JPS6325291A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS6325291A
JPS6325291A JP16947886A JP16947886A JPS6325291A JP S6325291 A JPS6325291 A JP S6325291A JP 16947886 A JP16947886 A JP 16947886A JP 16947886 A JP16947886 A JP 16947886A JP S6325291 A JPS6325291 A JP S6325291A
Authority
JP
Japan
Prior art keywords
partition wall
crucible
melt
single crystal
movable partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16947886A
Other languages
Japanese (ja)
Inventor
Shinichi Sawada
真一 澤田
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16947886A priority Critical patent/JPS6325291A/en
Publication of JPS6325291A publication Critical patent/JPS6325291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to cover only one of melts divided by partition walls with an encapsulating agent in one heating step, by combining a movable partition wall with a fixed partition wall in producing a compound semiconductor single crystal by the Czochralski process. CONSTITUTION:A movable partition wall 9 and fixed partition wall 10 are provided in a crucible 1 and a liquid encapsulating agent 6 which is a solid at ordinary temperature is put in a liquid reservoir 9' of the movable partition wall 9. A raw material 3' is put in the inside surrounded by the movable partition wall 9 and the bottom of the crucible 1. The crucible 1 is then sealed in a sealing vessel and heated to molt the raw material 3'. The movable partition wall 9 is then raised by buoyancy caused by rise of a melt 3 and the liquid encapsulating agent 6 which attains a molten state is then extruded to a clearance between the fixed partition wall 10 and the crucible 1 by a ring part 10' of the fixed partition wall 10 to cover only the melt 3 in this part with the encapsulating agent 6. The aimed single crystal is grown while controlling the composition of the uncovered melt 3 on the inside by controlling the pressure of a volatile element, e.g. As, around the melt 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はG a A s + I n P等の■−■族
化合物半導体及びZ n S e + Cd T e等
のようなIf−VI族化合物半導体のチョクラルスキー
法による単結晶の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to ■-■ group compound semiconductors such as GaAs + InP, and If-VI group compound semiconductors such as ZnSe + CdTe, etc. The present invention relates to a method for producing a single crystal of a compound semiconductor using the Czochralski method.

[従来技術] GaAs+ Zn5e等化合物半導体の単結晶を得る方
法として、液体封止チョクラルスキー法(以下LEC法
という)がある。この方法では、化合物融液中の組成が
制御できないという欠点があり、第3図に示すような反
応装置が提案されている。すなわち、るつぼ1を封止容
器2内に入れ、容器2内を揮発性元素の雰囲気5とする
。原料融1&3を隔壁4によって分離し、一方の融液3
の面を液体封止剤θで覆い、他方の融液面3を覆わない
で、覆わない融液3の面で、揮発性元素雰囲気5と接触
させて、揮発性元素の圧力を制御することによって、融
液3の組成を制御する。例えばGaAs!I’−結晶製
造の場合揮発性元素として用いられるものはAsである
。15はこのような揮発性元素の固体を示し、この場合
前記元素の固体はAsであり、揮発性元素雰囲気5はA
sによるものである。
[Prior Art] As a method for obtaining a single crystal of a compound semiconductor such as GaAs+Zn5e, there is a liquid-enclosed Czochralski method (hereinafter referred to as LEC method). This method has the disadvantage that the composition of the compound melt cannot be controlled, and a reaction apparatus as shown in FIG. 3 has been proposed. That is, the crucible 1 is placed in a sealed container 2, and the inside of the container 2 is made into an atmosphere 5 of volatile elements. Raw material melts 1 & 3 are separated by a partition wall 4, and one melt 3
The surface of the melt 3 is covered with a liquid sealant θ, the other melt surface 3 is not covered, and the uncovered surface of the melt 3 is brought into contact with the volatile element atmosphere 5 to control the pressure of the volatile element. The composition of the melt 3 is controlled by. For example, GaAs! The volatile element used in the production of I'-crystals is As. 15 indicates a solid state of such a volatile element, in this case the solid state of said element is As, and the volatile element atmosphere 5 is A.
This is due to s.

このようにして組成制御された融液3に種結晶7をつけ
て回転可能、上下できる上軸I3によって上に引上げる
と結晶8がY1成される。
When a seed crystal 7 is attached to the melt 3 whose composition has been controlled in this manner and the melt 3 is pulled upward by an upper shaft I3 that can be rotated and moved up and down, a crystal 8 is formed Y1.

図では隔壁4の外側に液体封止剤6を入れているが、内
側にのみ入れ、外側に入れない方式を採ることもある。
In the figure, the liquid sealant 6 is placed on the outside of the partition wall 4, but it may be placed only on the inside and not on the outside.

なお図において、14はるつぼ1を回転可能に支持して
上下できる下軸であり、6は液体封止剤、16はヒータ
、 +7は揮発性元素の加熱ヒータ、18はB20:r
による封止部の加熱ヒータ、13は外側容器である。
In the figure, 14 is a lower shaft that rotatably supports the crucible 1 and can move it up and down, 6 is a liquid sealant, 16 is a heater, +7 is a volatile element heater, and 18 is a B20:r
13 is an outer container.

[解決しようとする問題点コ 従来のこのt!11RA置では、液体封止剤を隔壁の一
方の融液面のみに分離することがむつかしかった。
[The problem to be solved is this conventional t! At the 11RA setting, it was difficult to separate the liquid sealant onto only one melt surface of the partition wall.

°すなわち従来の方法では、液体封止剤を隔壁の両側に
入れた状態で一度昇温して溶融し、冷却して原料を固め
る。次にるつぼを取り出して隔壁の一方の液体封止剤を
除去してから再び封入し、昇温して単結晶の育成を行っ
ていたが、非富に面倒な作業となっていた。
In other words, in the conventional method, the liquid sealant is placed on both sides of the partition wall, heated once to melt it, and then cooled to solidify the raw material. Next, the crucible was taken out, the liquid sealant on one side of the partition wall was removed, the crucible was sealed again, and the temperature was raised to grow a single crystal, but this was a very tedious task.

[問題を解決するための手段] 本発明は単結晶の育成に入る前に、予め昇温して冷却し
、隔壁の一方の液体封止剤を除去した後昇温するという
従来の昇温の繰返しを行うことなく、−度の昇温で隔壁
の一方の側の融液面を液体封止剤を覆うようにして、直
ちに単結晶の育成に入れるようにしたチIタラルスキー
法による単結晶の製造方法であり、隔壁をるつぼに対し
て動かないように固定された隔壁と融液に浮き、液体封
止剤を保持する隔壁を組み合せることによって、−度の
昇温で隔壁で分割された融液の一方を液体封止剤で覆い
、他方を覆わない状態で完全溶解して、これに引続き単
結晶を育成を行うことを可能としたものである。
[Means for Solving the Problems] The present invention is an alternative to the conventional heating method in which the temperature is raised and cooled before starting single crystal growth, and the temperature is raised after removing the liquid sealant from one of the partition walls. A single crystal was grown by the Chitaralski method, which was carried out without repetition, by raising the temperature to -degrees, covering the melt surface on one side of the partition wall with the liquid sealant, and immediately starting the growth of the single crystal. This is a manufacturing method that combines a partition wall that is fixed so as not to move relative to the crucible and a partition wall that floats on the melt and holds the liquid sealant. This makes it possible to cover one side of the melt with a liquid sealant and completely melt the other without covering it, and subsequently grow a single crystal.

第1図は本発明の実施例であり、(イ)、(CI)、(
ハ)はその段階図であるが(イ)図は原料3′、例えば
GaAs+ Zn5eの多結晶原料をるつぼlにチャー
ジした図であり、(ハ)図はるつぼ1の温度を上げて、
°゛′原料3′が半分融液になった図であり、(ハ)図
は完全に原料3′が溶融となった図である。
FIG. 1 shows an embodiment of the present invention, (A), (CI), (
Figure (c) is a diagram of the stages, and figure (a) is a figure in which raw material 3', for example, a polycrystalline raw material of GaAs + Zn5e, is charged into crucible 1, and figure (c) is a figure in which the temperature of crucible 1 is raised,
This figure shows that the raw material 3' is half melted, and the figure (c) shows that the raw material 3' is completely melted.

るつぼ−1において、隔壁は固定隔壁と可動隔壁よ゛り
なり、9は最内側に同心状に挿入される可動隔壁であり
、その底部において外側に折れまがり、環状の液溜り9
′が形成されたものである。これに対し、IOは可動隔
壁9の外側とるつぼ1の内壁の間で、るつぼ1に固定さ
れ、るつぼlと内側の可動隔壁9と同心状に配置δされ
る外側の固定隔壁でムリ、固定隔壁IOの下部は後述の
可動隔壁9の上h’によって、その液溜り9′に僅かな
すき間を残して入り込むようなリング部10’を備えて
いる。また可動隔壁9がるつぼlの底にあるとき、液溜
り9′の底とるつぼ1の庭にはすき間が作られている。
In the crucible-1, the partition wall consists of a fixed partition wall and a movable partition wall, and 9 is a movable partition wall that is inserted concentrically into the innermost part, and is bent outward at the bottom to form an annular liquid reservoir 9.
' is formed. On the other hand, the IO is fixed to the crucible 1 between the outside of the movable partition 9 and the inner wall of the crucible 1, and is fixed by the outer fixed partition δ which is arranged concentrically with the crucible 1 and the inner movable partition 9. The lower part of the partition wall IO is provided with a ring portion 10' which enters into the liquid reservoir 9' with a slight gap left by the upper h' of the movable partition wall 9, which will be described later. Also, when the movable partition wall 9 is at the bottom of the crucible 1, a gap is created between the bottom of the liquid reservoir 9' and the garden of the crucible 1.

(イ)1χに示すように、液体封止剤(常温では固体)
6をij動隔壁9の液溜り9′にチャー′ノし、可動隔
壁10とるつぼ1の底で囲まれる内側に原料3′をチャ
ージし、これに固定隔壁IOを配し、第3図で説明した
ように、封止容器に封入して、ヒーターによって封+I
−容器を加熱する。
(b) As shown in 1χ, liquid sealant (solid at room temperature)
6 is charged into the liquid reservoir 9' of the movable partition wall 9, and the raw material 3' is charged to the inside surrounded by the movable partition wall 10 and the bottom of the crucible 1. A fixed partition wall IO is arranged on this, and as shown in FIG. As explained, it is sealed in a sealed container and sealed with a heater.
- Heat the container.

131 +33’が溶解し始めると(1))図に示すよ
うに、内側の可動隔壁9が上液3のl h’に従って、
z′?力により固定隔壁10の下端りング:’ai 1
0’に沿って一1テ11し、やがてリング部10′は液
溜り9′の中に入り込むが、この時液溜り9′にあった
液体封止剤6は溶解の状態となっているので、固定隔壁
IOとるつぼ1の間の空間に流れ出て、融液3の上のみ
を覆うことになる。(ハ)図は完全に液体封止剤6が融
液3上に移った状態を示している。
131 +33' begins to dissolve (1)) As shown in the figure, the inner movable partition 9 follows l h' of the upper liquid 3,
z′? Lower end ring of bulkhead 10 fixed by force: 'ai 1
0', the ring part 10' eventually enters the liquid reservoir 9', but at this time, the liquid sealant 6 in the liquid reservoir 9' is in a dissolved state. , flows out into the space between the fixed partition wall IO and the crucible 1 and covers only the top of the melt 3. (c) The figure shows a state in which the liquid sealant 6 has completely transferred onto the melt 3.

従ってこの状態において、第3図に説明したチークラル
スキー法によってGaAs、 InP等の■−■族化合
物半導体及びZn5e、 CdTe等のII−VT族化
合物半導体の育成を引続き行うことができる。
Therefore, in this state, growth of ■-■ group compound semiconductors such as GaAs and InP and II-VT group compound semiconductors such as Zn5e and CdTe can be continued by the Zychralski method explained in FIG.

第2図は隔壁の内側の融液面を液体封止剤で覆う場合の
実施例である。この場合、可動隔壁+2の下部は内側に
折れまがって液溜り9′が形成され、固定隔壁10の外
側とるつぼlの内壁間に位置させられる。液溜り9′に
入れられた液体封止剤6は可動隔壁9の上昇により内側
に流れ出し、隔壁内側の融液面を覆う。
FIG. 2 shows an embodiment in which the melt surface inside the partition wall is covered with a liquid sealant. In this case, the lower part of the movable partition wall +2 is bent inward to form a liquid reservoir 9', which is located between the outside of the fixed partition wall 10 and the inner wall of the crucible l. The liquid sealant 6 placed in the liquid reservoir 9' flows inward as the movable partition wall 9 rises, and covers the melt surface inside the partition wall.

「効果コ 以」二説明のように、本発明においては、るつぼ内に配
置される隔壁を固定隔壁と可動隔壁で構成し、可動隔壁
に設けだ液溜りに液体封止剤を入れ、これに対して固定
隔壁に前記液溜りに対応するリング部を設け、材料融液
上昇による浮力によって可動隔壁を上昇させ、ポケット
内で溶解′4)S@となった液体封止剤をリング部で隔
壁の内側又は外側に押出して、隔壁の内側又は隔壁とる
つぼの間、そのいずれ力;゛・に液体封止剤を施すこと
ができ、その後直ちに単? 結晶の引上げを行うことができ、従来のように昇温の繰
返しは不要となる。
As explained in "Effects" 2, in the present invention, the partition wall arranged in the crucible is composed of a fixed partition wall and a movable partition wall, and a liquid sealant is poured into a saliva reservoir provided in the movable partition wall. On the other hand, a ring part corresponding to the liquid pool is provided on the fixed partition wall, and the movable partition wall is raised by the buoyancy caused by the rise of the material melt, and the liquid sealant that has become dissolved in the pocket is transferred to the partition wall using the ring part. A liquid sealant can be applied to the inside or outside of the septum or between the septum and the crucible either by extruding it inside or outside the crucible, and then immediately afterward applying the liquid sealant to the inside or outside of the septum or between the septum and the crucible. The crystal can be pulled, and there is no need to repeatedly raise the temperature as in the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示し、(イ)図、(ロ)図、
(ハ)図は段階を示す。 る化合物半導体結晶の製造装置を示す。 1・・・るつぼ、2・・・封止容器、3・・・原料融成
、3′・・・固体原料、4・・・隔壁、5・・・揮発性
の雰囲気、6・・・液体封止剤、7・・・種結晶、8・
・・結晶、9.12・・・可動隔壁、9′・・・液溜り
、1G・・・固定隔壁、)3・・・上軸、+4・・・下
軸、+5.1.揮発性元素の固体、1B・・・ヒーター
、17・・・揮発性元素の加熱ヒーター、l訃・・B2
O3シーT、3ル部加熱ヒーター、13・・・外側容器
。 茅1図 第 2 図 岑 3 図
FIG. 1 shows an embodiment of the present invention, and shows (A), (B),
(c) The diagram shows the stages. This figure shows an apparatus for manufacturing compound semiconductor crystals. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Sealed container, 3... Raw material melting, 3'... Solid raw material, 4... Partition wall, 5... Volatile atmosphere, 6... Liquid Sealing agent, 7... Seed crystal, 8.
...Crystal, 9.12...Movable partition, 9'...Liquid pool, 1G...Fixed partition, )3...Upper axis, +4...Lower axis, +5.1. Solid of volatile elements, 1B...Heater, 17...Heating heater of volatile elements, 1...B2
O3 sea T, 3 part heater, 13...outer container. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)III−V族及びII−VI族化合物半導体のチョクラ
ルスキー法による単結晶製造で、原料融液を隔壁で分け
、一方を液体封止剤で覆い、他方を覆わずに、原料組成
を融液周囲の揮発性元素の圧力によって制御しながら単
結晶を製造する際、るつぼ内に隔壁として固定隔壁と可
動隔壁よりなる隔壁を入れ、原料加熱による融液面の上
昇に伴って上昇する可動隔壁の液溜めに入れている液体
封止剤を押し出して隔壁内、又は隔壁とるつぼの内壁の
間の融液面を覆い、その後結晶の引上げを行なうことを
特徴とする単結晶の製造方法。
(1) Single crystal production of Group III-V and Group II-VI compound semiconductors using the Czochralski method. When producing a single crystal while controlling the pressure of volatile elements around the melt, a partition wall consisting of a fixed partition wall and a movable partition wall is placed in the crucible, and the partition wall rises as the melt level rises due to heating of the raw material. A method for producing a single crystal, which comprises pushing out a liquid sealant contained in a liquid reservoir of a movable partition wall to cover the melt surface within the partition wall or between the partition wall and the inner wall of the crucible, and then pulling the crystal. .
JP16947886A 1986-07-17 1986-07-17 Production of single crystal Pending JPS6325291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16947886A JPS6325291A (en) 1986-07-17 1986-07-17 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16947886A JPS6325291A (en) 1986-07-17 1986-07-17 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS6325291A true JPS6325291A (en) 1988-02-02

Family

ID=15887289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16947886A Pending JPS6325291A (en) 1986-07-17 1986-07-17 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS6325291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925192A (en) * 1995-07-07 1997-01-28 Nec Corp Crucible for growing single crystal and method for growing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925192A (en) * 1995-07-07 1997-01-28 Nec Corp Crucible for growing single crystal and method for growing single crystal

Similar Documents

Publication Publication Date Title
JP3112577B2 (en) Method and apparatus for producing manganese-zinc ferrite single crystal
JPS6325291A (en) Production of single crystal
JPS5938190B2 (en) Method for manufacturing Hg↓1-↓xCd↓xTe crystal
JPS63195188A (en) Production of compound semiconductor single crystal and apparatus therefor
JPS60176995A (en) Preparation of single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH06239686A (en) Vertical vessel for growing compound semiconductor crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPH0559878B2 (en)
JP3200204B2 (en) Method for producing group III-V single crystal
JP2000203980A (en) Crucible for growing single crystal and production of single crystal
JPH046194A (en) Crucible for single crystal growth
JP3132034B2 (en) Method for growing compound semiconductor crystal
JPH0354187A (en) Single crystal producing device
JPS6395194A (en) Production of compound single crystal
JPS61275186A (en) Device for pulling single crystal
JPS5973500A (en) Preparation of compound semiconductor
JP2005306629A (en) Method for manufacturing compound semiconductor single crystal
JPH03247583A (en) Method for growing single crystal of compound semiconductor
JPH03107905A (en) Manufacture of monocrystal fiber using organic nonlinear optical material
JPS62197397A (en) Production of single crystal
JPS62197399A (en) Method for growing compound single crystal
JPH08217590A (en) Method for growing single crystal
JPS5997591A (en) Method and apparatus for growing single crystal
JPS58151398A (en) Method and device for pulling group 3-5 compound semiconductor single crystal