JPH08217590A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH08217590A
JPH08217590A JP2830995A JP2830995A JPH08217590A JP H08217590 A JPH08217590 A JP H08217590A JP 2830995 A JP2830995 A JP 2830995A JP 2830995 A JP2830995 A JP 2830995A JP H08217590 A JPH08217590 A JP H08217590A
Authority
JP
Japan
Prior art keywords
raw material
growth
solvate
single crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2830995A
Other languages
Japanese (ja)
Other versions
JP2844430B2 (en
Inventor
Ryoichi Ono
良一 大野
Minoru Funaki
稔 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2830995A priority Critical patent/JP2844430B2/en
Publication of JPH08217590A publication Critical patent/JPH08217590A/en
Application granted granted Critical
Publication of JP2844430B2 publication Critical patent/JP2844430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain a large-diameter single crystal by THM with good reproducibility. CONSTITUTION: A growth vessel 1 having a positioning means for placing the lower end of a raw material 4 on a step 1a between the part where the inner diameter of the vessel 1 is smaller than the outer diameter of the lower end of the raw material and the upper part having a larger diameter is used, the lower end of the raw material is positioned by the positioning means at the start of crystal growth, then the vessel is relatively moved to a heater 5, and the crystal growth is started. Consequently, a large-sized single crystal with the grain boundaries and twin crystals reduced is obtained with good reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶の成長方法さら
にはトラベリングヒータ法(THM)による結晶成長方
法に関し、例えばCdTe等の化合物半導体単結晶の製
造に適用して有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal and a method for growing a crystal by a traveling heater method (THM), and more particularly to a technique useful for producing a compound semiconductor single crystal such as CdTe.

【0002】[0002]

【従来の技術】CdTe等の化合物半導体の単結晶を成
長させる方法として、成長させる結晶と同一組成の柱状
の原料とその原料を結晶成長時に溶解させる溶媒となる
溶媒体とを、原料が溶媒体の上端に接触するように成長
容器内に入れ、溶媒体をヒータにより局所的に加熱して
融解するとともに原料の下端も溶解させて溶解帯を形成
し、その後、ヒータを上方に移動させる、或は成長容器
を下方に移動させることによって溶解帯の下端から単結
晶を連続的に析出させて成長させるTHMがある。この
THMによる結晶成長には、他の育成方法により得られ
る結晶よりも半導体放射線検出素子用として優れたCd
Te単結晶が得られるという利点がある。
2. Description of the Related Art As a method for growing a single crystal of a compound semiconductor such as CdTe, a columnar raw material having the same composition as the crystal to be grown and a solvate serving as a solvent for dissolving the raw material at the time of crystal growth are used. Placed in a growth vessel so that it contacts the upper end of the raw material, the solvate is locally heated by a heater to melt and the lower end of the raw material is also dissolved to form a dissolution zone, and then the heater is moved upward, or Is a THM in which a single crystal is continuously deposited and grown from the lower end of the melting zone by moving the growth container downward. The crystal growth by THM is superior to the crystal obtained by other growth methods in Cd for semiconductor radiation detection elements.
There is an advantage that a Te single crystal can be obtained.

【0003】一般に、THMによりCdTeの単結晶を
成長させる場合には、石英アンプル等の成長容器内に、
溶媒となるTe単体若しくはTeにCdTeを適量溶解
させた合金ブロックを入れ、その上に柱状のCdTeの
多結晶原料を入れ、さらに石英アンプル内を真空雰囲気
若しくは不活性ガス雰囲気にしてシールした状態で結晶
成長を行う。これは、Te溶媒の蒸発とCdTeの多結
晶原料の酸化を防ぐためである。また、種結晶を用いる
場合には、石英アンプルの底に予め種結晶を入れてお
き、その石英アンプル内に溶媒となるTe単体等と多結
晶原料とを順次入れて結晶成長を開始する。
Generally, in the case of growing a CdTe single crystal by THM, a growth container such as a quartz ampoule is provided with
Put Te as a solvent or an alloy block in which Te is dissolved into Te with an appropriate amount of CdTe, and put a columnar polycrystalline raw material of CdTe on it, and further seal the quartz ampoule in a vacuum atmosphere or inert gas atmosphere. Perform crystal growth. This is to prevent the evaporation of the Te solvent and the oxidation of the polycrystalline raw material of CdTe. When a seed crystal is used, the seed crystal is put in advance at the bottom of the quartz ampoule, and a simple substance of Te or the like serving as a solvent and a polycrystalline raw material are sequentially put into the quartz ampoule to start crystal growth.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、CdT
eには、異なる結晶方位面間の成長エネルギーの差が小
さく、また双晶が発生し易いという特徴があり、さらに
は上述したTHMでは化学的量論組成からTe過剰側に
大きくずれたCd−Te溶液から結晶を析出させるた
め、種結晶の有無にかかわらず大粒径で所望の結晶方位
のCdTe単結晶を再現性よく得ることは困難であっ
た。
[Problems to be Solved by the Invention] However, CdT
e has a feature that the difference in growth energy between different crystal orientation planes is small and twinning is likely to occur. Further, in the above-mentioned THM, Cd- which is largely deviated from the stoichiometric composition to the Te excess side. Since a crystal is precipitated from the Te solution, it is difficult to obtain a CdTe single crystal having a large grain size and a desired crystal orientation with good reproducibility regardless of the presence or absence of a seed crystal.

【0005】本発明は上記問題点を解決するためになさ
れたもので、その目的はTHMにより再現性よく大粒径
の単結晶、特にCdTe単結晶を得ることにある。
The present invention has been made to solve the above problems, and an object thereof is to obtain a single crystal having a large grain size, particularly a CdTe single crystal with good reproducibility by THM.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、THMによるCdTe結晶の成長実験
を行い、結晶成長中の溶解帯の量及び結晶析出界面の形
状並びに成長させた結晶について詳細な検討を行った。
その結果、単結晶を成長させるには溶解帯の下面形状が
滑らかな凸状となるのが好ましいが、再現性よく単結晶
を得ることができないのは、その凸状の下面形状の再現
性が乏しいことが原因であるということがわかった。さ
らに詳細な検討を行ったところ、単に石英アンプル内に
Te溶媒となる溶媒体と多結晶原料を入れ、局所的に加
熱して溶解帯を形成したのでは、溶解帯中に浸漬する原
料の量(浸漬量)を制御することができない、すなわち
結晶成長開始時点において原料の下側に存在する溶解帯
の量を結晶成長を行うたびに適量に設定することができ
ないことが原因であるとの結論に至った。
In order to achieve the above object, the present inventor conducted a growth experiment of a CdTe crystal by THM, and carried out the amount of the dissolution zone during the crystal growth, the shape of the crystal precipitation interface and the growth. Detailed studies were conducted on crystals.
As a result, it is preferable that the lower surface of the melting zone has a convex shape in order to grow a single crystal, but it is not possible to obtain a single crystal with good reproducibility. It turned out that the cause was poor. A more detailed study showed that the solvate to be the Te solvent and the polycrystalline raw material were simply put in a quartz ampoule and locally heated to form a dissolution zone. The conclusion is that the (immersion amount) cannot be controlled, that is, the amount of the dissolution zone existing below the raw material at the start of crystal growth cannot be set to an appropriate amount each time crystal growth is performed. Came to.

【0007】本発明は、上記知見等に基づきなされたも
ので、柱状の原料と該原料を結晶成長時に溶解させる溶
媒となる溶媒体とを、前記原料が前記溶媒体の上端に接
触するように成長容器内に入れ、ヒータによる局所的な
加熱により前記溶媒体を融解するとともに前記原料の下
端を溶解して溶解帯を形成し、前記ヒータを前記成長容
器に対して上方に相対移動させることにより前記溶解帯
の下端から単結晶を連続的に析出させて成長させるにあ
たり、前記成長容器に設けた位置決め手段により前記原
料の下端が前記溶解帯に接触した状態で所定高さになる
ように位置決めされた後、前記ヒータの相対移動を開始
するようにしたものである。
The present invention has been made on the basis of the above findings and the like, and a columnar raw material and a solvate serving as a solvent for dissolving the raw material at the time of crystal growth are brought into contact with the upper end of the solvate. By putting it in a growth container, melting the solvate by local heating with a heater and melting the lower end of the raw material to form a dissolution zone, and moving the heater upward relative to the growth container. When a single crystal is continuously deposited and grown from the lower end of the melting zone, it is positioned by the positioning means provided in the growth container so that the lower end of the raw material comes to a predetermined height in contact with the melting zone. After that, the relative movement of the heater is started.

【0008】そして、前記溶媒体の下端に接触し、かつ
前記溶解帯の形成後においては同溶解帯の下端に接触す
るように前記成長容器内に種結晶を配置してもよい。
A seed crystal may be arranged in the growth vessel so as to come into contact with the lower end of the solvate and after the formation of the dissolution zone, contact with the lower end of the dissolution zone.

【0009】また、前記成長容器内に入れる溶媒体中の
溶質濃度は、結晶成長温度における溶媒中の溶質の飽和
濃度の50%以上でかつ100%以下であるとよい。
Further, the solute concentration in the sorbent body placed in the growth container is preferably 50% or more and 100% or less of the saturated concentration of the solute in the solvent at the crystal growth temperature.

【0010】さらに、前記原料と前記溶媒体を前記成長
容器内に入れた後、まず該成長容器全体をヒータにより
前記溶媒体の融解温度以上でかつ結晶成長温度以下の温
度範囲に一旦加熱保持することにより該溶媒体を融解し
て溶媒とし、次に該溶媒をヒータにより局所的に結晶成
長温度に加熱して前記溶解帯を形成した後に、その局所
的に加熱したヒータの相対移動を開始するようにしても
よい。
Further, after the raw material and the solvate are put in the growth container, first, the entire growth container is first heated and held by a heater in a temperature range above the melting temperature of the solvate but below the crystal growth temperature. To melt the solvate into a solvent, and then locally heat the solvent to a crystal growth temperature with a heater to form the dissolution zone, and then start relative movement of the locally heated heater. You may do it.

【0011】そして、例えば前記溶媒体はTe過剰のC
d−Te合金であり、前記原料はCdTeの多結晶であ
り、成長させる結晶はCdTeの単結晶である。
Then, for example, the solvate is Te-excess C
It is a d-Te alloy, the raw material is a polycrystal of CdTe, and the crystal to be grown is a single crystal of CdTe.

【0012】また、前記位置決め手段は、有底筒状をな
す前記成長容器の下半部の一部または全部における内径
が前記原料の下端の外径よりも小さくなっており、該成
長容器の前記内径の小さい部分と同成長容器の前記原料
を収容する上半部との間の段差部上に前記原料の下端を
載せて支持することにより、前記原料の下端を所定高さ
に保持するようになっていてもよいし、また、有底筒状
をなす前記成長容器の内周壁から内向きに凸部が突出し
ており、該凸部上に前記原料の下端を載せて支持するよ
うになっていてもよい。
Further, in the positioning means, the inner diameter of a part or all of the lower half portion of the bottomed cylindrical growth container is smaller than the outer diameter of the lower end of the raw material, By holding and supporting the lower end of the raw material on the stepped portion between the portion having a small inner diameter and the upper half portion of the growth container for containing the raw material, the lower end of the raw material is held at a predetermined height. In addition, a convex portion projects inward from the inner peripheral wall of the bottomed cylindrical growth container, and the lower end of the raw material is placed on and supported by the convex portion. May be.

【0013】[0013]

【作用】上記した手段によれば、THMにより単結晶を
成長させる際に、成長容器内に入れた溶媒体及び原料の
下端をヒータにより局所的に加熱融解して溶解帯を形成
し、その時点で原料の下端が溶解帯に接触した状態で所
定高さになるように成長容器の位置決め手段により位置
決めされた後、ヒータの相対移動を開始して結晶成長を
開始するようにしたため、結晶成長を行うたびに毎回、
結晶成長開始時点において、原料の下側に存在する溶解
帯の量が適量となるので、溶解帯の下面形状が滑らかな
凸状となり、大粒径の単結晶が再現性よく成長する。
According to the above-mentioned means, when a single crystal is grown by THM, the lower end of the solvate and the raw material placed in the growth container are locally heated and melted by the heater to form a dissolution zone at that time. Since the lower end of the raw material was positioned by the positioning means of the growth container so that the lower end of the raw material was in contact with the melting zone at a predetermined height, relative movement of the heater was started to start crystal growth. Every time I do,
At the start of crystal growth, the amount of the dissolution zone existing below the raw material becomes appropriate, so that the lower surface of the dissolution zone has a smooth convex shape, and a single crystal having a large grain size grows reproducibly.

【0014】その際、成長容器内に溶解帯の下端に接触
するように種結晶を配置しておけば、所望の結晶方位の
単結晶が得られる。
At this time, if a seed crystal is arranged in the growth container so as to contact the lower end of the dissolution zone, a single crystal having a desired crystal orientation can be obtained.

【0015】また、溶媒体中の溶質濃度は、結晶成長温
度における溶媒中の溶質の飽和濃度の50%以上でかつ
100%以下であるのが適当である。その理由は、溶質
濃度が前記下限値よりも低いと、溶解帯を形成した時に
原料下端の溶解が著しく起こって原料の下端形状が変化
してしまい、成長容器の位置決め手段により原料の下端
が所定位置に位置決めされ難くなることと、種結晶を用
いた場合には種結晶の溶解が激しくて原料下端の保持位
置の設定が難しくなるからである。一方、前記上限値を
超える溶質濃度では溶媒体が完全に融解せず、溶解帯の
量が所望の量に達しないことと、種結晶を用いた場合に
は種結晶と溶解帯との接触が完全に得られなくなるから
である。
The solute concentration in the solvate is preferably 50% or more and 100% or less of the saturated concentration of the solute in the solvent at the crystal growth temperature. The reason is that if the solute concentration is lower than the lower limit value, the lower end of the raw material is remarkably melted when the dissolution zone is formed and the lower end shape of the raw material changes, and the lower end of the raw material is fixed by the positioning means of the growth container. This is because it is difficult to position it at a position, and when the seed crystal is used, the seed crystal is melted so much that it becomes difficult to set the holding position at the lower end of the raw material. On the other hand, at a solute concentration exceeding the upper limit value, the solvate does not completely melt, the amount of the dissolution zone does not reach the desired amount, and when the seed crystal is used, the contact between the seed crystal and the dissolution zone is This is because you cannot get it completely.

【0016】さらに、原料と溶媒体を入れた成長容器全
体を溶媒体の融解温度以上でかつ結晶成長温度以下の温
度範囲に一旦加熱保持して溶媒体を融解し、その後、融
解した溶媒を局所的に結晶成長温度に加熱して溶解帯を
形成した後に、結晶成長を開始することにより、結晶成
長開始前に予め原料と成長容器との隙間が溶媒で満たさ
れるので、溶媒の蒸発が防止され、結晶成長中の溶解帯
の量が一定に保たれる。
Further, the entire growth container containing the raw material and the solvate is once heated and held in a temperature range above the melting temperature of the solvate and below the crystal growth temperature to melt the solvate, and then the melted solvent is locally added. By starting the crystal growth after heating to the crystal growth temperature to form the dissolution zone, the gap between the raw material and the growth vessel is filled with the solvent in advance before the crystal growth starts, so that the evaporation of the solvent is prevented. , The amount of dissolution zone during crystal growth is kept constant.

【0017】ここで、例えば溶媒体がTe過剰のCd−
Te合金で、原料がCdTeの多結晶で、CdTeの単
結晶を成長させる場合には、半導体放射線検出素子用と
して好適な高品質のCdTe単結晶が高い歩留まりで得
られる。
Here, for example, the solvate is Te excess Cd-.
When a Te alloy is used and the raw material is a polycrystal of CdTe and a CdTe single crystal is grown, a high-quality CdTe single crystal suitable for a semiconductor radiation detection element can be obtained with a high yield.

【0018】また、位置決め手段が、成長容器の内径が
原料下端の外径よりも小さくなっている部分とその上の
部分との間の段差部上に原料の下端を載せて支持するよ
うになっていたり、成長容器の内周壁から内向きに突出
する凸部上に原料の下端を載せて支持するようになって
いることにより、簡素な構造の成長容器でもって原料の
下端を所定の位置に保持することができる。
Further, the positioning means is adapted to place the lower end of the raw material on the stepped portion between the portion where the inner diameter of the growth container is smaller than the outer diameter of the lower end of the raw material and the portion above the lower end of the raw material to support it. Or, by supporting the lower end of the raw material by placing it on the convex portion projecting inward from the inner peripheral wall of the growth container, the lower end of the raw material can be placed at a predetermined position with the growth container having a simple structure. Can be held.

【0019】[0019]

【実施例】以下に、本発明をCdTe単結晶の成長に適
用した実施例を挙げて本発明の特徴とするところを明ら
かとする。なお、本発明は以下の実施例により何ら制限
されないのはいうまでもない。
EXAMPLES The features of the present invention will be clarified below with reference to examples in which the present invention is applied to the growth of CdTe single crystals. Needless to say, the present invention is not limited to the following examples.

【0020】(第1実施例)先ず、図1に示すように、
石英アンプル等の成長容器1内に、CdTe単結晶イン
ゴットよりなる種結晶2と、Te過剰のCd−Te合金
インゴットよりなる溶媒体3と、CdTe多結晶インゴ
ットよりなる柱状の原料4とを順次入れ、さらに内圧が
0.3atm となるようにArガスを導入して成長容器1
を封止した。
(First Embodiment) First, as shown in FIG.
A seed crystal 2 made of a CdTe single crystal ingot, a solvate 3 made of a Te-excessive Cd-Te alloy ingot, and a columnar raw material 4 made of a CdTe polycrystal ingot are sequentially placed in a growth container 1 such as a quartz ampoule. Further, Ar gas was introduced so that the internal pressure became 0.3 atm, and the growth vessel 1
Was sealed.

【0021】ここで、用いた成長容器1は、その下端か
ら例えば30mm上方までの部分の内径d1 が30mmであ
り、位置決め手段となる段差部1aを介してさらに上端
までの部分の内径d2 が32mmのものであった。段差部
1aの位置は、結晶成長開始時点において融解した溶媒
体3等よりなる溶解帯の必要量により決まる。また、上
半部の内径d2 と下半部の内径d1 との差(d2 −d1
)は3mm以下であるのが適当である。その理由は、そ
の差(d2 −d1 )が3mmを超えると結晶成長時に段差
部1aから多結晶が生じるおそれがあるからである。内
径の差(d2 −d1 )の下限値は、原料4の外径によっ
て決まり、図2に示すように、溶媒3A中に沈下する原
料4の下端周縁を支持することができる程度であればよ
い。
Here, the growth container 1 used has an inner diameter d1 of 30 mm from the lower end to, for example, 30 mm above, and an inner diameter d2 of the part further up to the upper end through the stepped portion 1a serving as the positioning means is 32 mm. It was the one. The position of the stepped portion 1a is determined by the required amount of the dissolution zone composed of the solvent body 3 or the like melted at the start of crystal growth. The difference between the inner diameter d2 of the upper half and the inner diameter d1 of the lower half (d2-d1
) Is suitably 3 mm or less. The reason is that if the difference (d2-d1) exceeds 3 mm, polycrystals may be generated from the step portion 1a during crystal growth. The lower limit of the difference in inner diameter (d2 -d1) is determined by the outer diameter of the raw material 4, and as shown in FIG. 2, it is sufficient to support the lower end peripheral edge of the raw material 4 sinking in the solvent 3A. .

【0022】種結晶2の大きさは、外径29mmで長さ1
0mmであった。溶媒体3はTe50gとCdTe57g
とを920℃で合金化したもので、その融解点は910
℃であった。また、その合金インゴットの大きさは、外
径28mmで長さ34mmであった。原料4の大きさは、外
径31.5mmで長さ110mmであった。
The seed crystal 2 has an outer diameter of 29 mm and a length of 1
It was 0 mm. Solvent body 3 is Te50g and CdTe57g
And are alloyed at 920 ° C and have a melting point of 910
° C. The alloy ingot had an outer diameter of 28 mm and a length of 34 mm. The raw material 4 had an outer diameter of 31.5 mm and a length of 110 mm.

【0023】上記手順で封止した成長容器1全体を91
0℃に加熱し、10分間保持して溶媒体3を一旦融解し
た後、冷却した。その後、その成長容器1をTHM炉内
に設置し、ヒータ5により成長容器1の底面から20mm
上方の位置を中心として内部温度が920℃となるよう
に局所的に加熱し、溶媒体3を融解するとともに原料4
の下端を溶解して溶解帯を形成した。成長容器1をその
状態で3時間保持した後、1日当たり5mmの速さで成長
容器1を100mm下降させて結晶成長を行った。結晶成
長終了後、成長容器1からインゴットを取り出して調べ
たところ、種結晶2から単結晶が成長していることがわ
かった。
The entire growth container 1 sealed by the above procedure is set at 91
The mixture was heated to 0 ° C. and kept for 10 minutes to once melt the solvate 3 and then cooled. After that, the growth container 1 is placed in a THM furnace, and the heater 5 is used to move the growth container 1 20 mm from the bottom surface.
The solvate 3 is melted by heating locally so that the internal temperature becomes 920 ° C. around the upper position and the raw material 4
The lower end of was dissolved to form a dissolution zone. After holding the growth container 1 in that state for 3 hours, the growth container 1 was lowered 100 mm at a speed of 5 mm per day to perform crystal growth. After the crystal growth was completed, the ingot was taken out from the growth container 1 and examined, and it was found that a single crystal had grown from the seed crystal 2.

【0024】次に、上記手順により成長容器1内に種結
晶2と溶媒体3と原料4とをArガスとともに封入した
試料を作製した。その成長容器1全体を910℃に加熱
して10分間保持した後に冷却し、続いてそれをTHM
炉内に設置し、成長容器1の底面から20mm上方の位置
を中心として内部温度が920℃となるように局所的に
加熱して3時間保持した後に急冷した。得られたインゴ
ット6を調べたところ、図3にその縦断面を示すよう
に、長さ8mmの種結晶2Bと段差部1aにより保持され
た原料4Bとに挟まれた長さ22mmの領域(溶媒相当部
分)3Bが溶媒3Aに相当していることが確認された。
そして、溶媒3Aのうち余剰の溶媒は原料4と成長容器
1の内周壁との隙間を完全に満たしていることがわかっ
た。
Next, a sample was prepared in which the seed crystal 2, the solvent body 3, and the raw material 4 were enclosed together with Ar gas in the growth container 1 by the above procedure. The entire growth vessel 1 was heated to 910 ° C., held for 10 minutes and then cooled, followed by THM.
It was placed in a furnace, and was locally heated so that the internal temperature was 920 ° C. around a position 20 mm above the bottom surface of the growth vessel 1, held for 3 hours, and then rapidly cooled. When the obtained ingot 6 was examined, as shown in the longitudinal section in FIG. 3, a region 22 mm in length (solvent) sandwiched between the seed crystal 2B having a length 8 mm and the raw material 4B held by the step portion 1a. It was confirmed that (corresponding part) 3B corresponds to solvent 3A.
Then, it was found that the surplus solvent of the solvent 3A completely filled the gap between the raw material 4 and the inner peripheral wall of the growth container 1.

【0025】(第2実施例)図4に示すように、容器下
端から20mm上方の位置に位置決め手段となる凸部11
aが内向きに例えば2mm突出した石英アンプル等の成長
容器11内に、Te過剰のCd−Te合金インゴットよ
りなる溶媒体3と、CdTe多結晶インゴットよりなる
柱状の原料4とを順次入れ、内圧が0.3atm となるよ
うにArガスを導入して封止したものを用意し、上記第
1実施例と同様にしてCdTe単結晶の成長を行った。
(Second Embodiment) As shown in FIG. 4, a convex portion 11 serving as a positioning means is located 20 mm above the lower end of the container.
Into a growth container 11 such as a quartz ampoule in which a is projected inwardly by 2 mm, for example, a solvate 3 made of a Te-excessive Cd-Te alloy ingot and a columnar raw material 4 made of a CdTe polycrystalline ingot are sequentially placed, and the internal pressure Was prepared by introducing Ar gas so as to be 0.3 atm, and a CdTe single crystal was grown in the same manner as in the first embodiment.

【0026】ここで、成長容器11の凸部11aの位置
は、結晶成長開始時点において必要な溶解帯の量により
決まる。また、凸部11aの突出量は、2mm以下である
のが適当である。その理由は、その突出量が2mmを超え
ると結晶成長時に凸部11aから多結晶が生じるおそれ
があるからである。凸部11aの突出量の下限値は、原
料4の外径によって決まり、図5に示すように、溶媒3
A中に沈下する原料4の下端縁を支持することができる
程度であればよい。
Here, the position of the convex portion 11a of the growth container 11 is determined by the amount of the melting zone required at the start of crystal growth. Further, it is appropriate that the protrusion amount of the convex portion 11a is 2 mm or less. The reason is that if the protrusion amount exceeds 2 mm, polycrystals may be generated from the protrusions 11a during crystal growth. The lower limit of the protrusion amount of the convex portion 11a is determined by the outer diameter of the raw material 4, and as shown in FIG.
It is sufficient that the lower edge of the raw material 4 sinking in A can be supported.

【0027】溶媒体3の大きさ、製造方法及び融解点、
並びに原料4の大きさは上記第1実施例と同様であっ
た。なお、この第2実施例では、種結晶を用いなかっ
た。
Size of solvate 3, method of manufacture and melting point,
In addition, the size of the raw material 4 was the same as in the first embodiment. In addition, in this 2nd Example, the seed crystal was not used.

【0028】上記手順で封止した成長容器11をTHM
炉内に設置し、ヒータ5により成長容器11の底面から
10mm上方の位置を中心として内部温度が920℃とな
るように局所的に加熱し、溶媒体3を融解するとともに
原料4の下端を溶解して溶解帯を形成した。成長容器1
1をその状態で3時間保持した後、1日当たり5mmの速
さで成長容器11を100mm下降させて結晶成長を行っ
た。結晶成長終了後、成長容器11からインゴットを取
り出して調べたところ、インゴットの下端から25mm上
方までの領域は多結晶であったが、さらにその上の領域
は上端まで単結晶であった。
The growth vessel 11 sealed by the above procedure is placed in the THM.
It is installed in a furnace and locally heated by a heater 5 so that the internal temperature is 920 ° C. around a position 10 mm above the bottom surface of the growth container 11 to melt the solvate 3 and melt the lower end of the raw material 4. To form a dissolution zone. Growth vessel 1
After holding 1 in that state for 3 hours, the growth vessel 11 was lowered 100 mm at a speed of 5 mm per day to perform crystal growth. After the crystal growth was completed, the ingot was taken out from the growth container 11 and examined. The region up to 25 mm above the lower end of the ingot was polycrystalline, but the region above it was single crystal up to the upper end.

【0029】次に、上記手順により成長容器11内に溶
媒体3と原料4とをArガスとともに封入した試料を作
製した。その成長容器11をTHM炉内に設置し、成長
容器11の底面から10mm上方の位置を中心として内部
温度が920℃となるように局所的に加熱して3時間保
持した後に急冷した。得られたインゴット7を調べたと
ころ、図6にその縦断面を示すように、凸部11aによ
り保持された原料4Cの直下20mmの領域(溶媒相当部
分)3Cが溶媒3Aに相当していることが確認された。
そして、溶媒3Aのうち余剰の溶媒は原料4と成長容器
11の内周壁との隙間を完全に満たしていることがわか
った。
Next, a sample was prepared in which the solvate 3 and the raw material 4 were enclosed together with Ar gas in the growth container 11 by the above procedure. The growth vessel 11 was placed in a THM furnace, and was locally heated so that the internal temperature was 920 ° C. centered on a position 10 mm above the bottom surface of the growth vessel 11, held for 3 hours, and then rapidly cooled. When the obtained ingot 7 was examined, as shown in its longitudinal section in FIG. 6, the region 3C 20 mm directly below the raw material 4C held by the convex portion 11a (the portion corresponding to the solvent) corresponds to the solvent 3A. Was confirmed.
Then, it was found that the surplus solvent of the solvent 3A completely filled the gap between the raw material 4 and the inner peripheral wall of the growth container 11.

【0030】なお、種結晶2はあってもなくてもよい。The seed crystal 2 may or may not be present.

【0031】また、上記各実施例では、THMによりT
e溶媒中からCdTeを成長させる場合を例として挙げ
たが、本発明は、その他の溶媒中からCdTeまたはそ
れ以外の結晶を成長させる場合にも適用可能であるのは
勿論である。
Further, in each of the above-mentioned embodiments, T
Although the case of growing CdTe in an e solvent has been described as an example, the present invention is naturally applicable to the case of growing CdTe or another crystal in another solvent.

【0032】[0032]

【発明の効果】本発明に係る単結晶の成長方法によれ
ば、柱状の原料と該原料を結晶成長時に溶解させる溶媒
となる溶媒体とを、前記原料が前記溶媒体の上端に接触
するように成長容器内に入れ、ヒータによる局所的な加
熱により前記溶媒体を融解するとともに前記原料の下端
を溶解して溶解帯を形成し、前記ヒータを前記成長容器
に対して上方に相対移動させることにより前記溶解帯の
下端から単結晶を連続的に析出させて成長させるにあた
り、前記成長容器に設けた位置決め手段により前記原料
の下端が前記溶解帯に接触した状態で所定高さになるよ
うに位置決めされた後、前記ヒータの相対移動を開始す
るようにしたため、結晶成長を行うたびに毎回、結晶成
長開始時点において、原料の下側に存在する溶解帯の量
が適量となるので、結晶粒界や双晶が少ない大型の単結
晶を再現性よく得ることができる。その際、成長容器内
に溶解帯の下端に接触するように種結晶を配置しておく
ことにより、所望の結晶方位の単結晶が得られる。特
に、Te過剰のCd−Te合金の溶媒体とCdTeの多
結晶原料とを用いてCdTeの単結晶を成長させると、
半導体放射線検出素子用の基板として好適な高品質のC
dTe単結晶が高い歩留まりで得られる。
According to the method for growing a single crystal according to the present invention, a columnar raw material and a solvate serving as a solvent for dissolving the raw material during crystal growth are brought into contact with the upper end of the solvate. In a growth container, the solvate is melted by local heating with a heater and the lower end of the raw material is melted to form a dissolution zone, and the heater is moved upward relative to the growth container. When the single crystal is continuously deposited and grown from the lower end of the melting zone by means of the positioning means provided in the growth container, the lower end of the raw material is positioned so as to have a predetermined height in contact with the melting zone. After that, since the relative movement of the heater is started, every time when the crystal growth is performed, the amount of the melting zone existing below the raw material becomes an appropriate amount at the start of the crystal growth, The Akiratsubu boundaries and twins fewer large single crystal can be obtained with good reproducibility. At that time, a single crystal having a desired crystal orientation is obtained by arranging the seed crystal in the growth container so as to come into contact with the lower end of the dissolution zone. In particular, when a CdTe single crystal is grown using a solvate of Te-rich Cd—Te alloy and a polycrystalline raw material of CdTe,
High quality C suitable as a substrate for semiconductor radiation detectors
A dTe single crystal can be obtained with a high yield.

【0033】また、位置決め手段が、成長容器の内周壁
に設けた段差部上や、内周壁に設けた凸部上に原料の下
端を載せて支持するようになっていることにより、簡素
な構造の成長容器でもって原料の下端を所定の位置に保
持することができ、容易に大型の単結晶を再現性よく得
ることができる。
Further, since the positioning means is adapted to place and support the lower end of the raw material on the stepped portion provided on the inner peripheral wall of the growth container or on the convex portion provided on the inner peripheral wall, a simple structure is provided. The lower end of the raw material can be held at a predetermined position with the growth container described above, and a large single crystal can be easily obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したTHM法の第1実施例におい
て成長容器内に種結晶と溶媒体と原料を入れた加熱前の
状態の概略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state before heating in which a seed crystal, a solvate, and a raw material are put in a growth container in a first embodiment of a THM method to which the present invention is applied.

【図2】その第1実施例において溶媒体を加熱して溶解
帯を形成した結晶成長開始前の状態の概略を示す断面図
である。
FIG. 2 is a cross-sectional view schematically showing a state before starting crystal growth in which a solvate is heated to form a dissolution zone in the first embodiment.

【図3】その第1実施例を適用して結晶成長開始前の溶
解帯の形状を調べるために行った実験により得られたイ
ンゴットの断面図である。
FIG. 3 is a cross-sectional view of an ingot obtained by an experiment conducted to investigate the shape of a melting zone before the start of crystal growth by applying the first embodiment.

【図4】本発明を適用したTHM法の第2実施例におい
て成長容器内に溶媒体と原料を入れた加熱前の状態の概
略を示す断面図である。
FIG. 4 is a cross-sectional view schematically showing a state before heating in which a solvate and a raw material are put in a growth container in a second embodiment of the THM method to which the present invention is applied.

【図5】その第2実施例において溶媒体を加熱して溶解
帯を形成した結晶成長開始前の状態の概略を示す断面図
である。
FIG. 5 is a sectional view schematically showing a state before starting crystal growth in which a solvent body is heated to form a dissolution zone in the second embodiment.

【図6】その第2実施例を適用して結晶成長開始前の溶
解帯の形状を調べるために行った実験により得られたイ
ンゴットの断面図である。
FIG. 6 is a cross-sectional view of an ingot obtained by an experiment conducted to investigate the shape of a melting zone before the start of crystal growth by applying the second embodiment.

【符号の説明】[Explanation of symbols]

1,11 成長容器 1a 段差部(位置決め手段) 2,2B 種結晶 3 溶媒体 3A 溶媒 3B,3C 溶媒相当部分 4,4B,4C 原料 5 ヒータ 6,7 インゴット 11a 凸部(位置決め手段) 1, 11 Growth container 1a Stepped portion (positioning means) 2,2B Seed crystal 3 Solvent body 3A Solvent 3B, 3C Solvent equivalent portion 4, 4B, 4C Raw material 5 Heater 6, 7 Ingot 11a Convex portion (positioning means)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 柱状の原料と該原料を結晶成長時に溶解
させる溶媒となる溶媒体とを、前記原料が前記溶媒体の
上端に接触するように成長容器内に入れ、ヒータによる
局所的な加熱により前記溶媒体を融解するとともに前記
原料の下端を溶解して溶解帯を形成し、前記ヒータを前
記成長容器に対して上方に相対移動させることにより前
記溶解帯の下端から単結晶を連続的に析出させて成長さ
せるにあたり、前記成長容器に設けた位置決め手段によ
り前記原料の下端が前記溶解帯に接触した状態で所定高
さになるように位置決めされた後、前記ヒータの相対移
動を開始するようにしたことを特徴とする単結晶の成長
方法。
1. A columnar raw material and a solvate serving as a solvent for dissolving the raw material during crystal growth are placed in a growth container so that the raw material comes into contact with the upper end of the solvate, and locally heated by a heater. By melting the solvate by melting the lower end of the raw material to form a dissolution zone, the heater is moved upward relative to the growth vessel to continuously form a single crystal from the lower end of the dissolution zone. When depositing and growing, the relative movement of the heater is started after the lower end of the raw material is positioned by the positioning means provided in the growth container so as to have a predetermined height in contact with the melting zone. A method for growing a single crystal, characterized in that
【請求項2】 前記溶媒体の下端に接触し、かつ前記溶
解帯の形成後においては同溶解帯の下端に接触するよう
に前記成長容器内に種結晶を配置したことを特徴とする
請求項1記載の単結晶の成長方法。
2. The seed crystal is arranged in the growth vessel so as to come into contact with the lower end of the solvate and after the formation of the dissolution zone, contact with the lower end of the dissolution zone. 1. The method for growing a single crystal according to 1.
【請求項3】 前記成長容器内に入れる溶媒体中の溶質
濃度が、結晶成長温度における溶媒中の溶質の飽和濃度
の50%以上でかつ100%以下であることを特徴とす
る請求項1または2記載の単結晶の成長方法。
3. The solute concentration in the solvate placed in the growth container is 50% or more and 100% or less of the saturated concentration of the solute in the solvent at the crystal growth temperature. 2. The method for growing a single crystal according to item 2.
【請求項4】 前記原料と前記溶媒体を前記成長容器内
に入れた後、まず該成長容器全体をヒータにより前記溶
媒体の融解温度以上でかつ結晶成長温度以下の温度範囲
に一旦加熱保持することにより該溶媒体を融解して溶媒
とし、次に該溶媒をヒータにより局所的に結晶成長温度
に加熱して前記溶解帯を形成した後に、その局所的に加
熱したヒータの相対移動を開始するようにしたことを特
徴とする請求項3記載の単結晶の成長方法。
4. After the raw material and the solvate are put into the growth container, first, the entire growth container is first heated and held by a heater in a temperature range not lower than the melting temperature of the solvate and not higher than the crystal growth temperature. To melt the solvate into a solvent, and then locally heat the solvent to a crystal growth temperature with a heater to form the dissolution zone, and then start relative movement of the locally heated heater. The method for growing a single crystal according to claim 3, characterized in that.
【請求項5】 前記溶媒体はTe過剰のCd−Te合金
であり、前記原料はCdTeの多結晶であり、成長させ
る結晶はCdTeの単結晶であることを特徴とする請求
項1、2、3または4記載の単結晶の成長方法。
5. The solvate is a Te-rich Cd—Te alloy, the raw material is a polycrystal of CdTe, and the grown crystal is a single crystal of CdTe. The method for growing a single crystal according to item 3 or 4.
【請求項6】 前記位置決め手段は、有底筒状をなす前
記成長容器の下半部の一部または全部における内径が前
記原料の下端の外径よりも小さくなっており、該成長容
器の前記内径の小さい部分と同成長容器の前記原料を収
容する上半部との間の段差部上に前記原料の下端を載せ
て支持することにより、前記原料の下端を所定高さに保
持するようになっていることを特徴とする請求項1記載
の単結晶の成長方法。
6. The positioning means has an inner diameter in a part or all of a lower half portion of the bottomed cylindrical growth container that is smaller than an outer diameter of a lower end of the raw material. By holding and supporting the lower end of the raw material on the stepped portion between the portion having a small inner diameter and the upper half portion of the growth container for containing the raw material, the lower end of the raw material is held at a predetermined height. The method for growing a single crystal according to claim 1, wherein
【請求項7】 前記位置決め手段は、有底筒状をなす前
記成長容器の内周壁から内向きに凸部が突出しており、
該凸部上に前記原料の下端を載せて支持するようになっ
ていることを特徴とする請求項1記載の単結晶の成長方
法。
7. The positioning means has a convex portion protruding inward from an inner peripheral wall of the bottomed cylindrical growth container,
The method for growing a single crystal according to claim 1, wherein the lower end of the raw material is placed on and supported by the convex portion.
JP2830995A 1995-02-16 1995-02-16 Single crystal growth method Expired - Fee Related JP2844430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2830995A JP2844430B2 (en) 1995-02-16 1995-02-16 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2830995A JP2844430B2 (en) 1995-02-16 1995-02-16 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH08217590A true JPH08217590A (en) 1996-08-27
JP2844430B2 JP2844430B2 (en) 1999-01-06

Family

ID=12245027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2830995A Expired - Fee Related JP2844430B2 (en) 1995-02-16 1995-02-16 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP2844430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083449B2 (en) 2002-03-19 2008-04-30 日鉱金属株式会社 CdTe single crystal manufacturing method

Also Published As

Publication number Publication date
JP2844430B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
EP0751242B1 (en) Process for bulk crystal growth
JP3109659B2 (en) Crystal growth method and apparatus
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPH08217590A (en) Method for growing single crystal
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JPH0748200A (en) Production of single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPH085760B2 (en) Method for producing Hgl-xo Cdxo Te crystal ingot
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2690420B2 (en) Single crystal manufacturing equipment
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JP2539841B2 (en) Crystal manufacturing method
JPH08119784A (en) Production of compound single crystal and production device therefor
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH07300387A (en) Production of compound semiconductor crystal
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal
JPS61227989A (en) Production of single crystal and apparatus therefor
JPH0952789A (en) Production of single crystal
JPS59164694A (en) Process for growing semiconductor crystal

Legal Events

Date Code Title Description
S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees