JPH01222729A - High-production marine ranch creation system - Google Patents

High-production marine ranch creation system

Info

Publication number
JPH01222729A
JPH01222729A JP63045944A JP4594488A JPH01222729A JP H01222729 A JPH01222729 A JP H01222729A JP 63045944 A JP63045944 A JP 63045944A JP 4594488 A JP4594488 A JP 4594488A JP H01222729 A JPH01222729 A JP H01222729A
Authority
JP
Japan
Prior art keywords
seawater
temperature
pump
water
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63045944A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kawaguchi
勝之 川口
Seiji Kurose
黒瀬 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIITEX KK
Original Assignee
SHIITEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIITEX KK filed Critical SHIITEX KK
Priority to JP63045944A priority Critical patent/JPH01222729A/en
Publication of JPH01222729A publication Critical patent/JPH01222729A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

PURPOSE:To construct an artificial marine ranch by warming the seawater fed through a wave pump delivery pipe in a sunlight pumped storage pond and feeding the resultant warmed seawater into a temperature-difference power generation unit having a cold water wave pump for feeding low-temperature deep stratum seawater. CONSTITUTION:When a float piston 4 is raised, a delivery valve 10 in a pressurized feed cylinder 9 becomes 'on'; thereby sucked seawater is extruded into a delivery pipe 11 and enters a sunlight pumped storage pond 12. Low- temperature deep stratum seawater 15 abundant in nutritious matter at a depth of 100-300m is pumped with a cold water pump 16 or cold water wave pump 16a, chilling a condenser 17 fitted at the outlet of the pump system 16 leading to chilling a low-boiling working fluid within a circulating line 18. The liquefied liquid in the condenser 17 is heated and vaporized in an evaporator 20, by the high-temperature water fed from the sunlight pumped storage pond 12. The resultant vaporized fluid then revolves a turbine 21.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、魚群が低温深層水の高栄養源の湧昇流および
若干1度の異なった海域に集合することを利用して、低
温深層水をポンピングすることにより海面近くに高生産
性を有する海洋牧場を造成し、高水温表層水との温度差
によって発電を行い、高・低温水流を利用して、ウラン
またはリチウム等の回収を行う高生産海域造成のための
トータルシステムに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention utilizes the upwelling of low-temperature deep water with high nutrient sources and the fact that fish gather in slightly different sea areas. Create a highly productive marine farm near the sea surface by pumping water, generate electricity by the temperature difference with high temperature surface water, and recover uranium, lithium, etc. by using high and low temperature water flow. Concerning a total system for creating high-productivity sea areas.

[従来の技術1 温度差発電装置または海水淡水化装置、波動ポンプ、太
陽光揚水池を組合わせ高生産海域造成な行うトータルシ
ステムに関する従来技術は存在しないので、トータルシ
ステムを構成する個々の技術について概略説明する。
[Conventional technology 1] Since there is no prior art related to a total system that combines a temperature difference power generation device, a seawater desalination device, a wave pump, and a solar pumping pond to create a high-productivity sea area, we will not discuss the individual technologies that make up the total system. I will briefly explain.

(1)揚水発電システム 第3図は電動ポンプO1と揚水池03および水車発電機
04を水導管02.05で連結し、IK力使用の少ない
時期に、電動ポンプ01を作動させて水を揚水池03に
汲み上げておき、を力のピーク需要時期に水を水車発電
機04に導いて発電を行う渇水発電システムを示す、こ
れは電気エネルギーを位置エネルギーとして質のよいエ
ネルギーに蓄えておき、必要な時に取り出す方式である
が、揚水するために水車発電Wa4で発電したエネルギ
ーと同等またはそれ以上のエネルギーを要し、エネルギ
ー利得にはなり得ない。
(1) Pumped storage power generation system Fig. 3 connects an electric pump O1, a pumped storage pond 03, and a water turbine generator 04 with a water conduit 02.05, and pumps water by operating the electric pump 01 during periods when IK power is less used. This shows a drought power generation system in which water is pumped up into a pond 03 and then guided to a water turbine generator 04 during peak demand periods to generate electricity. Although this is a method for extracting water at any time, it requires energy equal to or greater than the energy generated by the water turbine power generation Wa4 to pump water, and it cannot provide any energy gain.

(2)温度差発電装置 第4図に示すように、低沸点作動流体閉サイクル回路0
11にタービン発電機O12,蒸発器013、循[ポン
プ014およびコンデンサ015を設け、低水温深層水
020を導管016および冷水ポンプ018を介しコン
デンサ015に導いてタービン後の作動流体を冷却する
。また高水温表層水021を導管017i3よび温水ポ
ンプ019により蒸Q)3013に供給し、作動流体を
加熱蒸発させる。蒸発した高温の作!j3流体はタービ
ン発電機012を回転して出力を得る。
(2) Temperature difference power generation device As shown in Figure 4, low boiling point working fluid closed cycle circuit 0
11 is provided with a turbine generator O12, an evaporator 013, a circulating pump 014, and a condenser 015, and low-temperature deep water 020 is guided to the condenser 015 via a conduit 016 and a cold water pump 018 to cool the working fluid after the turbine. Further, the high temperature surface water 021 is supplied to the steamer Q) 3013 through the conduit 017i3 and the hot water pump 019, and the working fluid is heated and evaporated. Made of evaporated high temperature! The j3 fluid rotates the turbine generator 012 to obtain output.

このような温度差発電装置では、ポンプ類の所内動力が
大きく、従って発電単価も高く、低出力のものでは15
0円/kWhにもなる。
In such a temperature difference power generation device, the internal power of the pumps is large, and the unit cost of power generation is therefore high.
It can be as low as 0 yen/kWh.

(3)ウラン・リチウム回収装置 海水よりウラン等を回収するためにウラン・、リチウム
回収筒を使用する。海水中のウラン含有量は、3ppb
 (3μg/2)であり1回収効率100%としても、
1kgのウランを得るには30万トンの海水を回流させ
る必要がある。設備費や回流ポンプの動力費を考慮して
経済性を評価すると、現状ウランの価格が極めて安いこ
とから市場ベースに乗らない。
(3) Uranium/lithium recovery device A uranium/lithium recovery cylinder is used to recover uranium, etc. from seawater. The uranium content in seawater is 3 ppb.
(3 μg/2) and even if the 1 recovery efficiency is 100%,
To obtain 1 kg of uranium, it is necessary to circulate 300,000 tons of seawater. If we evaluate the economic efficiency by taking into account the cost of equipment and the power cost of the recirculation pump, the current price of uranium is extremely low, so it will not be based on the market.

(4)海流上昇装置 海底にコンクリート製のブロックや浮き付きの布製上昇
流装置を敷設することがあるが、何れも自然海流をll
l用するものであり、大量の昇口流を得ることはできな
い。
(4) Ocean current lift devices Concrete blocks or fabric updraft devices with floats are sometimes laid on the seabed, but these devices do not allow natural ocean currents to flow.
1, and it is not possible to obtain a large amount of ascending flow.

(5)海水淡水化装置 海水淡水化装置(第2図)も温度差発電装置と同様、高
水温の海面表層水と低水温深層水間の温度差を利用して
、減圧、蒸発、′凝縮せしめて真水を採集する装置であ
り、温度差の増加、所内動力。
(5) Seawater desalination equipment Seawater desalination equipment (Figure 2) is similar to a temperature difference power generation device, and utilizes the temperature difference between high-temperature sea surface water and low-temperature deep water to perform depressurization, evaporation, and condensation. At least it is a device to collect fresh water, increase temperature difference, and in-house power.

の減少が課題となっている。The decrease in the number of

〔発明が解決しようとする課′E1] 前述のような従来システムは、波動ポンプ、タービン発
電、海洋養殖、海水淡水化などそれぞれ単一の目的のた
めに単体の機器が設置されている場合が多く、当然のこ
とながら自然エネルギーを単一の形式で利用することは
経済的に不利となり、海洋牧場、渇水発電を除いて殆ど
実用化されていない。
[Problem to be solved by the invention 'E1] In conventional systems such as those described above, individual devices are often installed for a single purpose, such as wave pumps, turbine power generation, marine aquaculture, and seawater desalination. Naturally, it is economically disadvantageous to use natural energy in a single form, and it is rarely put to practical use except for ocean ranching and drought power generation.

前述の温度差発電装置は、高水温表層水と低水温深層水
の温度差が小さいため、発電効率が低し1゜ またウラン・リチウム回収装置においては、ウラン等を
回収する吸着剤に如何に良品が開発されても、ウラン1
kg当り30万トン以上の大量の海水を回流させること
に変りはないので、トータルシステム的な考え方でコス
トを下げる必要がある。
The above-mentioned temperature difference power generation device has a low power generation efficiency due to the small temperature difference between the high temperature surface water and the low temperature deep water. Even if a good product is developed, uranium 1
Since a large amount of seawater (300,000 tons or more per kg) will still be circulated, it is necessary to reduce costs by thinking from a total system perspective.

本発明は以上の問題点を解決する手段として合理的な組
合わせシステムを提供することを課題とする。
An object of the present invention is to provide a rational combination system as a means for solving the above problems.

[!fillを解決するための手段] 本発明は、 (1)シリンダ内部を往復運動し、断面積の異なるフロ
ートおよびピストンを宵する波動ポンプと。
[! [Means for Solving Fill] The present invention includes: (1) A wave pump that reciprocates inside a cylinder and includes a float and a piston having different cross-sectional areas.

(2)前記波動ポンプ吐出管から供給される海水を貯留
して太陽光で加温する太陽光揚水池と、(3)蒸発器、
コンデンサ、循環ポンプ、循環流体回路右よび前記コン
デンサに低水温深層水を供給する冷水ポンプまたは冷水
波動ポンプを有する温度差発電装置または海水淡水化装
置とからな(4)前記太陽光揚水池の海水を前記温度差
発電または海水淡水化装置の蒸発器に供給、循環すると
共に、前記温度差発電または海水淡水化装置の海水流出
部に海洋牧場を造成することを特徴とする。
(2) a solar pumping pond that stores seawater supplied from the wave pump discharge pipe and heats it with sunlight; (3) an evaporator;
A temperature difference power generation device or a seawater desalination device having a condenser, a circulating pump, a circulating fluid circuit, and a cold water pump or a cold water wave pump that supplies low-temperature deep water to the condenser (4) Seawater in the solar pumping pond is supplied and circulated to the evaporator of the temperature difference power generation or seawater desalination device, and a marine pasture is created at the seawater outlet of the temperature difference power generation or seawater desalination device.

また、前記太陽光揚水池の代わりに、原動所の1排水を
前記温度差発電または海水淡水化装置の蒸発器に供給、
循環し、前記コンデンサ出口水と合流せしめた水温調節
海水を前記海洋牧場に供給する装置を備λた高生産海域
造成システムである。
In addition, instead of the solar pumping pond, one wastewater of the power plant is supplied to the temperature difference power generation or the evaporator of the seawater desalination device,
This is a high-productivity sea area creation system that is equipped with a device that supplies temperature-adjusted seawater that is circulated and merged with the condenser outlet water to the ocean farm.

〔作用1 (a)波動ポンプにより、高水温表層水を太陽光揚水池
に汲み上げる。この水を太陽光で加熱し。
[Action 1 (a) A wave pump pumps high-temperature surface water to a solar pumping pond. Heat this water with sunlight.

低沸点作動流体を利用する温度差発電の高水温表層水と
低水温深層水の温度差を大きくする。太陽光揚水池の海
水の濃度を変え、高濃度塩水を自然発生的に太陽池の底
部に集積沈殿せしめ、その密度差により対流が発生しな
いようにして、池の底部高濃度層に蓄熱する。
Increase the temperature difference between high temperature surface water and low temperature deep water in temperature difference power generation using low boiling point working fluid. By changing the concentration of seawater in the solar pumping pond, highly concentrated salt water is naturally accumulated and precipitated at the bottom of the solar pond, preventing convection from occurring due to the difference in density, and storing heat in the high concentration layer at the bottom of the pond.

波動ポンプにより、高水温表層水を吸い上げ、太陽光揚
水池に供給する場合、 ■ まだ供給湧水が太陽光揚水池で暖まらない内に、温
度差発電装置の蒸発器へ供給される。
When high-temperature surface water is sucked up by a wave pump and supplied to a solar pumping pond, ■ The supplied spring water is supplied to the evaporator of the temperature difference power generation device before it is warmed up in the solar pumping pond.

■ 波高が0.5m以下では所要の海水が供給できない
■ If the wave height is less than 0.5m, the required seawater cannot be supplied.

等の実用上の問題がある0本発明ではこのような問題を
次の手段により解決する。
In the present invention, such problems are solved by the following means.

(D 比重の大きい温海水が底部に沈積し、温度上昇し
ても対流による放熱が生じないことを+++用し、太陽
光揚水池の底部と上記蒸発器間に高温循環回路を設ける
(D) Taking advantage of the fact that warm seawater with a large specific gravity is deposited at the bottom and no heat radiation occurs due to convection even if the temperature rises, a high temperature circulation circuit is provided between the bottom of the solar pumping pond and the evaporator.

■ 上記循環回路に電動ポンプおよび波動循環ポンプを
併設し、先ず波力を極限まで利用し、所要の波高が得ら
れない時は、電動ポンプによって循環する。
■ An electric pump and a wave circulation pump are installed in the above circulation circuit to utilize the wave power to its maximum extent, and when the required wave height cannot be obtained, the electric pump circulates.

■ 太陽光揚水池に供給する高温表層水は、海洋牧場へ
の温度調節用高温水の消費分のみとなるので、波動ポン
プからの表層水供給が少なくて済み、波浪が高い時に吸
上げて置けば良い。
■ The high-temperature surface water supplied to the solar pumping pond is only the amount of high-temperature water used for temperature regulation at the ocean farm, so there is less surface water supply from the wave pump, and it can be pumped up and stored when waves are high. Good.

(b)上記太陽光揚水池底部の高温水を温度差発電装置
の蒸発器に供給し、その熱の供給によりアンモニア、フ
ロン等の作動流体を蒸発せしめる。
(b) The high-temperature water at the bottom of the solar pumping pond is supplied to the evaporator of the temperature difference power generation device, and the supply of heat evaporates working fluids such as ammonia and fluorocarbons.

放熱した海水は、循環され再度太陽光揚水池の底部に高
温水と合流して混合し、高温水となる。
The seawater that has radiated heat is circulated and once again joins and mixes with high-temperature water at the bottom of the solar pumping pond, becoming high-temperature water.

(cl上記蒸発器から流出する海水はいまだ十分に高温
度を保有しているため、その一部をコンデンサによって
暖められた低温深層水と合流して。
(Cl) Since the seawater flowing out from the above evaporator still has a sufficiently high temperature, a portion of it is combined with the low-temperature deep water warmed by the condenser.

魚族の養殖に最も適当した温度に調節し、海洋牧場にこ
の温水を噴流させる。
The temperature is adjusted to the most suitable temperature for fish cultivation, and this warm water is jetted onto the marine farm.

このように、上記蒸発器から排出される高温水の余熱を
利用して、その一部をコンデンサにより暖められた低温
深層水と混合し、魚類の生育に最も適する水温に調節で
きるようにしたことは本発明の特徴的な技術思想である
In this way, by using the residual heat of the high-temperature water discharged from the evaporator, a portion of it is mixed with low-temperature deep water heated by the condenser, making it possible to adjust the water temperature to the most suitable temperature for fish growth. is a characteristic technical idea of the present invention.

(d)魚類の餌となる植物性プランクトンが摂取する窒
素、リン等の栄養塩を大量に含む深層水を上記蒸発器出
口の高温水と混合して全体として栄養価が高く、かつ魚
類の生育に適した高温水を海洋牧場に放水することにな
るので、その水域は常に栄lll1IIiが高く、高生
産海域で、かつ流動しているため海水が常に浄化される
(d) Deep water containing a large amount of nutrients such as nitrogen and phosphorus, which is ingested by phytoplankton that is food for fish, is mixed with the high-temperature water at the outlet of the evaporator to achieve high nutritional value as a whole and to support the growth of fish. Since high-temperature water suitable for this purpose is discharged to the marine farm, the water area is always highly fertile and productive, and because it is flowing, the seawater is constantly purified.

(e)原動所が存在する時は、原動所の温排水を利用し
て、前!c!温度差発電または海水淡水化装置の蒸発器
へ熱を供給、循環せしめ、前記温排水と前記コンデンサ
出口水流と混合して、水温調節を行い、適温水を海洋牧
場へ供給する。
(e) When there is a power station, use the heated waste water of the power station to move forward! c! Heat is supplied and circulated to the evaporator of the temperature difference power generation or seawater desalination device, and is mixed with the heated wastewater and the condenser outlet water flow to adjust the water temperature and supply appropriately heated water to the marine farm.

すなわち、原動所の温排水は、外気との7℃の温度上界
の限度内で認可されているが、この温排水をfll用し
て; ■ 温度差発電または海水淡水化の蒸発器の温度を高め
る。
In other words, heated wastewater from a power station is approved within a temperature limit of 7°C relative to outside air, but if this heated wastewater is used as a full; Increase.

■ 低温深層水と混合調節して最適温水を海洋牧場へ供
給する。
■ Supply optimally warm water to ocean farms by adjusting the mixture with low-temperature deep water.

〔実施例1 第1図において、波動ポンプ3の海水取入口2に波浪集
合装置lが取付けられ、波浪のエネルギーを集めて波動
ポンプに誘導する。波浪集合装mlは、先細形のlll
1璧扱や深さを変えた没水平板を組合わせて波動を集合
する装置で、波動ポンプの入り口に設置される。
[Embodiment 1] In FIG. 1, a wave collecting device 1 is attached to the seawater intake port 2 of the wave pump 3, and collects wave energy and guides it to the wave pump. Nami set ML is tapered LL
This is a device that collects wave motion by combining submerged horizontal plates with different angles and depths, and is installed at the entrance of a wave pump.

波動ポンプ3はフロート用シリンダ8内に、フロートピ
ストン4を内蔵する。このフロートピストン4は下端を
海水取水口2に面して開口部を有する中空°軸5により
、圧送ピストン6と連結されている。中空軸5は、同時
に海水吸入管となっている。
The wave pump 3 includes a float piston 4 inside a float cylinder 8. The float piston 4 is connected to a pressure-feeding piston 6 by a hollow shaft 5 having an opening facing the seawater intake port 2 at its lower end. The hollow shaft 5 also serves as a seawater suction pipe.

上記中空軸5の上端には、吸入弁7が設置されている。A suction valve 7 is installed at the upper end of the hollow shaft 5.

上記圧送ピストン6はフロートピストン4に比較して断
面積が小さく、従って圧送ピストン用シリンダ9も小径
となっている。シリンダ9には、吐出弁10が設置され
、吐出管11により、太陽光揚水池12と連結されてい
る。フロートピストン4と圧送ピストン6は、波高の変
動によりシリンダ8.9内を自由に摺動往復運動を行う
The pressure-feeding piston 6 has a smaller cross-sectional area than the float piston 4, and therefore the pressure-feeding piston cylinder 9 also has a smaller diameter. A discharge valve 10 is installed in the cylinder 9, and is connected to a solar pumping pond 12 through a discharge pipe 11. The float piston 4 and the pressure piston 6 freely slide and reciprocate within the cylinder 8.9 due to fluctuations in wave height.

波高が低くなりフロートピストン4が下降すると、吐出
弁10は閉じ、圧送シリンダ9は負圧となり、中空軸湧
水吸入管5の吸入弁7は開となり、海水は中空軸5を経
由して、圧送シリンダ9内に吸入される。波高の大小が
そのままピストンのストロークの大小となる0次に波高
が高くなり、フロートピストン4が上昇すると、圧送シ
リンダ9内の吐出弁10が開となり、吸入された海水は
、吐出管11内に押し出され、太陽光揚水池12に流入
する。
When the wave height decreases and the float piston 4 descends, the discharge valve 10 closes, the pressure in the pressure cylinder 9 becomes negative, the suction valve 7 of the hollow shaft spring water suction pipe 5 opens, and the seawater passes through the hollow shaft 5. It is sucked into the pressure feeding cylinder 9. When the wave height becomes higher and the float piston 4 rises, the discharge valve 10 in the pressure cylinder 9 opens, and the sucked seawater flows into the discharge pipe 11. It is pushed out and flows into the solar pumping pond 12.

太陽光tm水池12は、海面から10〜20mの高さに
設置され1表面を被う透光性の蒸発防止膜13と1ll
Il壁および底面を形成する断熱溝造壁14より構成さ
れる。
The solar tm water pond 12 is installed at a height of 10 to 20 m from the sea surface, and has a translucent evaporation prevention film 13 and 1ll that covers one surface.
It is composed of a heat insulating trench wall 14 forming an Il wall and a bottom surface.

太陽光揚水池12の深さは太陽光の透過性を考慮して約
3mとし、海水の濃度差により、比重の大きい海水が底
部に蓄積し、上下の温度差に伴う対流の発生等の放熱を
防止する。また表面からの蒸発を極力少なくするため、
透明の蒸発防止膜13によってカバーしである。太陽光
揚水池12は表面からの蒸発量および海洋牧場24養殖
用の最適温度調整に使用される海水の補給分だけの海水
が波動ポンプ3より供給される。
The depth of the solar pumped storage pond 12 is approximately 3 m in consideration of sunlight penetration, and due to the difference in seawater concentration, seawater with a high specific gravity accumulates at the bottom, and heat dissipation occurs due to the generation of convection due to the temperature difference between the upper and lower sides. prevent. In addition, in order to minimize evaporation from the surface,
It is covered with a transparent evaporation prevention film 13. The solar pumping pond 12 is supplied with seawater from the wave pump 3 in an amount corresponding to the amount of evaporation from the surface and the amount of seawater used for adjusting the optimal temperature for the marine farm 24 aquaculture.

太陽光揚水池12の深さ方向には、海水の濃度の分布に
従って蓄熱海水層を形成し、温度分布は底部が最も高く
なり1表層部は単に断熱層の役目を果たす。
A heat storage seawater layer is formed in the depth direction of the solar pumping pond 12 according to the distribution of seawater concentration, the temperature distribution is highest at the bottom, and the surface layer 12 simply serves as a heat insulating layer.

太陽光揚水池12底部の高温水循環流れを乱すことなく
t波動ポンプからの供給水を太陽光揚水池12に供給す
るために、配管11からの給水を太陽光揚水池表面に散
水して供給する。
In order to supply water from the T-wave pump to the solar pumping pond 12 without disturbing the high-temperature water circulation flow at the bottom of the solar pumping pond 12, the water from the piping 11 is sprinkled on the surface of the solar pumping pond. .

高温海水IJt1環路は、太陽光揚水池12の底部高温
海水層、蒸発器20.高温水循環ポンプ25゜高+fi
 rm水配管26により構成される。このような構成に
することにより、太陽光揚水池12の最も温度の高い深
層水の一部を利用するので、太陽光1賜水油の深さ方向
の温度分布を余り乱すことなく、蒸発器20に常に高温
水を供給することができる。
The high-temperature seawater IJt1 loop connects the high-temperature seawater layer at the bottom of the solar pumping pond 12 and the evaporator 20. High temperature water circulation pump 25° high + fi
It is composed of rm water piping 26. With this configuration, a part of the deep water with the highest temperature in the solar pumping pond 12 is used, so the temperature distribution in the depth direction of the solar pumping oil is not disturbed too much. 20 can be constantly supplied with high temperature water.

高温海水循環回路の(Fi[ポンプ25の代わりに波動
ポンプ25aを用いれば、所内動力を減じ効果的に循環
ができる。波高があまり高くない場合を考慮して、波動
ポンプ25aを循環ポンプ25と併設して使用すること
が望ましい、第1図にその実例を併記して示しである。
If the wave pump 25a is used instead of the high-temperature seawater circulation circuit (Fi [pump 25), the internal power can be reduced and circulation can be performed effectively. Considering the case where the wave height is not very high, the wave pump 25a can be replaced with the circulation pump 25. It is desirable to use them together, and an example thereof is shown in FIG.

波動ポンプの詳細は第2図に示してあり、後に説明する
Details of the wave pump are shown in FIG. 2 and will be explained later.

水深100〜300mの高栄養素に富んだ低水温深層水
15は、低水温深層水を汲み上げる冷水ポンプ16また
は冷水波動ポンプ16aによって汲み上げられ、ポンプ
系16の出口側に設けられたコンデンサ17を冷却し、
循環路1B内の低沸点作動流体を冷却する。コンデンサ
17.循環ポンプ19.蒸発器2015よびタービン発
電機21は流体循環回路18で連通されており、これら
の部材が温度差発電!Ii置22を構成する。
Low-temperature deep water 15 rich in nutrients at a depth of 100 to 300 m is pumped up by a cold water pump 16 or cold water wave pump 16a that pumps up low-temperature deep water, and cools a condenser 17 provided at the outlet side of the pump system 16. ,
The low boiling point working fluid in the circulation path 1B is cooled. Capacitor 17. Circulation pump 19. The evaporator 2015 and the turbine generator 21 are connected through the fluid circulation circuit 18, and these members generate electricity by temperature difference! Ii placement 22 is configured.

コンデンサ17出口の液化された流体は、循環ポンプ1
9により回流され、蒸発器20において、太陽光揚水池
12からの高温水によって加熱されて気化する。この高
温の気化流体がタービン21によって動力を回収し発電
を行う。
The liquefied fluid at the outlet of the condenser 17 is transferred to the circulation pump 1
9, and is heated and vaporized in the evaporator 20 by high temperature water from the solar pumping pond 12. This high-temperature vaporized fluid recovers power by the turbine 21 and generates electricity.

コンデンサ17の出口にはウラン、リチウム吸着筒23
が設けられている。またこのウラン回収吸着筒23の入
口部には蒸発器2oの高温循環水出口27より、調整弁
28を有するバイパス回路29が連結されている。
At the outlet of the capacitor 17, there is a uranium and lithium adsorption tube 23.
is provided. Further, a bypass circuit 29 having a regulating valve 28 is connected to the inlet of the uranium recovery adsorption column 23 from the high temperature circulating water outlet 27 of the evaporator 2o.

ウラン・リチウム回収吸着筒23は無機または有機の特
殊な吸着剤を使用した多相の吸着剤セルの中に海水を導
入するリニア方式のものや、m環するループ方式のもの
もあるが、選択性、吸脱性がよく、吸収量の大きい吸着
剤を用いることが望ましい。
The uranium/lithium recovery adsorption cylinder 23 is available in linear type, in which seawater is introduced into a multi-phase adsorbent cell using a special inorganic or organic adsorbent, and in loop type, in which m-rings are used. It is desirable to use an adsorbent that has good properties, adsorption and desorption properties, and a large amount of absorption.

このウラン、リチウム回収筒23の設置場所は、水量を
多量に要する点から冷水/温水の合流管に設置すること
が好ましいが、差支えがある場合は、冷水管中に設置す
る。温水管には、微生物の付着、腐食が比較的多いので
、この点から温水管に付設することは好ましくない、温
水管や蒸発器等の付着物や腐食の加速を防止するには、
定期的に冷水を蒸発器や温水管に循環させることが好ま
しい。
The uranium and lithium recovery cylinder 23 is preferably installed in a cold water/hot water confluence pipe because it requires a large amount of water, but if there is a problem, it is installed in a cold water pipe. Hot water pipes are relatively prone to microbial adhesion and corrosion, so from this point of view it is not recommended to install them on hot water pipes.
It is preferable to periodically circulate cold water through the evaporator and hot water pipes.

吸着筒23の海水出口部に海洋牧場24が形成されてい
る。海洋牧4の魚類に適切な水温を与えるため、コンデ
ンサ出口配管に蒸発器20からの分岐管29を設け、弁
28により、流量を調節する。魚類の成長速度が最高と
なる水温は1種類によっても異なるが、25〜28℃程
度である。
A marine pasture 24 is formed at the seawater outlet of the adsorption cylinder 23. In order to provide appropriate water temperature to the fish in the marine pasture 4, a branch pipe 29 from the evaporator 20 is provided in the condenser outlet pipe, and the flow rate is adjusted by a valve 28. The water temperature at which the growth rate of fish reaches its maximum varies depending on the species, but is approximately 25 to 28 degrees Celsius.

以上の実施例によれば、波動ポンプ、太陽光揚水池、温
度差発電装置、ウラン・リチウム回収筒を組合わせ、海
洋牧場の造成と相俟って、省エネルギー、多目的総合シ
ステムを構成することができる。
According to the above embodiment, a wave pump, a solar pumping pond, a temperature difference power generation device, and a uranium/lithium recovery cylinder are combined to create an energy-saving, multipurpose comprehensive system in conjunction with the creation of a marine farm. can.

次に第2図の実施例について説明する。第2図の実施例
では第1図の温度差発電装置22に代り、真水35を製
造する海水淡水化装5!34を備えており、波動ポンプ
3を用いているほかは第1図と同様である。この例では
高温海水循環路26の循環ポンプ25の入口部より分岐
した弁30を有する分岐管31が、波動ポンプ3の吸入
弁7を介して圧送シリンダ9へ連結される。前記波動ポ
ンプ3には、切換弁33を有する海水吸入管32が設置
されている。
Next, the embodiment shown in FIG. 2 will be described. The embodiment shown in FIG. 2 is the same as that shown in FIG. 1 except that the temperature difference power generation device 22 in FIG. be. In this example, a branch pipe 31 having a valve 30 branched from the inlet of the circulation pump 25 of the high temperature seawater circulation path 26 is connected to the pressure feeding cylinder 9 via the suction valve 7 of the wave pump 3. A seawater suction pipe 32 having a switching valve 33 is installed in the wave pump 3 .

太陽光揚水池12へ新規海水を供給する必要がある時は
、弁30を閉じポンプ25を作動させて高温水を循環さ
せ、一方、波動ポンプ3の吸入弁33を全開して、吐出
弁10.供給配管11を経由し太陽光揚水池12へ海水
を供給する。
When it is necessary to supply fresh seawater to the solar pumping pond 12, the valve 30 is closed and the pump 25 is operated to circulate high-temperature water, while the suction valve 33 of the wave pump 3 is fully opened and the discharge valve 10 is activated. .. Seawater is supplied to the solar pumping pond 12 via the supply pipe 11.

太陽揚水池12へ海水供給しない時は、海水吸入弁33
を全閉し、電動ポンプ25を停止し1分岐管弁30を全
開して、波動ポンプ3を切換え利用して、7X発器20
出口の高温水を太陽光揚水池へlallmさせる。波動
ポンプ3には、二重ピストン4.6の海水入口側に、そ
れぞれ海水取入口2゜2aを設け、ピストン駆動力を増
加している。
When seawater is not supplied to the solar pumping pond 12, the seawater intake valve 33
fully closed, stopped the electric pump 25, fully opened the first branch pipe valve 30, and switched the wave pump 3 to use the 7X generator 20.
The high temperature water at the outlet is sent to a solar pumping pond. The wave pump 3 is provided with seawater intake ports 2.degree. 2a on the seawater inlet sides of the double pistons 4.6, respectively, to increase the piston driving force.

第2国の実施例は、第1図の実施例の温度差発電装置の
代りに海水淡水化装置を備え、海水から真水を得る総合
システムであって、省エネルギーの多目的利用ができる
The embodiment of the second country includes a seawater desalination device instead of the temperature difference power generation device of the embodiment of FIG. 1, and is a comprehensive system for obtaining fresh water from seawater, which can be used for energy saving and multipurpose purposes.

[発明の効果1 本発明は次の優れた効果を奏する。[Effects of the invention 1 The present invention has the following excellent effects.

(イ)波浪集合装置によって波高エネルギーを集め、波
動ポンプが高水温表層水を太陽光揚水池に汲み上げ、波
浪のエネルギーを利用する。
(b) A wave collection device collects wave height energy, and a wave pump pumps high-temperature surface water to a solar pumping pond to utilize wave energy.

(ロ)太陽光揚水池では、太陽光を受けて、池内の海水
1品度、特に低層の温度を高め蓄熱するので省エネルギ
ーである。
(b) Solar pumped storage ponds save energy because they receive sunlight and increase the temperature of the seawater in the pond, especially in the lower layer, and store heat.

(ハ)太陽光揚水池の高温水と低水温深層水による熱交
換によって、温度差発電装置または海水淡水化装置の温
度差を高め、効率よ(発電を行うことが可能となる。ま
た、太陽光揚水池の高温水ポンプの循環ポンプまたは低
1昌深層水のポンピングに波動ポンプを利用できるので
、所内動力が減少する。
(c) Heat exchange between the high-temperature water in the solar pumping pond and the low-temperature deep seawater increases the temperature difference in the temperature difference power generation device or seawater desalination device, making it possible to generate electricity more efficiently. A wave pump can be used for the circulation pump of the high-temperature water pump in the optical pumping pond or for pumping low-level deep-sea water, thereby reducing the in-house power.

(ニ)太陽光揚水池の高温水は、富に上記温度差発電装
置の蒸発器を通って循環しているため、蓄熱された高温
が常に維持される。
(d) Since the high temperature water in the solar pumping pond is circulated through the evaporator of the temperature difference power generation device, the stored high temperature is always maintained.

(ホ)1度差発i!!装置または海水淡水化装置から吐
出される低水温深層水には、高宋a素を多量に含み、酸
素供給および小魚のタンパク栄養源となる植物性プラン
クトンが多量に発生し、魚群を集約することができる。
(e) 1 degree difference i! ! The low-temperature deep-sea water discharged from the equipment or seawater desalination equipment contains a large amount of high-Song a, and a large amount of phytoplankton, which supplies oxygen and serves as a source of protein nutrition for small fish, occurs, concentrating fish schools. Can be done.

このようにして、海面表層水域に高栄養素の海流を有す
る人工海洋牧場を効率よく構成することができる。
In this way, it is possible to efficiently construct an artificial marine pasture having high-nutrient ocean currents in the surface waters of the sea.

(へJ上記蒸発器出口の高温水をコンデンサ出口のFJ
 M ′!RII水と混合せしめ、海水温度を魚成育の
3II温に調節して上記海洋牧場に供給できるので魚の
成育が速い。
(To J) The high temperature water at the outlet of the evaporator above is
M'! By mixing it with RII water and adjusting the seawater temperature to the 3II temperature for fish growth, it can be supplied to the marine farm, so the fish grow quickly.

(ト)さらに温度差発電装置または海水淡水化装置から
の大量の排水から、ウラン、リチウムを回収することが
できる。
(g) Furthermore, uranium and lithium can be recovered from a large amount of wastewater from a temperature difference power generation device or a seawater desalination device.

(チ)以上の諸効果の相乗効果により、省エネルギー、
高能率で生産性の高い海洋牧場を造成することができる
(H) Due to the synergistic effect of the above effects, energy saving and
It is possible to create a highly efficient and highly productive marine farm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例システムのフローシート、第2
図は別の実施例システムのフローシート、第?図は揚水
発電所のフローシート、第4図は温度差発電装置のフロ
ーシートである。 l・・・波浪集合装置   2.2a−・・海水取水口
3・・・波動ポンプ    4・−フロートピストン5
−・・軸(吸入管)    6−・・圧送ピストン7・
−・吸入弁      8.9−・・シリンダ10−一
吐出弁     11−・・吐出管12−・・太陽光揚
水池  13−・・蒸発防止膜14・・・断熱1造壁 
  15 ・・・低水温深層水16.16a・・・冷水
ポンプ 17−・・コンデンサ   18−軸流体循環回路19
−・・循環ポンプ   2o・−蒸発器21−・・ター
ビン発電機 22・・・温度差発電装置23−・・吸着
筒     24−・・海洋牧場25.25a・−循環
高温ポンプ 26−・・高温海水循環路 27−・・高温循環水出0
28−・・調整弁     29・・・バイパス回路3
0−・・弁       31−=分岐管32−・・海
水吸入管 33・・・海水吸入弁(切替弁) 34・−海水淡水化装置 35−・・真水出 願 人 
株式会社 シーテックス
Fig. 1 is a flow sheet of the embodiment system of the present invention;
The figure is another example system flow sheet, No. The figure is a flow sheet for a pumped storage power plant, and Figure 4 is a flow sheet for a temperature difference power generation device. l...Wave gathering device 2.2a--Seawater intake 3...Wave pump 4--Float piston 5
−・・Shaft (suction pipe) 6−・Pressure piston 7・
- Suction valve 8.9-... Cylinder 10--Discharge valve 11-...Discharge pipe 12-...Solar pumping pond 13-...Evaporation prevention film 14...Insulation 1 Wall construction
15...Low water temperature deep water 16.16a...Cold water pump 17-...Condenser 18-Axis fluid circulation circuit 19
-...Circulation pump 2o...Evaporator 21-...Turbine generator 22...Temperature difference power generation device 23-...Adsorption tube 24-...Marine farm 25.25a...Circulation high temperature pump 26-...High temperature Seawater circulation path 27-...High temperature circulation water flow 0
28-... Regulating valve 29... Bypass circuit 3
0-...Valve 31-=Branch pipe 32-...Seawater intake pipe 33...Seawater intake valve (switching valve) 34--Seawater desalination equipment 35-...Fresh water applicant
SEETEX Co., Ltd.

Claims (1)

【特許請求の範囲】 1 シリンダ内部を往復運動し、断面積の異なるフロー
トおよびピストンを有する波動ポンプと、 前記波動ポンプ吐出管から供給される海水を貯留して太
陽光で加温する太陽光揚水池と、蒸発器、コンデンサ、
循環ポンプ、循環流体回路および前記コンデンサに低水
温深層水を供給する冷水ポンプまたは波動ポンプを有す
る温度差発電装置または海水淡水化装置とからなり、 前記太陽光揚水池の海水を前記温度差発電装置または海
水淡水化装置の蒸発器に供給、循環すると共に、前記温
度差発電装置または海水淡水化装置の海水流出部に海洋
牧場を造成することを特徴とする高生産海域造成システ
ム。 2 前記太陽光揚水池の代わりに、原動所の温排水を前
記蒸発器に供給、循環する循環路と、該温排水と前記コ
ンデンサ出口水とを合流して水温調節した海水を前記海
洋牧場に供給する経路を備えた請求項1記載の高生産海
域造成システム。
[Claims] 1. A wave pump that reciprocates inside a cylinder and has a float and a piston with different cross-sectional areas, and a solar pump that stores seawater supplied from the wave pump discharge pipe and heats it with sunlight. water pond, evaporator, condenser,
The temperature difference power generation device or seawater desalination device includes a circulation pump, a circulation fluid circuit, and a cold water pump or a wave pump that supplies low-temperature deep water to the condenser, and the temperature difference power generation device uses seawater in the solar pumping pond. Alternatively, a high-productivity sea area creation system characterized by supplying and circulating seawater to an evaporator of a seawater desalination device and creating a marine pasture at the outflow portion of the temperature difference power generation device or the seawater desalination device. 2 Instead of the solar pumping pond, a circulation path that supplies and circulates heated wastewater from the power station to the evaporator, and seawater whose temperature is adjusted by combining the heated wastewater and the condenser outlet water to the marine farm. The high production sea area creation system according to claim 1, further comprising a supply route.
JP63045944A 1988-03-01 1988-03-01 High-production marine ranch creation system Pending JPH01222729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045944A JPH01222729A (en) 1988-03-01 1988-03-01 High-production marine ranch creation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045944A JPH01222729A (en) 1988-03-01 1988-03-01 High-production marine ranch creation system

Publications (1)

Publication Number Publication Date
JPH01222729A true JPH01222729A (en) 1989-09-06

Family

ID=12733387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045944A Pending JPH01222729A (en) 1988-03-01 1988-03-01 High-production marine ranch creation system

Country Status (1)

Country Link
JP (1) JPH01222729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058992A1 (en) * 2007-03-16 2010-03-11 Japan Agency For Marine-Earth Science And Technology Apparatus for feeding aquatic organism
CN104542419A (en) * 2014-12-25 2015-04-29 莆田市山海天农业发展有限公司 Device for breeding large yellow croaker
CN105248329A (en) * 2015-10-30 2016-01-20 滁州市南谯区长江水产良种繁育场 Pond circulating water culture method for weevers
CN105248323A (en) * 2015-10-15 2016-01-20 珠海市现代农业发展中心 Four-level culture method of lateolabrax japonicus pond

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225778A (en) * 1986-03-27 1987-10-03 Hisaka Works Ltd Deep sea water supply device
JPS6315047A (en) * 1986-07-07 1988-01-22 ダイキン工業株式会社 Heat pump system
JPS63160534A (en) * 1986-12-25 1988-07-04 三菱重工業株式会社 High productivity sea area creation system
JPS63252587A (en) * 1987-04-10 1988-10-19 Mitsubishi Heavy Ind Ltd High productivity sea area creating system
JPS63252586A (en) * 1987-04-10 1988-10-19 Mitsubishi Heavy Ind Ltd High productivity sea area creating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225778A (en) * 1986-03-27 1987-10-03 Hisaka Works Ltd Deep sea water supply device
JPS6315047A (en) * 1986-07-07 1988-01-22 ダイキン工業株式会社 Heat pump system
JPS63160534A (en) * 1986-12-25 1988-07-04 三菱重工業株式会社 High productivity sea area creation system
JPS63252587A (en) * 1987-04-10 1988-10-19 Mitsubishi Heavy Ind Ltd High productivity sea area creating system
JPS63252586A (en) * 1987-04-10 1988-10-19 Mitsubishi Heavy Ind Ltd High productivity sea area creating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100058992A1 (en) * 2007-03-16 2010-03-11 Japan Agency For Marine-Earth Science And Technology Apparatus for feeding aquatic organism
CN104542419A (en) * 2014-12-25 2015-04-29 莆田市山海天农业发展有限公司 Device for breeding large yellow croaker
CN105248323A (en) * 2015-10-15 2016-01-20 珠海市现代农业发展中心 Four-level culture method of lateolabrax japonicus pond
CN105248329A (en) * 2015-10-30 2016-01-20 滁州市南谯区长江水产良种繁育场 Pond circulating water culture method for weevers

Similar Documents

Publication Publication Date Title
EP0045789B1 (en) Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems
BE1023849B1 (en) Aquaponic Unit
CN105152252A (en) Zero-consumption seawater desalination facility based on comprehensive utilization of solar energy
CN102644565B (en) Ocean thermal energy and geothermal energy combined power generating system
CN2820302Y (en) Solar energy film distilling system
CN105621513B (en) A kind of solar energy photovoltaic heat pump sea water desalination and heating cooling couple system
CN106234077A (en) That can not keep the sun off and that light quantity is variable photovoltaic greenhouse
CN109286339B (en) Solar thermoelectric generation and air water taking integrated device applied to small island
CN105113575A (en) Device for extracting water from air with tidal energy
CN106917728A (en) Using geothermal energy and the clean electric power generation change system and method for solar energy
KR100954234B1 (en) Sea water source heat pump system for heating and cooling
CN114109751B (en) Ocean temperature difference energy power generation and comprehensive utilization system
JPH01222729A (en) High-production marine ranch creation system
JP2003269113A (en) Combined energy system
CN205709956U (en) A kind of solar energy photovoltaic heat pump desalinization and heat cooling couple system
CN104315631B (en) A kind of auto-control formula cultivating system
CN204156778U (en) A kind of ocean thermal energy is combined the electricity generation system utilized with solar energy
CN206420096U (en) A kind of air heat energy collection system
US20140124356A1 (en) Process for solar thermal energy production
CN106145489B (en) It is a kind of based on the coupled low temperature multi-effect sea water desalting system provided multiple forms of energy to complement each other
CN104860364B (en) Tidal direct-driving seawater desalination and energy utilization system
CN107294475A (en) Moveable photovoltaic power generation apparatus
CN106988972A (en) It is adapted to the method that rural area is generated electricity using solar energy as the carbon dioxide recycle of the energy
JPH0661195B2 (en) High production sea area creation system
JPH04194370A (en) Combined system of temperature differential generating set and marine organism cultivating equipment