constant NOx value control at the smoke inlet, and to automatically switch between the two depending on an arbitrary partial load. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱硝装置のフロー説明図、第2図は、脱硝還
元比率一定のNOx制御系統図、第3図は、煙突入ロN
Ox直一定制研の制御系統図、第4図は、この発明の一
実施例の制御系統図を示す。 符号の説明 1・・・ボイラ      2・・・節炭器3・・・脱
硝反応器 4・・・脱硝アンモニアガス量調節弁 5・・・アンモニアガスa 遣発信器 6・・・節炭器出口ガスNOx検出器 7・・・FDF       8・・・′空気予熱器9
・・・燃焼用空気流量発信器 10・・・関数発生器   11・・・掛算器12・・
・掛算器     13・・・還元比率設定器14・・
・偏差演算器   15・・・比例積分演算器16・・
・関数発生器   17・・・加算器18・・・切替器
     19・・・信号発生器20・・・微分器  
   21・・・ゲイン調整器22・・・直号制限器 
  23・・・変化率制限器24・・・煙突入口NOx
検出器 25・・・信号設定器   26・・・偏差演算器27
・・・掛算器     28・・・比例積分演算器29
・・・加算器      30・・・モニタリレー31
・・・加算器 代理人弁理土中村純之助 第1 図 半2図
Figure 1 is a flow explanatory diagram of the denitrification equipment, Figure 2 is a NOx control system diagram with a constant denitrification/reduction ratio, and Figure 3 is a diagram of the NOx control system with a constant denitrification/reduction ratio.
FIG. 4 shows a control system diagram of an embodiment of the present invention. Explanation of symbols 1...Boiler 2...Coal economizer 3...Denitrification reactor 4...Denitrification ammonia gas amount control valve 5...Ammonia gas a Transmitter 6...Coal economizer outlet Gas NOx detector 7...FDF 8...'Air preheater 9
...Combustion air flow rate transmitter 10...Function generator 11...Multiplier 12...
・Multiplier 13...Return ratio setting device 14...
- Deviation calculator 15... Proportional integral calculator 16...
・Function generator 17...Adder 18...Switcher 19...Signal generator 20...Differentiator
21...Gain adjuster 22...Direct number limiter
23... Change rate limiter 24... Smoke inlet NOx
Detector 25... Signal setter 26... Deviation calculator 27
... Multiplier 28 ... Proportional-integral calculator 29
... Adder 30 ... Monitor relay 31
... Adder Attorney Junnosuke Donakamura Figure 1, Figure 1, Half 2

Claims (1)

【特許請求の範囲】[Claims] 排煙脱硝装置のNOxの基本制御方式すなわち反応器上
流側のガス中のNOx値と排ガス流量とから算定するN
Ox総量に対して還元比率を掛算し、その積である還元
剤注入量要求信号と実際の還元剤注入量のフィードバッ
ク信号との偏差を比例積分して、該演算出力により還元
剤注入量を制御する排煙脱硝装置の還元剤注入制御方式
において、反応器出口側のガス中のNOx値のフィード
バック信号とその設定値との偏差を比例積分した出力に
、還元比率設定信号を加算し、還元剤注入量要求信号と
して還元比率一定のNOx制暉を行うとともに、反応器
出目#(qのガス中のNOx値検出信号と反応器出口側
のガス中のNOx値設定信号との偏差演算を行ない、該
偏差を比例積分して、これに還元比率設定信号を加算し
、反応器出口側のガス中のNOx−値一定制御信号を発
生させ、これにNoX総量を掛算し、還元剤注入量要求
信号として反応器出口側のガス中のNOx値一定制一を
行ない、かつ上記両副−の切替えを任意の負荷において
、自動的がっ連続的に移行させ得ることを特徴とする排
煙脱硝装置の還元剤注入制御方式。
The basic control method for NOx in flue gas denitrification equipment, that is, N calculated from the NOx value in the gas on the upstream side of the reactor and the flue gas flow rate.
The total amount of Ox is multiplied by the reduction ratio, and the deviation between the product, the reducing agent injection amount request signal, and the feedback signal of the actual reducing agent injection amount is proportionally integrated, and the reducing agent injection amount is controlled by the calculated output. In the reducing agent injection control method of flue gas denitrification equipment, the reducing ratio setting signal is added to the output obtained by proportionally integrating the deviation between the feedback signal of the NOx value in the gas at the reactor outlet and its set value, and the reducing agent is In addition to performing NOx suppression with a constant reduction ratio as the injection amount request signal, the difference between the NOx value detection signal in the gas of reactor output # (q) and the NOx value setting signal in the gas on the reactor outlet side is calculated. , the deviation is proportionally integrated, and the reduction ratio setting signal is added to this to generate a constant NOx value control signal in the gas on the reactor outlet side, and this is multiplied by the total amount of Nox to request the reducing agent injection amount. A flue gas denitrification device which controls the NOx value in the gas at the reactor outlet side as a signal and is capable of automatically and continuously switching between the two sub-systems at any given load. reducing agent injection control method.
JP57164059A 1982-09-22 1982-09-22 System for controlling injection of reducing agent in denitrator for stack gas Granted JPS5955334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164059A JPS5955334A (en) 1982-09-22 1982-09-22 System for controlling injection of reducing agent in denitrator for stack gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164059A JPS5955334A (en) 1982-09-22 1982-09-22 System for controlling injection of reducing agent in denitrator for stack gas

Publications (2)

Publication Number Publication Date
JPS5955334A true JPS5955334A (en) 1984-03-30
JPH0351453B2 JPH0351453B2 (en) 1991-08-06

Family

ID=15785998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164059A Granted JPS5955334A (en) 1982-09-22 1982-09-22 System for controlling injection of reducing agent in denitrator for stack gas

Country Status (1)

Country Link
JP (1) JPS5955334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility
JPS61245826A (en) * 1985-04-22 1986-11-01 Nippon Kokan Kk <Nkk> Apparatus for controlling denitration of flue gas
JPS6233532A (en) * 1985-08-06 1987-02-13 Toshiba Corp Control device for waste gas denitration
CN105242012A (en) * 2015-10-16 2016-01-13 苏州西热节能环保技术有限公司 Mobile automatic switching and fast sampling flue gas denitrification testing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333977A (en) * 1976-09-10 1978-03-30 Unitika Ltd Automatically controlling method for quantity of introduced nh3 in denitration plant for flue gas
JPS55119424A (en) * 1979-03-09 1980-09-13 Sumitomo Heavy Ind Ltd Nh3 injection amount control method
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333977A (en) * 1976-09-10 1978-03-30 Unitika Ltd Automatically controlling method for quantity of introduced nh3 in denitration plant for flue gas
JPS55119424A (en) * 1979-03-09 1980-09-13 Sumitomo Heavy Ind Ltd Nh3 injection amount control method
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234914A (en) * 1985-04-08 1986-10-20 Nippon Kokan Kk <Nkk> Controlling method for exhaust gas denitration facility
JPS61245826A (en) * 1985-04-22 1986-11-01 Nippon Kokan Kk <Nkk> Apparatus for controlling denitration of flue gas
JPS6233532A (en) * 1985-08-06 1987-02-13 Toshiba Corp Control device for waste gas denitration
CN105242012A (en) * 2015-10-16 2016-01-13 苏州西热节能环保技术有限公司 Mobile automatic switching and fast sampling flue gas denitrification testing system
CN105242012B (en) * 2015-10-16 2017-09-01 苏州西热节能环保技术有限公司 A kind of portable automatic switchover fast sampling denitrating flue gas test system

Also Published As

Publication number Publication date
JPH0351453B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
KR0148028B1 (en) Nitrogen oxide removal control apparatus
JPH07180532A (en) Nox removal control device
US5176086A (en) Method for operating an incinerator with simultaneous control of temperature and products of incomplete combustion
JPS5955334A (en) System for controlling injection of reducing agent in denitrator for stack gas
CN109794150A (en) A kind of band external bed CFB boiler denitrating flue gas control method and system
JPS6119290B2 (en)
CA2232721A1 (en) Method and apparatus for controlling the amount of a treatment medium introduced in order to reduce the nitrogen oxide content of the exhaust gases from combustion processes
CN113274878A (en) Thermal power plant denitration outlet nitrogen oxide standard exceeding phenomenon control method
JPS60216829A (en) Denitration apparatus
JP2807483B2 (en) Boiler furnace and flue pressure control device
US11828463B2 (en) Flare control using multi-variable flare monitor
KR860002204B1 (en) Combustion safty device
JPH0615142A (en) Denitrification controller
JPH0152653B2 (en)
JPH03105114A (en) Controller for common final control element
JPS599281Y2 (en) Mixed combustion fuel control device
JPS5817373B2 (en) Combustion control method using oxygen concentration control in combustion furnace
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus
JPS60228819A (en) Air flow rate controlling device of boiler
SU1617262A1 (en) System for regulating the process of combustion in boiler unit
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus
JPS60117001A (en) Control system of combustion of mixed firing boiler
JPS637823A (en) Nitrogen oxide exhaust control method for gas turbine exhaust gas denitration device
JPS59180216A (en) Controlling method of combustion device
JPS58143825A (en) Apparatus for controlling pouring amount of ammonia