JP2005306629A - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal Download PDF

Info

Publication number
JP2005306629A
JP2005306629A JP2004122672A JP2004122672A JP2005306629A JP 2005306629 A JP2005306629 A JP 2005306629A JP 2004122672 A JP2004122672 A JP 2004122672A JP 2004122672 A JP2004122672 A JP 2004122672A JP 2005306629 A JP2005306629 A JP 2005306629A
Authority
JP
Japan
Prior art keywords
compound semiconductor
boron oxide
crucible
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122672A
Other languages
Japanese (ja)
Other versions
JP4086006B2 (en
Inventor
Shinichi Sawada
真一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004122672A priority Critical patent/JP4086006B2/en
Publication of JP2005306629A publication Critical patent/JP2005306629A/en
Application granted granted Critical
Publication of JP4086006B2 publication Critical patent/JP4086006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture a high-quality compound semiconductor single crystal. <P>SOLUTION: The method for manufacturing a compound semiconductor single crystal includes steps of: forming a boron oxide film (2) by allowing the inner surface of a boron nitride crucible (1) having a housing part (1a) for a seed crystal (3) in the bottom; charging the housing part in the bottom of the crucible with a seed crystal and disposing a boron oxide underlay (4A) to cover the bottom of the crucible; disposing a compound semiconductor raw material block (5) on the boron oxide underlay while leaving a predetermined small gap (6) between the boron oxide film and the polycrystalline block to prevent contact with each other; filling the gap with a melt by melting the boron oxide underlay; melting the compound semiconductor source block and part of the upper part of the seed crystal; and then growing the compound semiconductor single crystal by one direction solidification from the seed crystal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は化合物半導体単結晶の製造方法に関し、特に坩堝内において種結晶からの一方向凝固によって化合物半導体単結晶を製造する方法の改善に関する。   The present invention relates to a method for producing a compound semiconductor single crystal, and more particularly to an improvement in a method for producing a compound semiconductor single crystal by unidirectional solidification from a seed crystal in a crucible.

III−V族化合物(GaAs、GaP、InPなど)やII−VI族化合物(CdTe、ZnSeなど)からなる化合物半導体は、シリコンに比べて種々の異なる特性を有するので、近年では種々の電子デバイスへの利用のための需要が高まっている。しかし、化合物半導体では、シリコンの場合ように回転引き上げ法で単結晶を製造することが困難である。したがって、化合物半導体単結晶は、一般に坩堝内で種結晶からの一方向凝固によって育成される。   Since compound semiconductors composed of III-V group compounds (GaAs, GaP, InP, etc.) and II-VI group compounds (CdTe, ZnSe, etc.) have various different characteristics compared to silicon, in recent years, they have been used in various electronic devices. The demand for the use of is increasing. However, with compound semiconductors, it is difficult to produce a single crystal by the rotational pulling method as in the case of silicon. Therefore, a compound semiconductor single crystal is generally grown by unidirectional solidification from a seed crystal in a crucible.

ところが、化合物半導体単結晶を坩堝内で種結晶からの一方向凝固によって育成する場合、化合物半導体融液が接触する坩堝の内壁における不均一性に起因して不所望な結晶核が生じて、多結晶化する場合のあることが知られている。そして、先行技術において、化合物半導体融液と坩堝の内壁との直接的接触を回避しながら化合物半導体単結晶を育成する方法が試みらている。   However, when a compound semiconductor single crystal is grown in a crucible by unidirectional solidification from a seed crystal, undesired crystal nuclei are generated due to inhomogeneities in the inner wall of the crucible in contact with the compound semiconductor melt. It is known that it may crystallize. In the prior art, a method of growing a compound semiconductor single crystal while avoiding direct contact between the compound semiconductor melt and the inner wall of the crucible has been attempted.

図5は、特許文献1の特開2000−154089号公報に開示された化合物半導体単結晶の製造方法を模式的に図解している。この方法によって化合物半導体単結晶を育成する場合、まず坩堝21の底部に設けられた凹部に化合物半導体の種結晶23が装填される。その凹部と坩堝21の本体部との間には、テーパ部21aが設けられている。このテーパ部21aを覆うように、概略中空円錐状の酸化ホウ素下敷25が配置される。この酸化ホウ素下敷25が配置された坩堝21内に、複数の化合物半導体多結晶片24が充填される。   FIG. 5 schematically illustrates a method for producing a compound semiconductor single crystal disclosed in Japanese Patent Application Laid-Open No. 2000-154089 of Patent Document 1. When a compound semiconductor single crystal is grown by this method, a compound semiconductor seed crystal 23 is first loaded into a recess provided in the bottom of the crucible 21. A tapered portion 21 a is provided between the concave portion and the main body portion of the crucible 21. A substantially hollow conical boron oxide underlay 25 is disposed so as to cover the tapered portion 21a. The crucible 21 in which the boron oxide underlay 25 is disposed is filled with a plurality of compound semiconductor polycrystalline pieces 24.

この状態で坩堝21を加熱すれば、化合物半導体原料24に比べて溶融温度の低い酸化ホウ素下敷25が先に軟化して溶融する。一般に酸化ホウ素はガラス状の物質で、約450℃以上で溶融する。他方、化合物半導体は酸化ホウ素に比べて一般に高い融点を有し、例えばGaAsの融点は約1238℃である。   If the crucible 21 is heated in this state, the boron oxide underlay 25 having a melting temperature lower than that of the compound semiconductor raw material 24 is first softened and melted. In general, boron oxide is a glassy substance and melts at about 450 ° C. or higher. On the other hand, compound semiconductors generally have a higher melting point than boron oxide. For example, the melting point of GaAs is about 1238 ° C.

したがって、さらに坩堝の温度を上げて化合物半導体原料24を溶解すれば、その化合物半導体融液の重量によって酸化ホウ素融液が坩堝21の内壁に沿って押し上げられる。そして、坩堝21の内壁と化合物半導体融液との間に、酸化ホウ素融液層が形成されると考えられている。その結果として、化合物半導体融液と坩堝21の内壁との直接接触が回避されて、種結晶23からの一方向凝固による単結晶育成中の多結晶化が防止され得ると期待されている。   Therefore, if the temperature of the crucible is further raised to dissolve the compound semiconductor raw material 24, the boron oxide melt is pushed up along the inner wall of the crucible 21 by the weight of the compound semiconductor melt. Then, it is considered that a boron oxide melt layer is formed between the inner wall of the crucible 21 and the compound semiconductor melt. As a result, it is expected that direct contact between the compound semiconductor melt and the inner wall of the crucible 21 is avoided, and polycrystallization during single crystal growth by unidirectional solidification from the seed crystal 23 can be prevented.

図6は、特許文献2の特開2003−146791号公報に開示された化合物半導体単結晶の製造方法を模式的に図解している。この方法によって化合物半導体単結晶を育成する場合、まず窒化ホウ素坩堝31の内壁を酸化させることによって酸化ホウ素薄膜32を形成する。この酸化ホウ素薄膜は、空気中で窒化ホウ素坩堝を高温に加熱することによって形成される。   FIG. 6 schematically illustrates a method for producing a compound semiconductor single crystal disclosed in Japanese Patent Application Laid-Open No. 2003-146791 of Patent Document 2. When growing a compound semiconductor single crystal by this method, the boron oxide thin film 32 is first formed by oxidizing the inner wall of the boron nitride crucible 31. This boron oxide thin film is formed by heating a boron nitride crucible to high temperature in air.

坩堝31の底部に設けられた凹部内には、化合物半導体種結晶33が装填される。そして、種結晶33が装填された凹部と坩堝本体部との間に設けられたテーパ部上に酸化ホウ素片34が封止剤として配置される。さらに、そのテーパ部上には、化合物半導体多結晶ブロック35が設置される。このとき、多結晶ブロック35の下面周縁は坩堝のテーパ部によって支持されが、ブロック35の側面は坩堝内壁に形成された酸化ホウ素薄膜32に接触しないように配置される。   A compound semiconductor seed crystal 33 is loaded into a recess provided at the bottom of the crucible 31. And the boron oxide piece 34 is arrange | positioned as a sealing agent on the taper part provided between the recessed part in which the seed crystal 33 was loaded, and the crucible main-body part. Further, a compound semiconductor polycrystalline block 35 is installed on the tapered portion. At this time, the periphery of the lower surface of the polycrystalline block 35 is supported by the taper portion of the crucible, but the side surface of the block 35 is arranged so as not to contact the boron oxide thin film 32 formed on the inner wall of the crucible.

この状態で坩堝31を加熱すれば、酸化ホウ素と化合物半導体とが順次溶融する。このとき、酸化ホウ素片34が溶解した融液は化合物半導体融液の重量によって押し上げられて、既に酸化ホウ素膜32の融液で覆われている坩堝内壁に沿って上昇する。そして、化合物半導体融液と坩堝内壁とは、酸化ホウ素膜32の厚さより増大された厚さの酸化ホウ素融液層によって、互いの接触が防止され得ると考えられる。その結果として、種結晶33からの一方向凝固による単結晶育成中の多結晶化が防止され得ると期待されている。
特開2000−154089号公報 特開2003−146791号公報
When the crucible 31 is heated in this state, boron oxide and the compound semiconductor are sequentially melted. At this time, the melt in which the boron oxide pieces 34 are dissolved is pushed up by the weight of the compound semiconductor melt and rises along the inner wall of the crucible already covered with the melt of the boron oxide film 32. Then, it is considered that the compound semiconductor melt and the inner wall of the crucible can be prevented from contacting each other by the boron oxide melt layer having a thickness larger than the thickness of the boron oxide film 32. As a result, it is expected that polycrystallization during single crystal growth by unidirectional solidification from the seed crystal 33 can be prevented.
JP 2000-154089 A JP 2003-146791 A

本発明者が図5による化合物半導体単結晶の製造方法を試みたところ、その方法によっては単結晶の育成中に多結晶化が生じることを完全には防止し得なかった。   When the inventor attempted a method for producing a compound semiconductor single crystal according to FIG. 5, it was not possible to completely prevent polycrystallization during the growth of the single crystal.

また、本発明者が図6による化合物半導体単結晶の製造方法を試みたところ、その方法によっても単結晶の育成中に多結晶化が生じることを完全には防止し得なかった。   Further, when the present inventor tried a method for producing a compound semiconductor single crystal according to FIG. 6, it was not possible to completely prevent polycrystallization during the growth of the single crystal.

このような先行技術における状況に鑑み、本発明の目的は、坩堝内の一方向凝固によって化合物半導体単結晶を育成する場合において、その多結晶化を十分に防止して、良質の化合物半導体単結晶を効率的に製造することを可能ならしめることである。   In view of such a situation in the prior art, the object of the present invention is to sufficiently prevent polycrystallization of a compound semiconductor single crystal in the case of growing a compound semiconductor single crystal by unidirectional solidification in a crucible, and to provide a high-quality compound semiconductor single crystal. It is possible to make it possible to manufacture efficiently.

本発明による化合物半導体単結晶の製造方法においては、底部に種結晶の収納部を有する窒化ホウ素坩堝の少なくとも原料融液の接する内面に酸化ホウ素膜を形成し、坩堝の底部の種結晶収納部内に種結晶を装填してその坩堝の底部に酸化ホウ素下敷を配置し、その酸化ホウ素下敷上に化合物半導体原料ブロックを配置し、この際に酸化ホウ素膜と原料ブロックとの間に互いの接触を防止する所定の小さな隙間を設け、その所定の小さな隙間を酸化ホウ素下敷を溶融させた融液によって満たし、この状態で化合物半導体原料ブロックおよび種結晶の上部の一部を溶融させ、その後に、種結晶からの一方向凝固によって化合物半導体単結晶を成長させることを特徴としている。   In the method for producing a compound semiconductor single crystal according to the present invention, a boron oxide film is formed on at least the inner surface of the boron nitride crucible having a seed crystal storage portion at the bottom and in contact with the raw material melt, and the seed crystal storage portion at the bottom of the crucible A seed crystal is loaded and a boron oxide underlay is placed at the bottom of the crucible, and a compound semiconductor raw material block is placed on the boron oxide underlay, preventing contact between the boron oxide film and the raw material block. A predetermined small gap is provided, and the predetermined small gap is filled with a melt obtained by melting the boron oxide underlay, and in this state, a part of the upper part of the compound semiconductor raw material block and the seed crystal is melted, and then the seed crystal It is characterized by growing a compound semiconductor single crystal by unidirectional solidification.

なお、酸化ホウ素膜は、加熱された窒化ホウ素坩堝の内面に空気、水蒸気、CO2、および酸素から選択された一以上の酸化性物質を反応させることによって形成することが好ましい。また、酸化ホウ素下敷上に配置された原料ブロック上に付加的な酸化ホウ素片をさらに配置し、酸化ホウ素膜と原料ブロックの側面との間の小さな隙間がこの付加的酸化ホウ素片の融液によっても満たされるとともに原料ブロックの上面が覆われることが好ましい。さらに、酸化ホウ素膜と原料ブロックとの間の小さな隙間は、1mm〜20mmの範囲内にあることが好ましい。さらにまた、坩堝の本体部とその底部の種結晶収納部とは円錐状のテーパ部で接続されていることが好ましく、原料ブロックおよび酸化ホウ素下敷はそのテーパ部に適合する円錐状の形状を有していることが好ましい。 The boron oxide film is preferably formed by reacting one or more oxidizing substances selected from air, water vapor, CO 2 , and oxygen on the inner surface of the heated boron nitride crucible. Further, an additional boron oxide piece is further arranged on the raw material block arranged on the boron oxide underlay, and a small gap between the boron oxide film and the side surface of the raw material block is formed by the melt of the additional boron oxide piece. And the upper surface of the raw material block is preferably covered. Furthermore, the small gap between the boron oxide film and the raw material block is preferably in the range of 1 mm to 20 mm. Furthermore, it is preferable that the crucible body and the seed crystal storage at the bottom thereof are connected by a conical taper, and the raw material block and the boron oxide underlay have a conical shape that fits the taper. It is preferable.

本発明によれば、化合物半導体原料ブロックおよびその融液が窒化ホウ素坩堝内壁と直接接触することが十分に防止され、そして種結晶からの一方向凝固によって化合物半導体単結晶を育成する際の多結晶化が十分に防止され得る。   According to the present invention, the compound semiconductor raw material block and the melt thereof are sufficiently prevented from coming into direct contact with the inner wall of the boron nitride crucible, and the polycrystal when growing the compound semiconductor single crystal by unidirectional solidification from the seed crystal Can be sufficiently prevented.

本発明をなすに際して、本発明者は、図5による化合物半導体単結晶の製造方法によっては単結晶の育成中に多結晶化が生じることを完全には防止し得なかった理由を検討した。そして、その原因は、坩堝21内に化合物半導体多結晶片24を坩堝21に充填した際に既にその多結晶片24が坩堝21の内壁に直接接触していることによると考えられた。   In making the present invention, the present inventor examined the reason why it was not possible to completely prevent the occurrence of polycrystallization during the growth of the single crystal depending on the method for producing the compound semiconductor single crystal according to FIG. The cause was considered to be that the polycrystalline semiconductor piece 24 was already in direct contact with the inner wall of the crucible 21 when the crucible 21 was filled with the compound semiconductor polycrystalline piece 24 in the crucible 21.

すなわち、当初から化合物半導体多結晶片24が坩堝21の内壁に直接接触している個所が存在する場合、それらの多結晶片24と坩堝21の内壁との界面に酸化ホウ素融液が侵入してその融液層を形成することは困難である。化合物半導体多結晶片24が溶解して融液となった後においても、坩堝21の内壁に直接接触している化合物半導体融液を押しのけて酸化ホウ素融液界面層を形成することは困難であろう。したがって、そのように坩堝21と化合物半導体融液とが直接接触している個所から結晶核が生じて、これによって多結晶化の結果になると考えられた。   That is, when there is a portion where the compound semiconductor polycrystalline piece 24 is in direct contact with the inner wall of the crucible 21 from the beginning, the boron oxide melt enters the interface between the polycrystalline piece 24 and the inner wall of the crucible 21. It is difficult to form the melt layer. Even after the compound semiconductor polycrystalline piece 24 is melted to form a melt, it is difficult to push the compound semiconductor melt in direct contact with the inner wall of the crucible 21 to form the boron oxide melt interface layer. Let's go. Therefore, it was considered that crystal nuclei were generated from the locations where the crucible 21 and the compound semiconductor melt were in direct contact, and this resulted in polycrystallization.

本発明者は、図6による化合物半導体単結晶の製造方法によっても単結晶の育成中に多結晶化が生じることを完全には防止し得なかった理由についても検討した。図6では、化合物半導体多結晶ブロック35の下面周縁が坩堝31のテーパ部によって支持されている。坩堝31の内壁上には酸化ホウ素薄膜32が形成されているが、その酸化ホウ素薄膜は非常に薄くまたガラス質で脆い性質を有している。したがって、酸化ホウ素薄膜32は、多結晶ブロック35の下面周縁に接している領域において欠損を生じ得ると考えられる。そのような欠損部では、化合物半導体ブロック35と窒化ホウ素坩堝31とが直接接触することになる。また、一般に、坩堝本体部とテーパ部との接続領域であるコーナ部近傍から多結晶化が生じやすく、特にそのようなコーナ部近傍において坩堝内壁の不均一性を回避することが容易でないと考えられる。   The present inventor also examined the reason why it was not possible to completely prevent polycrystallization during the growth of the single crystal even by the method for producing a compound semiconductor single crystal according to FIG. In FIG. 6, the periphery of the lower surface of the compound semiconductor polycrystalline block 35 is supported by the taper portion of the crucible 31. A boron oxide thin film 32 is formed on the inner wall of the crucible 31, and the boron oxide thin film is very thin and has a glassy and brittle nature. Therefore, it is considered that the boron oxide thin film 32 may cause a defect in a region in contact with the lower surface periphery of the polycrystalline block 35. In such a defect, the compound semiconductor block 35 and the boron nitride crucible 31 are in direct contact. In general, polycrystallization is likely to occur from the vicinity of the corner portion, which is the connection region between the crucible body portion and the taper portion, and it is considered that it is not easy to avoid the nonuniformity of the inner wall of the crucible, particularly near the corner portion. It is done.

以上のように先行技術に関して検討された問題点を改善するために、本発明による化合物半導体単結晶の製造方法は、図1から図4に図解された実施形態としての例示を参照して以下のように行われ得る。   In order to improve the problems discussed with respect to the prior art as described above, a method for manufacturing a compound semiconductor single crystal according to the present invention is described below with reference to the examples illustrated in FIG. 1 to FIG. Can be done as follows.

まず図1の模式的断面図を参照して、窒化ホウ素坩堝1が用意される。この坩堝1は、その底部に化合物半導体単結晶3を装填するための凹部1aを有するとともに、その凹部1aと坩堝本体部とを接続するテーパ部1bを有している。このテーパ部1bは、好ましくは円錐状の形状を有している。そして、この窒化ホウ素坩堝1の内壁が酸化されて、酸化ホウ素膜2が形成されている。この酸化ホウ素膜2を坩堝内面に形成する方法については、酸化力のある固体、液体、気体などを坩堝内面と接触させて反応させればよいが、特に、加熱された窒化ホウ素坩堝1の内壁に水蒸気、空気、CO2、または酸素などの少なくとも一種以上を反応させることによって形成されることが好ましい。また、この酸化ホウ素膜の厚みは、1〜50μmの範囲内にあることが好ましい。 First, referring to the schematic cross-sectional view of FIG. 1, a boron nitride crucible 1 is prepared. The crucible 1 has a concave portion 1a for loading the compound semiconductor single crystal 3 at the bottom, and a tapered portion 1b for connecting the concave portion 1a and the crucible main body. The taper portion 1b preferably has a conical shape. The inner wall of the boron nitride crucible 1 is oxidized to form a boron oxide film 2. As for the method of forming the boron oxide film 2 on the inner surface of the crucible, it is sufficient to cause a solid, liquid, gas, or the like having oxidizing power to react with the inner surface of the crucible. It is preferably formed by reacting at least one of water vapor, air, CO 2 , oxygen and the like. Moreover, it is preferable that the thickness of this boron oxide film exists in the range of 1-50 micrometers.

このように内面上に酸化ホウ素膜2を有する窒化ホウ素坩堝1の底部における凹部1a内に、化合物半導体の種単結晶3が装填される。そして、坩堝1内において、テーパ部1bを覆うように酸化ホウ素下敷4Aが配置される。この酸化ホウ素下敷4Aの底部は、坩堝1の円錐状テーパ部1bに適合するように円錐状形状を有していることがより好ましい。また、この酸化ホウ素下敷4A上には、化合物半導体原料ブロック5が設置される。このとき、その原料ブロック5は酸化ホウ素膜2に接触させることなく坩堝1内に挿入され、原料ブロック5と酸化ホウ素膜2との間には所定の隙間6が設けられる。また、原料ブロック5の下面は全体が酸化ホウ素下敷4Aによって支持されており、テーパ部1b上の酸化ホウ素膜2に接触することもない。さらに、原料ブロック5上には、付加的な酸化ホウ素片4Bが配置されることが好ましい。ただし、このような付加的酸化ホウ素片4Bは、望まれる場合には省略することも可能である。また、酸化ホウ素下敷の底部と同様に、原料ブロックの底部形状も坩堝の円錐状テーパ部1bに適合するように円錐形状を有することがより好ましい。   Thus, the compound semiconductor seed single crystal 3 is loaded into the recess 1a at the bottom of the boron nitride crucible 1 having the boron oxide film 2 on the inner surface. And in the crucible 1, the boron oxide underlay 4A is arrange | positioned so that the taper part 1b may be covered. More preferably, the bottom of the boron oxide underlay 4A has a conical shape so as to fit the conical tapered portion 1b of the crucible 1. Further, a compound semiconductor raw material block 5 is installed on the boron oxide underlay 4A. At this time, the raw material block 5 is inserted into the crucible 1 without being brought into contact with the boron oxide film 2, and a predetermined gap 6 is provided between the raw material block 5 and the boron oxide film 2. Further, the entire lower surface of the raw material block 5 is supported by the boron oxide underlay 4A and does not come into contact with the boron oxide film 2 on the tapered portion 1b. Furthermore, it is preferable that an additional boron oxide piece 4 </ b> B is disposed on the raw material block 5. However, such an additional boron oxide piece 4B can be omitted if desired. Further, like the bottom of the boron oxide underlay, it is more preferable that the bottom of the raw material block has a conical shape so as to match the conical tapered portion 1b of the crucible.

図2は、図1の状態の坩堝を加熱して酸化ホウ素材料を溶融させている状況を図解している。すなわち、坩堝を昇温していけば、化合物半導体に比べて溶融温度が低い酸化ホウ素が先に溶融し始める。そうすれば、酸化ホウ素下敷4Aが溶融した融液4aは、原料ブロック5の重量によって押し上げられ、そのブロック5と酸化ホウ素膜2との隙間6を満たしながら上昇していく。なお、最終的に化合物半導体原料5も溶融した後においては、その原料融液と坩堝内面との間に介在する酸化ホウ素融液層4aは50〜2000μmの範囲内の厚さになり得る。   FIG. 2 illustrates a situation where the crucible in the state of FIG. 1 is heated to melt the boron oxide material. That is, if the temperature of the crucible is increased, boron oxide having a lower melting temperature than the compound semiconductor starts to melt first. Then, the melt 4a in which the boron oxide underlay 4A is melted is pushed up by the weight of the raw material block 5 and rises while filling the gap 6 between the block 5 and the boron oxide film 2. After the compound semiconductor raw material 5 is finally melted, the boron oxide melt layer 4a interposed between the raw material melt and the crucible inner surface can have a thickness in the range of 50 to 2000 μm.

他方、付加的な酸化ホウ素片4Bも溶融して融液4bになり、その融液4bも自重によってブロック5と酸化ホウ素膜2との隙間6を満たすように流れ込む。そして、化合物半導体ブロック5の上面上に残った酸化ホウ素融液4bはその化合物半導体の上面を保護するように作用し得る。   On the other hand, the additional boron oxide piece 4B is also melted to become a melt 4b, and the melt 4b flows into the gap 5 between the block 5 and the boron oxide film 2 by its own weight. The boron oxide melt 4b remaining on the upper surface of the compound semiconductor block 5 can act to protect the upper surface of the compound semiconductor.

図2から理解されるであろうように、原料ブロック5と酸化ホウ素膜2との隙間6は、狭からずかつ広すぎないことが好ましい。例えば、この隙間6は、1mmから20mm程度の範囲内にあることが好ましい。なぜならば、その隙間6が狭すぎる場合には、多結晶ブロック5を坩堝1内に挿入する場合にそのブロック5が酸化ホウ素膜2に接触して損傷させることがあり得るからである。他方、隙間6が広すぎる場合には、その隙間を酸化ホウ素融液で満たすために多量の酸化ホウ素下敷4Aおよび付加的酸化ホウ素片4Bを必要とするからである。また、原料ブロック5と坩堝1との間にあまりに多量の酸化ホウ素融液が存在する場合には、その化合物半導体のブロックおよびその融液が不安定になるからである。すなわち、原料ブロックは坩堝内でできる限り稠密にセットされることが好ましく、坩堝形状と同じ円柱状であれば理想的である。特に、坩堝の横断面積に対して70%以上が原料ブロックで占められるようにすれば効果的である。   As will be understood from FIG. 2, the gap 6 between the raw material block 5 and the boron oxide film 2 is preferably not narrow and not too wide. For example, the gap 6 is preferably in the range of about 1 mm to 20 mm. This is because if the gap 6 is too narrow, the block 5 may come into contact with the boron oxide film 2 and be damaged when the polycrystalline block 5 is inserted into the crucible 1. On the other hand, if the gap 6 is too wide, a large amount of boron oxide underlay 4A and additional boron oxide pieces 4B are required to fill the gap with the boron oxide melt. In addition, when there is an excessive amount of boron oxide melt between the raw material block 5 and the crucible 1, the compound semiconductor block and the melt become unstable. That is, the raw material block is preferably set as densely as possible in the crucible, and is ideal if it is the same cylindrical shape as the crucible shape. In particular, it is effective if 70% or more of the cross-sectional area of the crucible is occupied by the raw material block.

図3を参照して、酸化ホウ素下敷の融液4aと付加的酸化ホウ素片の融液4bとが合体した融液4によって化合物半導体多結晶ブロック5の全表面が覆われる。このとき、もちろん坩堝内壁上の酸化ホウ素膜も液層2aになっている。その後に、化合物半導体ブロックが溶融させられて化合物半導体融液5aにされるとともに、化合物半導体種結晶3の上部も部分的に溶解させられる。こうして化合物半導体融液5aと種結晶3とが接続された後に、その融液5aは種結晶3側から上方に向かってゆっくりと一方向凝固させられる。   Referring to FIG. 3, the entire surface of compound semiconductor polycrystalline block 5 is covered with melt 4 in which melt 4 a of boron oxide underlay and melt 4 b of additional boron oxide pieces are combined. At this time, of course, the boron oxide film on the inner wall of the crucible is also the liquid layer 2a. Thereafter, the compound semiconductor block is melted to form the compound semiconductor melt 5a, and the upper part of the compound semiconductor seed crystal 3 is also partially dissolved. After the compound semiconductor melt 5a and the seed crystal 3 are thus connected, the melt 5a is slowly solidified in one direction from the seed crystal 3 side upward.

図4は、化合物半導体融液5aの一方向凝固の過程を模式的に図解している。このような一方向凝固は、当業者に周知のように、種々の態様で行うことができる。すなわち、例えば加熱炉(図示せず)に対して坩堝1をゆっくりと下降させてもよいし、逆に坩堝1に対して加熱炉を上昇させてもよい。また、上方に比べて下方が低い温度分布を有する加熱炉の温度をゆっくりと降下させるように温度制御してもよい。そのように、種結晶3から上方への一方向凝固をゆっくりと生じさせることによって、種結晶3と同じ結晶方位を有する化合物半導体単結晶3を育成することができる。   FIG. 4 schematically illustrates the unidirectional solidification process of the compound semiconductor melt 5a. Such unidirectional solidification can be performed in various ways, as is well known to those skilled in the art. That is, for example, the crucible 1 may be slowly lowered with respect to the heating furnace (not shown), and conversely, the heating furnace may be raised with respect to the crucible 1. Further, the temperature may be controlled so that the temperature of the heating furnace having a lower temperature distribution in the lower part than in the upper part is slowly lowered. Thus, the compound semiconductor single crystal 3 having the same crystal orientation as that of the seed crystal 3 can be grown by slowly generating unidirectional solidification upward from the seed crystal 3.

この一方向凝固の間に、化合物半導体融液5aは、酸化ホウ素融液4および酸化ホウ素膜2の液層によって窒化ホウ素坩堝1との直接接触が防止され、新たな結晶核を生じさせることなく化合物半導体単結晶3を成長させることができる。   During this unidirectional solidification, the compound semiconductor melt 5a is prevented from being brought into direct contact with the boron nitride crucible 1 by the liquid layer of the boron oxide melt 4 and the boron oxide film 2 without generating new crystal nuclei. The compound semiconductor single crystal 3 can be grown.

なお、以上の実施形態では一体の化合物半導体原料ブロック5を坩堝1内に装填する例について説明されたが、その原料ブロックは、望まれる場合には複数のブロックの稠密な集合体であってもよいことは言うまでもない。ただし、その場合に、いずれの化合物半導体ブロックも窒化ホウ素坩堝1の内壁に直接接触しないように装填すべきことに留意すべきである。また、それら複数の化合物半導体ブロックは全てが多結晶のブロックである必要もなく、好ましい場合にはその一部または全てに単結晶のブロックを配置してもよいことも言うまでもない。   In the above embodiment, the example in which the integral compound semiconductor raw material block 5 is loaded into the crucible 1 has been described. However, the raw material block may be a dense assembly of a plurality of blocks if desired. Needless to say, it is good. In this case, however, it should be noted that any compound semiconductor block should be loaded so as not to directly contact the inner wall of the boron nitride crucible 1. In addition, it is not necessary that all of the plurality of compound semiconductor blocks be polycrystalline blocks, and it is needless to say that a single crystal block may be arranged in a part or all of them if preferred.

さらに、図1において化合物半導体ブロック5上には複数の酸化ホウ素片4Bが配置されているが、これら複数の酸化ホウ素片が一体の酸化ホウ素片として配置されてもよいし、酸化ホウ素下敷4Aが十分な量であれば配置する必要もない。   Further, although a plurality of boron oxide pieces 4B are arranged on the compound semiconductor block 5 in FIG. 1, the plurality of boron oxide pieces may be arranged as an integral boron oxide piece, or the boron oxide underlay 4A is provided. If the amount is sufficient, there is no need to arrange it.

以上のように、本発明によれば、坩堝内の一方向凝固によって化合物半導体単結晶を育成する場合において、その多結晶化を十分に防止して良質の化合物半導体単結晶を効率的に製造することが可能となる。   As described above, according to the present invention, when a compound semiconductor single crystal is grown by unidirectional solidification in a crucible, the polycrystallization is sufficiently prevented and a high-quality compound semiconductor single crystal is efficiently manufactured. It becomes possible.

本発明による化合物半導体単結晶の製造方法における坩堝内の初期状態を示す模式的断面図である。It is typical sectional drawing which shows the initial state in the crucible in the manufacturing method of the compound semiconductor single crystal by this invention. 図1の坩堝を加熱してその坩堝内の酸化ホウ素を溶融させる状態を示す模式的断面図である。It is a typical sectional view showing the state where the crucible of Drawing 1 is heated and the boron oxide in the crucible is melted. 図2の坩堝をさらに加熱してその坩堝内の化合物半導体ブロックを溶融させた状態を示す模式的断面図である。It is typical sectional drawing which shows the state which heated the crucible of FIG. 2 further and melted the compound semiconductor block in the crucible. 図3の坩堝内の化合物半導体融液を種結晶から一方向凝固させて単結晶を育成している状態を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a state in which a single crystal is grown by unidirectionally solidifying a compound semiconductor melt in the crucible of FIG. 3 from a seed crystal. 先行技術による化合物半導体単結晶の製造方法の一例を図解する模式的断面図である。It is typical sectional drawing illustrating an example of the manufacturing method of the compound semiconductor single crystal by a prior art. 先行技術による化合物半導体単結晶の製造方法の他の例を図解する模式的断面図である。It is typical sectional drawing illustrating the other example of the manufacturing method of the compound semiconductor single crystal by a prior art.

符号の説明Explanation of symbols

1 窒化ホウ素坩堝、1a 坩堝の種結晶収納部、1b 坩堝のテーパ部、2 酸化ホウ素膜、2a 酸化ホウ素融液層、3 化合物半導体種結晶、4、4a、4b 酸化ホウ素融液層、4A 酸化ホウ素下敷、4B 酸化ホウ素片、5 化合物半導体原料ブロック、5a 化合物半導体融液、6 隙間。   DESCRIPTION OF SYMBOLS 1 Boron nitride crucible, 1a Crucible seed crystal storage part, 1b Crucible taper part, 2 Boron oxide film, 2a Boron oxide melt layer, 3 Compound semiconductor seed crystal, 4, 4a, 4b Boron oxide melt layer, 4A Oxidation Boron underlay, 4B boron oxide piece, 5 compound semiconductor raw material block, 5a compound semiconductor melt, 6 gap.

Claims (1)

化合物半導体単結晶の製造方法であって、
底部に種結晶の収納部を有する窒化ホウ素坩堝の少なくとも原料融液の接する内面に酸化ホウ素膜を形成し、
前記坩堝の底部の前記収納部内に前記種結晶を装填して、その坩堝の底部に酸化ホウ素下敷を配置し、
その酸化ホウ素下敷上に化合物半導体原料ブロックを配置し、この際に前記酸化ホウ素膜と前記原料ブロックとの間に互いの接触を防止する所定の小さな隙間を設け、
前記酸化ホウ素下敷を溶融させて、この酸化ホウ素融液によって前記所定の小さな隙間を満たし、
この状態で前記化合物半導体原料ブロックおよび前記種結晶の上部の一部を溶融させ、
その後に、前記種結晶からの一方向凝固によって化合物半導体単結晶を成長させることを特徴とする化合物半導体単結晶の製造方法。
A method for producing a compound semiconductor single crystal comprising:
A boron oxide film is formed on at least the inner surface of the boron nitride crucible having a seed crystal storage portion at the bottom, which is in contact with the raw material melt,
The seed crystal is loaded into the storage part at the bottom of the crucible, and a boron oxide underlay is placed at the bottom of the crucible,
A compound semiconductor raw material block is disposed on the boron oxide underlay, and at this time, a predetermined small gap is provided between the boron oxide film and the raw material block to prevent mutual contact,
Melting the boron oxide underlay, filling the predetermined small gap with the boron oxide melt,
In this state, the compound semiconductor raw material block and a part of the upper part of the seed crystal are melted,
Then, a compound semiconductor single crystal is grown by unidirectional solidification from the seed crystal.
JP2004122672A 2004-04-19 2004-04-19 Method for producing compound semiconductor single crystal Expired - Lifetime JP4086006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122672A JP4086006B2 (en) 2004-04-19 2004-04-19 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122672A JP4086006B2 (en) 2004-04-19 2004-04-19 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2005306629A true JP2005306629A (en) 2005-11-04
JP4086006B2 JP4086006B2 (en) 2008-05-14

Family

ID=35435809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122672A Expired - Lifetime JP4086006B2 (en) 2004-04-19 2004-04-19 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP4086006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008370A1 (en) * 2010-03-29 2013-01-10 Sumitomo Electric Industries, Ltd. Method of producing semiconductor single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899703B (en) * 2010-08-06 2012-04-25 浙江碧晶科技有限公司 Crucible for growing crystalline silicon ingot and extracting silicon raw material of crystalline silicon ingot and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008370A1 (en) * 2010-03-29 2013-01-10 Sumitomo Electric Industries, Ltd. Method of producing semiconductor single crystal
US9797068B2 (en) * 2010-03-29 2017-10-24 Sumitomo Electric Industries, Ltd. Method of producing semiconductor single crystal
US20180010262A1 (en) * 2010-03-29 2018-01-11 Sumitomo Electric Industries, Ltd. Growth container
US10533265B2 (en) 2010-03-29 2020-01-14 Sumitomo Electric Industries, Ltd. Growth container

Also Published As

Publication number Publication date
JP4086006B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP5815184B2 (en) Ingot and silicon wafer
US9376763B2 (en) Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen
JP5111104B2 (en) Si-doped GaAs single crystal ingot and method for producing the same
KR20120013300A (en) Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
JPH02188486A (en) Glowth of crystal
JP4086006B2 (en) Method for producing compound semiconductor single crystal
EP1741808B1 (en) InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD
JP2010064936A (en) Method for producing semiconductor crystal
CN113862779A (en) Crucible assembly and crystal pulling furnace
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP2004277224A (en) Method for growing group iii nitride
JP2007254162A (en) Single crystal manufacturing device and recharge method
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP2006273668A (en) Method for production of semiconductor ingot
JP7403101B2 (en) Crucible for growing gallium oxide crystals
JP4154773B2 (en) Single crystal manufacturing method and apparatus
JP2004217508A (en) Si-DOPED GaAs SINGLE CRYSTAL INGOT, PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING COMPOUND SEMICONDUCTOR SINGLE CRYSTAL INGOT
JP2011026176A (en) Method for production of groups iii-v compound crystal
JP2009190914A (en) Method for producing semiconductor crystal
US7387948B2 (en) Structure and method of forming a semiconductor material wafer
JP4845480B2 (en) Semiconductor ingot manufacturing apparatus and semiconductor ingot manufacturing method
JP2006160586A (en) Method for manufacturing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2004307227A (en) Production method for compound semiconductor single crystal
JPH10338592A (en) Production of compound semiconductor single crystal and production apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4086006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250