JPS63252587A - High productivity sea area creating system - Google Patents

High productivity sea area creating system

Info

Publication number
JPS63252587A
JPS63252587A JP62087087A JP8708787A JPS63252587A JP S63252587 A JPS63252587 A JP S63252587A JP 62087087 A JP62087087 A JP 62087087A JP 8708787 A JP8708787 A JP 8708787A JP S63252587 A JPS63252587 A JP S63252587A
Authority
JP
Japan
Prior art keywords
water
seawater
pump
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087087A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kawaguchi
勝之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62087087A priority Critical patent/JPS63252587A/en
Publication of JPS63252587A publication Critical patent/JPS63252587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Abstract

PURPOSE:To perform the desalting of seawater by the temp. difference between a high productivity sea area and a solar energy high temp. basin or high temp. surface water, by creating the high productivity sea area by pumping low temp. submerged water. CONSTITUTION:The high temp. seawater supplied from a solar energy water pumping-up basin is evaporated in an evaporator 18. Low temp. submerged water 13 rich in nutritive substances is pumped up to a condenser 15 by a cold water pump 14 through a cold water pipe and the steam from a fluid recirculation passage 16 is cooled and condensed by the condenser 15 to obtain fresh water. An uranium and lithium recovery adsorbing tower 21 pref. uses an adsorbent having good absorbing quantity, selectivity and desorptivity and is pref. arranged to a confluent pipe of cold water and hot water. By this constitution, the total system can be established and economical efficiency is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、魚群が低温深層水の高栄養源及び若干温度の
異った海域に集合することを利用して、低温深層水をボ
ンピングすることにより海面近くに高生産海域を造成せ
しめ、太陽元高温池又は高水温表層水との温度差によっ
て海水淡水化を行うトール・システムに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention utilizes the fact that schools of fish gather in low-temperature deep-sea water as a high-nutrient source and in sea areas with slightly different temperatures, to pump low-temperature deep-sea water. The present invention relates to a toll system that creates a highly productive sea area near the sea surface and desalinates seawater using the temperature difference between it and the high-temperature pond or high-temperature surface water.

〔従来の技術〕[Conventional technology]

前記のようなトータルシステムに関する従来技術は存在
しないので、トータルシステムを構成する個々の技術に
ついて概略説明する。
Since there is no prior art related to the above-mentioned total system, individual technologies constituting the total system will be briefly explained.

+11  揚水発電システム 第3図は、電動ポンプ01と揚水池03及び水車発電機
04を水導管02,05で連結し、電力便用の少い時期
に、電動ポンプ01を作動させて水を揚水池05にくみ
上げておき、電力のピーク需要時期に水を水車発電機0
4に導いて発電を行う方式を示す。これは電気エネルギ
ー1−位置エネルギーとして質のよいエネルギーに貯え
ておき、必要な時に吹出す方式であるが、揚水するため
に水車発電機04で発電したエネルギーと同等それ以上
のエネルギーを要し、エネルギー利得にはなり得ない。
+11 Pumped storage power generation system Figure 3 connects an electric pump 01, a pumped storage pond 03, and a water turbine generator 04 through water conduits 02 and 05, and pumps water by operating the electric pump 01 during periods when electricity is not available. Water is pumped into the pond 05, and water is supplied to the water turbine generator during peak electricity demand periods.
4 shows the method for generating electricity. This is a method of storing high-quality electrical energy as potential energy and blowing it out when needed, but it requires energy equal to or greater than the energy generated by the water turbine generator 04 to pump water. It cannot be an energy gain.

(2)@直着海水淡水化システム 第4図に示すように、低圧閉サイクル回路011に抽気
ポンプ012、蒸発器013、コンデンサ015を設け
、低水温深層水を導管016及び冷水ポンプ018ヲ介
しコンデンサ015に導いて蒸発器からの水蒸気を冷却
して蒸留水が得られる。
(2) @Direct seawater desalination system As shown in Figure 4, a bleed pump 012, an evaporator 013, and a condenser 015 are installed in a low-pressure closed cycle circuit 011, and low-temperature deep water is passed through a conduit 016 and a cold water pump 018. The water vapor from the evaporator is cooled by being led to a condenser 015 to obtain distilled water.

ま九高水温表層水を導管017及び温水ポンプ019に
より蒸発器015に供給し、これを加熱し蒸発させる。
High-temperature surface water is supplied to the evaporator 015 through a conduit 017 and a hot water pump 019, where it is heated and evaporated.

このような海水淡水化方式では、油気ポンプ頌の所内動
力が大きく、高度の真空技術を必要とする。洋上の海水
温度25℃で蒸発する圧力は、(LO5atmの超真空
が必要で、高温水の温度を出来るだけ高くして真空度を
低く抑えることが肝要である。
In this type of seawater desalination system, the internal power of the oil-air pump is large and requires advanced vacuum technology. The pressure at which seawater evaporates at a temperature of 25°C on the ocean requires an ultra-vacuum of LO5 atm, and it is important to keep the temperature of the high-temperature water as high as possible and keep the degree of vacuum low.

(3)  ウラン・リチウム回収装置 海水より9ラン等を回収するためにウラン・リチウム回
収筒を便用する。
(3) Uranium and lithium recovery equipment A uranium and lithium recovery cylinder will be used to recover 9-ranium, etc. from seawater.

海水中のウラン官有童は、3ppb(5μf/!、)で
おジ、100%回収を行ったとしても、1時のウランを
うるKは50万トンの海水を回流させる必要がある。設
備費や回流ポンプの動力費を考慮して経済性を評価する
と、現状ウランの価格が極めて安いことから市場ベース
に乗らない0 (4)海流上昇装置 海底にコンクリート製のブロックや浮き付きの布製上昇
流装置を敷設することがあるが、いずれも自然海流を利
用するものであυ、大量の外向atうろことは出来ない
The amount of uranium in seawater is 3ppb (5μf/!), and even if 100% recovery were achieved, it would be necessary to circulate 500,000 tons of seawater to obtain 100% of the uranium. If we evaluate the economic efficiency by taking into account equipment costs and power costs for circulation pumps, we find that the current price of uranium is extremely low, so it does not meet the market base. (4) Ocean current lifting device Concrete blocks or cloth with floats on the seabed Updraft devices are sometimes installed, but they all utilize natural ocean currents and cannot provide large amounts of outward flow.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のよつな従来システムは、波動ポンプ、温度差海水
淡水化システム、海洋養殖などそれぞれ単一の目的の九
めに単体の機器が設置されているが、自然エネルギーを
単一の形式で利用することは、経済的に不利となり、海
洋牧場、揚水発電を除いて、殆んど実用されていない。
The conventional systems mentioned above, such as wave pumps, temperature difference seawater desalination systems, and marine aquaculture, each have a single piece of equipment installed for a single purpose, but they do not utilize natural energy in a single form. It is economically disadvantageous to do so, and it is hardly ever put into practical use, except for ocean farms and pumped storage power generation.

前述のような海水淡水化システムでは高水温表層水と低
水温深層水の温度差が小さい九め、単独では淡水化効率
が悪い。
In the seawater desalination system described above, the temperature difference between high-temperature surface water and low-temperature deep water is small, and desalination efficiency is poor when used alone.

またウラン回収システムにおいては、ウランを回収する
吸着剤に如何に良品が開発されても、ウラン1階当93
o万トン以上の大量の海水を回流させることには変りは
ないので、トータル・システム的な考え方でコストを下
げる必要がある。
In addition, in uranium recovery systems, no matter how many good adsorbents are developed to recover uranium, the amount of uranium per 93
Since large amounts of seawater (more than 10,000 tons) will still be circulated, it is necessary to reduce costs from a total system perspective.

本発明は、上記の欠点を解消し、高水温表層水を太陽光
揚水池で加熱して、低水温深層水との温度差を大きくし
て利用するとともに、温度差海水淡水化システム、ウラ
ン回収システム、回流養殖システム等を有機的に結合す
ることにより、動力及び熱エネルギーを有利に活用する
高生産海域造成システムを提供しようとするものでおる
The present invention eliminates the above-mentioned drawbacks, heats high-temperature surface water in a solar pumping pond, increases the temperature difference with low-temperature deep water, and utilizes it. By organically combining systems, circulation aquaculture systems, etc., we aim to provide a high-productivity sea area creation system that makes advantageous use of power and thermal energy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、蒸発器、抽気ポンプ、コンデンサー、前記各
部材を連通する循環流体路、及び前記コンデンサーに低
水温深層水を供給する冷水ボ/グを有する海水淡水化装
置と、波力による空気圧で作動する波動ポンプと、上部
を被う透光性蒸発防止膜、及び周囲を囲む断熱構造壁を
有する太陽光揚水池とからなり、前記波動ポンプのセン
タ管から供給される海水を前記太陽光揚水池に供給し、
前記太陽光揚水池の高水温海水t−前記蒸発器に供給し
、かつ、前記抽気ポンプで蒸発器の蒸発室を抽気するこ
とにより海水を蒸発し、水蒸気をコンデンサーに移して
低水温深層水で冷却して真水を得る海水淡水化システム
に加えて、上記コンデンサーの海水流出部に海洋牧場を
造成するようにしたことを特徴とする高生産海域造成シ
ステムである。
The present invention provides a seawater desalination apparatus having an evaporator, a bleed pump, a condenser, a circulating fluid path that communicates the above-mentioned components, and a cold water tank that supplies low-temperature deep-sea water to the condenser; It consists of an operating wave pump, a solar pumping pond having a translucent evaporation prevention film covering the upper part, and an insulating structure wall surrounding the periphery, and seawater supplied from the center pipe of the wave pump is pumped by the solar pump. supply the water pond,
The high temperature seawater from the solar pumping pond is supplied to the evaporator, and the evaporation chamber of the evaporator is evaporated by the bleed pump to evaporate the seawater, and the water vapor is transferred to the condenser to produce low temperature deep water. In addition to a seawater desalination system that cools and obtains fresh water, this high-productivity sea area creation system is characterized by creating a marine pasture at the seawater outlet of the condenser.

〔作 用〕[For production]

波動ポンプで海水を揚水池に汲上げ、この海水を太陽光
線で加熱する。揚水池の高水温海水をタービン枢動抽気
ポンプに供給し、蒸発器の抽気を行う。他方、低水温深
層水を吸上げて蒸気を冷却し蒸留水を製造する。さらに
、海水淡水化システムの排水を人工養殖に利用し、トー
タル・システム化により経済性を向上させているO 〔実施例1〕 第1図において、1は波浪に交叉する方向に設置された
防波#函、2は防波潜函1の外洋側海底に設を嘔れた波
浪集合装置、3は防波潜函1の内部に配置され次波動ポ
ンプ、4は防波潜函1の外洋側海中に開口する波動ポン
プ50波浪導入口、5は中央穴部下端に逆止弁6を具え
波浪導入口4の上方を昇降するフロート、7は下端に逆
止弁8i具えフロート5の中央穴部から上方に延びるセ
ンタ管である。また、10は海面から10〜20mの高
さに設置された太陽光揚水池、11は太陽光揚水池10
の表面を被う透′″It、性の蒸発防止膜、12は太陽
光揚水池10の側壁及び底面を形成する断熱構造壁、1
5は水深500〜500mで高栄養素に畳んだ低水@深
層水、14は低水温深層水13を汲上げる冷水ポンプ、
15は冷水ポンプ14の吐出口く設けられたコンデンサ
ー、16はコンデンサー15及び蒸発器18を連結する
流体傭環路であり、タービン駆動抽気ポンプ17が介在
している。タービン駆動抽気ポンプ17は、太陽光揚水
池10からの高温水の流下エネルギーにより駆動し、蒸
発器18の蒸発室を抽気して海水を蒸発させる。なお、
第2図は第1図の変形でめり、抽気ポンプをモータで駆
動するようにした点で第1図の装置と相違している。
A wave pump pumps seawater into a pumping pond, and the seawater is heated by sunlight. The high-temperature seawater from the pumping pond is supplied to the turbine pivot bleed pump, which bleeds the evaporator. On the other hand, distilled water is produced by sucking up low-temperature deep water and cooling the steam. Furthermore, wastewater from the seawater desalination system is used for artificial aquaculture, improving economic efficiency through total systemization. Wave number box, 2 is a wave gathering device installed on the seabed on the open ocean side of breakwater submersible 1, 3 is a wave pump placed inside breakwater submersible 1, and 4 is a wave collecting device installed on the ocean side of breakwater submersible 1. A wave pump 50 has a wave inlet port that opens, 5 is a float that has a check valve 6 at the lower end of the center hole and moves up and down above the wave inlet port 4, and 7 has a check valve 8i at the lower end and extends upward from the center hole of the float 5. It is a center tube that extends to . In addition, 10 is a solar pumped storage pond installed at a height of 10 to 20 m from the sea surface, and 11 is a solar pumped storage pond 10.
12 is a heat insulating structural wall forming the side walls and bottom surface of the solar pumping pond 10;
5 is low water @ deep water that is high in nutrients at a depth of 500 to 500 m, 14 is a cold water pump that pumps low temperature deep water 13,
15 is a condenser provided at the discharge port of the cold water pump 14; 16 is a fluid circulation path connecting the condenser 15 and the evaporator 18; a turbine-driven extraction pump 17 is interposed therebetween; The turbine-driven bleed pump 17 is driven by the energy of flowing high-temperature water from the solar pumping pond 10, and bleeds the evaporation chamber of the evaporator 18 to evaporate seawater. In addition,
FIG. 2 is a modification of FIG. 1 and differs from the device shown in FIG. 1 in that the bleed pump is driven by a motor.

21はコンデンサー15の出口に設けられたウラン回収
吸着筒、22はウラン・リチウム回収吸着筒21の海水
出口に形成された海洋牧場である。
Reference numeral 21 denotes a uranium recovery adsorption cylinder provided at the outlet of the condenser 15, and 22 represents a marine pasture formed at the seawater outlet of the uranium/lithium recovery adsorption cylinder 21.

波浪集合装置2は波浪の伝播速度が深さに比例す・るの
で、先細形地形やブロック等を用いて波動を集合する装
置であり、波動ポンプの入口に設置させる。波動ポンプ
3は波浪エネルギーを利用したポンプで、コンクリート
のFJe潜函1を外殻とする筒形をなし、中央部にセン
タ管7が配置され、その上端は一揚水池100表面に導
かれている。1次、センタ管7の下燗には逆止弁8が取
付けられる。センタ管7のまわりに同心筒形フロート5
が組合わ嘔れ、70−45が波浪により上下動を行う。
Since the wave propagation speed is proportional to the depth, the wave collection device 2 is a device that collects waves using tapered topography, blocks, etc., and is installed at the inlet of the wave pump. The wave pump 3 is a pump that uses wave energy, and has a cylindrical shape with a concrete FJe submersible box 1 as an outer shell, and a center pipe 7 is arranged in the center, the upper end of which is guided to the surface of a pumping pond 100. . A check valve 8 is attached to the lower part of the primary center pipe 7. Concentric cylindrical float 5 around center pipe 7
70-45 moves up and down due to the waves.

フロート5の中央穴部の下端に逆止9f6が取付けられ
る。
A check 9f6 is attached to the lower end of the center hole of the float 5.

波浪導入口4の集中波浪がフロート5t−押上げると、
逆止弁6が閉じ、逆止弁8が開キ、70−ト5の中央入
部の海水がセンタ管7に押込まれる。波浪導入口4の波
が退くとフロート5が下降し、逆止弁6が開さ逆止弁8
が閉じる。
When the concentrated waves at the wave inlet 4 push up the float 5t,
The check valve 6 is closed, the check valve 8 is opened, and the seawater in the center inlet of the 70-tooth 5 is forced into the center pipe 7. When the waves at the wave inlet 4 recede, the float 5 lowers and the check valve 6 opens.
closes.

フロート5の昇降を反榎することによりセンタ管7内の
海水が順次上昇して、センタ管7の上端より太陽光揚水
池10に流入する。
As the float 5 moves up and down, the seawater in the center pipe 7 rises in sequence and flows into the solar pumping pond 10 from the upper end of the center pipe 7.

太陽光揚水池10は海面上10〜20mの高さに設置さ
れ、池の周囲をvfr惑構造とする。池の表面には透明
な蒸発防止板又は@11を設ける。波動ポンプ3より揚
水池10に供給され九、  海水は太V41I元mk受
けて加熱(例えば80℃)逼れ、W!tつた海水がター
ビン抽気ポンプ17に供給され、タービ/が抽気ポンプ
を駆動若しくは補助動力を供給する。
The solar pumping pond 10 is installed at a height of 10 to 20 meters above the sea surface, and has a VFR structure around the pond. A transparent evaporation prevention plate or @11 is installed on the surface of the pond. The seawater is supplied from the wave pump 3 to the pumping pond 10, and is heated (e.g., 80°C) by the water pump.W! The seawater is supplied to the turbine bleed pump 17, which drives the bleed pump or supplies auxiliary power.

海水淡水化装置において、太陽光揚水池より供給される
高温海水は、蒸発器18でその温度の蒸気圧で蒸発する
0温度が高い程蒸発のための蒸気圧は高くなるので、抽
気ポンプ17の所内動力が小さくなる。また抽気ポンプ
駆動用のタービンのエネルギーは太陽光揚水池の位置エ
ネルギーを利用する。一方、高栄養素に畳む低水温深層
水13f:冷水ポンプ14により冷水管を通してコンデ
ンサー15にくみ上げ、流体路16からの水蒸気をコン
デンサー15で冷却液化して真水をうる。
In the seawater desalination equipment, high-temperature seawater supplied from the solar pumping pond is evaporated in the evaporator 18 at the vapor pressure at that temperature.The higher the temperature, the higher the vapor pressure for evaporation. Internal power becomes smaller. In addition, the potential energy of the solar pumping pond is used to generate energy for the turbine that drives the extraction pump. On the other hand, low-temperature deep-sea water 13f to be folded into high-nutrient water is pumped up to a condenser 15 through a cold water pipe by a cold water pump 14, and water vapor from a fluid path 16 is cooled and liquefied by the condenser 15 to obtain fresh water.

ウラン・リチウム回収吸着筒21は無機又は有機の特殊
な吸着剤を使用した多相の吸着剤のセルの中に海水を導
入するリニア方式のものや循環するループ形式のものが
めるが、選択性、吸脱性の良いもの、吸収量の大きい吸
着剤がA1しい。
The uranium/lithium recovery adsorption column 21 includes a linear type in which seawater is introduced into a multi-phase adsorbent cell using a special inorganic or organic adsorbent, and a circulating loop type. An adsorbent with good adsorption/desorption properties and a large amount of absorption is suitable for A1.

この他活性炭や膜流にする分離成層も使用できるO このウラン・リチウム回収装置の設置場所は、水量の点
から冷水、温水の合流管に設置することが好ましいが、
差支えがおる場合は、冷水管中に設置する。温水管には
、微生物の耐着、腐食が比較的多いので、この点から温
水管に付設することは好ましくない。
In addition, activated carbon or membrane flow separation stratification can also be used. From the viewpoint of water volume, it is preferable to install this uranium/lithium recovery equipment in a confluence pipe of cold water and hot water.
If there is a problem, install it inside the cold water pipe. Hot water pipes are relatively susceptible to microbial adhesion and corrosion, so from this point of view it is not preferable to attach them to hot water pipes.

温水管や蒸発器等の耐着物や腐食の加速を防止するには
、定期的に冷水を蒸発器や温水管に循環させることが好
ましい。
In order to prevent deposits on hot water pipes, evaporators, etc. and to prevent acceleration of corrosion, it is preferable to periodically circulate cold water through the evaporator and hot water pipes.

jigI図、第2図例れの実施例においても、海水淡水
化装置から吐出される海水(高栄養素深層水)が海洋牧
場22に人工海流を発生させるように、吐出管の取付位
置・形状を設定するのが好ましい。
In the embodiments shown in FIG. It is preferable to set

〔発明の効果〕〔Effect of the invention〕

本発明は、上記構gを採用することにより、次のような
効果を有する。
By employing the above structure g, the present invention has the following effects.

+11  波浪集合装置で作られた集中波浪により波動
ポンプが効率よく高水温表層水を太陽元揚水池に汲上げ
ることができる〇 (2)太陽ft、揚水池は太@元+Wを受けて揚水池内
の高水温表層水の海水をさらに加熱することができる。
+11 Wave pumps can efficiently pump high-temperature surface water to the Taiyogen pumping pond due to the concentrated waves created by the wave aggregation device.〇(2) Taiyoft, the pumping pond receives the Tai@Yuan+W and is inside the pumping pond. The high temperature surface water of seawater can be further heated.

(3)  海水淡水化装置は、低水@深層水による冷却
と揚水池の高水温海水による加熱により、効率よく淡水
化を行うことができる。また、で、所内動力を減少する
ことができる。
(3) Seawater desalination equipment can desalinate efficiently by cooling with low water @ deep water and heating with high temperature seawater in the pumping pond. Also, the on-site power can be reduced.

(4)  海水淡水化装置から吐出される低水温深層水
(高栄養素)は、海面表層水域に高栄養素の海流を有す
る人工牧場を構成することがでる。
(4) The low-temperature deep water (high in nutrients) discharged from the seawater desalination device can form an artificial pasture with high-nutrient ocean currents in the sea surface waters.

(5)更に海水淡水化装置からの大量の排水全ウラン・
リチウム回収にも利用できる。
(5) In addition, a large amount of wastewater from seawater desalination equipment
It can also be used for lithium recovery.

このように海水淡水化と人工牧場、更にウラン・リチウ
ム回収ヲM機的に組合せたトータルシステムにすること
により経済性が飛躍的に同上した。
In this way, by creating a total system that mechanically combines seawater desalination, artificial pasture, and uranium and lithium recovery, economic efficiency has dramatically increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び@2図は本発明の高生産海域造成システム概
略説明図、第3図は従来の揚水発電装置の概略図、第4
図は従来の海水淡水化装置の概略図である。
Figures 1 and 2 are schematic explanatory diagrams of the high-productivity sea area creation system of the present invention, Figure 3 is a schematic diagram of a conventional pumped storage power generation system, and Figure 4
The figure is a schematic diagram of a conventional seawater desalination device.

Claims (1)

【特許請求の範囲】[Claims] 蒸発器、抽気ポンプ、コンデンサー、前記各部材を連通
する循環流体路、及び前記コンデンサーに低水温深層水
を供給する冷水ポンプを有する海水淡水化装置と、波力
による空気圧で作動する波動ポンプと、上部を被う透光
性蒸発防止膜、及び周囲を囲む断熱構造壁を有する太陽
揚水池とからなり、前記波動ポンプのセンタ管から供給
される海水を前記太陽光揚水池に供給し、前記太陽光揚
水池の高水温海水を前記蒸発器に供給し、かつ、前記抽
気ポンプで蒸発器の蒸発室を抽気することにより海水を
蒸発し、水蒸気をコンデンサーに移して低水温深層水で
冷却して真水を得る海水淡水化システムに加えて、上記
コンデンサーの海水流出部に海洋牧場を造成するように
したことを特徴とする高生産海域造成システム。
A seawater desalination device that includes an evaporator, a bleed pump, a condenser, a circulating fluid path that communicates each of the components, and a cold water pump that supplies low-temperature deep water to the condenser, and a wave pump that operates with air pressure caused by wave power. It consists of a solar pumping pond having a transparent evaporation prevention film covering the upper part and a heat insulating structure wall surrounding the periphery, and seawater supplied from the center pipe of the wave pump is supplied to the solar pumping pond, and the solar pumping High-temperature seawater from a light pumping pond is supplied to the evaporator, and the evaporation chamber of the evaporator is evaporated by the bleed pump, and the water vapor is transferred to a condenser and cooled with low-temperature deep water. A high-productivity sea area creation system characterized in that, in addition to a seawater desalination system for obtaining fresh water, a marine pasture is created at the seawater outlet of the condenser.
JP62087087A 1987-04-10 1987-04-10 High productivity sea area creating system Pending JPS63252587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087087A JPS63252587A (en) 1987-04-10 1987-04-10 High productivity sea area creating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087087A JPS63252587A (en) 1987-04-10 1987-04-10 High productivity sea area creating system

Publications (1)

Publication Number Publication Date
JPS63252587A true JPS63252587A (en) 1988-10-19

Family

ID=13905165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087087A Pending JPS63252587A (en) 1987-04-10 1987-04-10 High productivity sea area creating system

Country Status (1)

Country Link
JP (1) JPS63252587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222729A (en) * 1988-03-01 1989-09-06 Shiitex:Kk High-production marine ranch creation system
US20100058992A1 (en) * 2007-03-16 2010-03-11 Japan Agency For Marine-Earth Science And Technology Apparatus for feeding aquatic organism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163295A (en) * 1974-09-16 1976-06-01 Othmer Donald F Kaisui oyobi taiyoenerugiioryosurudenryoku tansui oyobi shokuryonoseisanhoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163295A (en) * 1974-09-16 1976-06-01 Othmer Donald F Kaisui oyobi taiyoenerugiioryosurudenryoku tansui oyobi shokuryonoseisanhoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222729A (en) * 1988-03-01 1989-09-06 Shiitex:Kk High-production marine ranch creation system
US20100058992A1 (en) * 2007-03-16 2010-03-11 Japan Agency For Marine-Earth Science And Technology Apparatus for feeding aquatic organism

Similar Documents

Publication Publication Date Title
US4311012A (en) Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems
CN101737282B (en) High-efficiency hybrid ocean temperature difference power generating system
CN201301785Y (en) High-efficiency ocean thermal energy power-generation device
CN201678475U (en) Solar seawater desalination device
CN107089697A (en) Floatation type solar energy sea water desalination apparatus
CN105152252A (en) Zero-consumption seawater desalination facility based on comprehensive utilization of solar energy
CN104405600B (en) Solar energy ocean thermal energy superposition type TRT and its application method
CN107176639A (en) A kind of humidification and condensation formula sea water desalinating unit
CN113321257A (en) Sea water desalination method based on wave energy power generation and solar heat collection
CN104628067A (en) Solar-powered seawater desalination device, stove combined device and using method thereof
CN106949002A (en) A kind of new water-electricity cogeneration ocean energy utilization system
CN1810656A (en) Method and apparatus for utilizing air energy and solar energy in generating electricity and desalting sea water
CN102408139B (en) Solar magnetic-refrigeration seawater desalination device and seawater desalination method thereof
CN106966453A (en) The sea water desalinating unit and system of wind light mutual complementing coupling
US11148958B2 (en) Desalination device
CN102249356A (en) Hot water pure water coproduction device by solar energy
JPS6324429B2 (en)
CN101792190A (en) Novel solar seawater desalination system
CN207347207U (en) Sea solar energy desalinator
CN204058158U (en) Solar energy generating ammonia circulation sea water desalting equipment
CN201545714U (en) Solar high-temperature heat-collecting desalination water processing system
JPS63252587A (en) High productivity sea area creating system
CN207451659U (en) A kind of humidification and condensation formula desalination plant
CN215479918U (en) Offshore water and electricity co-production device based on temperature difference energy and membrane distillation
CN206751450U (en) A kind of desalinization automatic circulating system based on water and air natural temperature differential