JPS6325067B2 - - Google Patents
Info
- Publication number
- JPS6325067B2 JPS6325067B2 JP56016857A JP1685781A JPS6325067B2 JP S6325067 B2 JPS6325067 B2 JP S6325067B2 JP 56016857 A JP56016857 A JP 56016857A JP 1685781 A JP1685781 A JP 1685781A JP S6325067 B2 JPS6325067 B2 JP S6325067B2
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- temperature
- thickness
- zinc
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- 239000011701 zinc Substances 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000007740 vapor deposition Methods 0.000 claims description 11
- 238000001704 evaporation Methods 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 5
- 238000001771 vacuum deposition Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000005246 galvanizing Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000010960 cold rolled steel Substances 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 238000005238 degreasing Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は鋼帯に連続的に密着性および加工性の
優れた蒸着亜鉛メツキ皮膜を形成させる新規な方
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for continuously forming a vapor-deposited galvanized film with excellent adhesion and workability on a steel strip.
鋼帯に連続的に亜鉛メツキ皮膜を形成させる方
法として従来使用されているものに溶融亜鉛メツ
キ法と電気亜鉛メツキ法がある。これらのメツキ
法による皮膜はその方法の特性上鋼帯の両面に形
成するようになつている。 Conventionally used methods for continuously forming a galvanized film on a steel strip include a hot-dip galvanizing method and an electrolytic galvanizing method. Due to the characteristics of these plating methods, the coatings are formed on both sides of the steel strip.
最近片面亜鉛メツキの冷延鋼板が自動車製造業
界より要望されている。その理由は自動車の外装
板は外面は塗装されるが、塗装面の下地が亜鉛メ
ツキされている場合には美麗な塗装仕上りが期待
できない。このため、現在では無メツキ鋼板を使
用し、汚水のはねかゝる裏面には特殊防錆処理を
施しているが、防錆処理のコストは無視できない
ものであり、コスト低減のために防錆性能の良い
亜鉛メツキを片面のみ施した鋼板が要望されてい
る。この片面メツキの方法の一つとして真空蒸着
亜鉛メツキ法が研究されている。この方法は高度
の真空下で蒸発させた亜鉛を表面を清浄活性化さ
せた鋼帯面(片面または両面のいずれも可能)に
蒸着させメツキ層を形成するのであるが、蒸着メ
ツキ皮膜の密着性および靭性上からは蒸着前の鋼
帯温度は200〜250℃が最適である。 Recently, single-sided galvanized cold-rolled steel sheets have been requested by the automobile manufacturing industry. The reason for this is that the exterior surfaces of automobiles are painted, but if the base of the painted surface is galvanized, a beautiful paint finish cannot be expected. For this reason, currently unplated steel plates are used, and the back side where sewage splashes is treated with a special anti-corrosion treatment, but the cost of anti-rust treatment cannot be ignored, and in order to reduce costs, anti-rust treatment is applied. There is a demand for steel plates with galvanized coating on only one side, which has good rust resistance. A vacuum evaporation galvanizing method is being researched as one of the methods for single-sided plating. In this method, a plating layer is formed by depositing zinc evaporated under a high degree of vacuum onto the surface of the steel strip whose surface has been cleaned and activated (either one or both sides are possible), but the adhesion of the vapor-deposited plating film From the viewpoint of toughness, the optimum temperature of the steel strip before vapor deposition is 200 to 250°C.
しかしながら、蒸着前の鋼帯の温度を200℃以
上とすると亜鉛分子の凝縮・凝固潜熱により蒸着
後の鋼帯の温度が上昇し、鋼帯上に蒸着された亜
鉛分子が再度鋼帯から雰囲気中に飛び出すという
所謂再蒸発現象を生じ、このため再蒸発した亜鉛
分子が、シールロール等に付着して、円滑な運転
に支障を来たすという欠点があつた。第1図は板
厚0.3mmの蒸着前の鋼帯温度とメツキ皮膜厚さに
対する再蒸発量の関係を示したもので、再蒸発量
が4×10-3g/m2 sec以上になると円滑な運転
が阻害される。 However, if the temperature of the steel strip before vapor deposition is 200°C or higher, the temperature of the steel strip after vapor deposition will rise due to the latent heat of condensation and solidification of zinc molecules, and the zinc molecules vapor-deposited on the steel strip will return to the atmosphere from the steel strip. A so-called re-evaporation phenomenon occurs in which the re-evaporated zinc molecules stick to seal rolls and the like, impeding smooth operation. Figure 1 shows the relationship between the re-evaporation amount and the temperature of a 0.3 mm steel strip before vapor deposition and the plating film thickness. driving is hindered.
第1図において、横軸(蒸着前の鋼帯温度)に
平行な点線Aは、亜鉛再蒸発量の円滑運転の上限
を示し、縦軸(メツキ亜鉛の再蒸発量)に平行な
実線Bは皮膜靭性不良・良好の境界線でありその
左側αは不良範囲、右側βが良好範囲である。ま
た曲線a,b及びcは0.3m板厚鋼帯にそれぞれ
膜厚10μ,6μ及び2μのメツキ亜鉛層を蒸着した場
合を示す。 In Figure 1, the dotted line A parallel to the horizontal axis (steel strip temperature before vapor deposition) indicates the upper limit of smooth operation of the amount of zinc reevaporation, and the solid line B parallel to the vertical axis (the amount of reevaporation of plated zinc) This is the boundary line between poor and good film toughness, with α on the left side being a poor range and β on the right side being a good range. Curves a, b, and c show cases in which galvanized zinc layers with film thicknesses of 10 μ, 6 μ, and 2 μ, respectively, were deposited on a 0.3 m thick steel strip.
また第2図は鋼帯の板厚と蒸着メツキ皮膜厚さ
に対する温度上昇の関係を示したもので、同一鋼
帯厚さの場合温度上昇は略メツキ皮膜厚さに比例
する。直線d,e及びfは板厚が0.3mm、0.6mm及
び1.2mmの鋼帯に対するものである。 FIG. 2 shows the relationship between the temperature rise and the thickness of the steel strip and the thickness of the evaporated plating film. When the thickness of the steel strip is the same, the temperature rise is approximately proportional to the thickness of the plating film. Straight lines d, e, and f are for steel strips with plate thicknesses of 0.3 mm, 0.6 mm, and 1.2 mm.
従つて第3図に示すように最適の温度は皮膜の
性能上からT1(200℃に相当)より高いことが必
要で、また設備の円滑な運転上からT2(250℃に
相当)より低いことが必要になり、結局T1とT2
の間で運転しなければならぬこととなる。第3図
においてイは良好な範囲、ロは皮膜性能不良範
囲、ハは再蒸発のための運転不可範囲である。 Therefore, as shown in Figure 3, the optimum temperature needs to be higher than T 1 (equivalent to 200°C) from the viewpoint of film performance, and higher than T 2 (equivalent to 250°C) from the viewpoint of smooth operation of the equipment. You will need lower, eventually T 1 and T 2
You will have to drive between the two. In FIG. 3, A indicates a good range, B indicates a poor film performance range, and C indicates an unoperable range due to re-evaporation.
本発明は前記第2図に示されるように蒸着メツ
キ皮膜厚さが、鋼帯の温度上昇に関係があること
に着目し、1回の蒸着メツキ皮膜厚さを薄くし数
回にわけて蒸着することにより温度上昇を安全範
囲内に押えるとともにさらに温度制御のために2
つの蒸着工程の間に鋼帯の冷却工程を加えること
により、より精密な温度制御を可能にしたいもの
で、鋼帯板厚と皮膜厚さによつて最適の温度で蒸
着を行ない、しかも円滑な運転をすることが可能
となつた。 The present invention focuses on the fact that the thickness of the plating film deposited by vapor deposition is related to the temperature rise of the steel strip, as shown in FIG. By doing so, the temperature rise can be suppressed within the safe range, and the temperature can be further controlled by
By adding a cooling process to the steel strip between the two vapor deposition processes, we would like to be able to control the temperature more precisely, and we would like to perform the vapor deposition at the optimum temperature depending on the thickness of the steel strip and the coating thickness, and also ensure a smooth process. It became possible to drive.
以下、本発明の一具体例をあげて更に詳述す
る。 Hereinafter, one specific example of the present invention will be described in more detail.
第4図は本発明による方法実施のための一具体
例装置を示す説明図で2段蒸着の例である。第4
図において1は鋼帯コイルのアンコイラ、2は図
示していないが、連続通板に必要な処理設備で、
ウエルダ、ルーパ、等により構成されている。こ
のような処理の終つた鋼帯1は先ず酸化炉3に導
入され、その表面の油脂分を除去され、ついで還
元炉4に入り鋼帯1の表面に生成している鉄酸化
物が還元されてその表面が活性化されるとともに
焼鈍される。ついで冷却炉5で還元性の雰囲気の
もとで真空蒸着に適当な温度(200℃〜250℃)ま
で冷却される。ついで鋼帯は大気に触れることな
く隔壁およびシールロールRにより構成され順次
圧力が低くなつている差圧室6〜10を経て第1
段真空蒸着室11に入る。なお図中P○は真空ポン
プを示す。真空蒸着室11内の真空度は10-1〜
10-4torrで、鋼帯1の下部に蒸発ルツボ12があ
り、鋼帯1がルツボ上を通過する間に所要亜鉛皮
膜厚さの約1/2が蒸着されたのち次の圧力調整室
13を通り冷却室14に入る。冷却室14内で鋼
帯は内部に冷却媒体が通過する複数個の冷却ロー
ル15に接触することにより冷却され、第1段目
の蒸着によつて上昇した鋼帯温度は再び適当温度
(200℃〜250℃)迄下がる。冷却室14内の圧力
は約1torrとするが、この理由は第6図に示すよ
うに、10-1〜10-4torrの圧力では冷却ロールと鋼
帯の熱伝達率が低く冷却効果が悪い為である。適
当な温度迄冷却された鋼帯は圧力調整室13′を
経て第2段真空蒸着室16に入り所要皮膜厚さに
蒸着されたのち差圧室17〜21を経て大気中に
出て、図示してないが、クーラー、レベラ、ルー
パ、白錆防止処理、シヤ等により構成される後処
理設備22を経てリコイラ23に巻取られる。 FIG. 4 is an explanatory diagram showing one embodiment of the apparatus for carrying out the method according to the present invention, and is an example of two-stage deposition. Fourth
In the figure, 1 is an uncoiler for steel strip coils, and 2, although not shown, is processing equipment necessary for continuous strip threading.
It is composed of welders, loopers, etc. The steel strip 1 that has undergone such treatment is first introduced into an oxidation furnace 3, where oil and fat on its surface is removed, and then entered into a reduction furnace 4, where iron oxides generated on the surface of the steel strip 1 are reduced. The surface is activated and annealed. Then, it is cooled in a cooling furnace 5 under a reducing atmosphere to a temperature suitable for vacuum deposition (200°C to 250°C). Next, the steel strip passes through differential pressure chambers 6 to 10, which are constituted by a partition wall and a seal roll R and whose pressure is gradually lowered, without being exposed to the atmosphere.
Enter the stage vacuum deposition chamber 11. Note that P○ in the figure indicates a vacuum pump. The degree of vacuum in the vacuum deposition chamber 11 is 10 -1 ~
At 10 -4 torr, there is an evaporation crucible 12 under the steel strip 1, and while the steel strip 1 passes over the crucible, approximately 1/2 of the required zinc coating thickness is deposited, and then the next pressure adjustment chamber 13 is deposited. It passes through and enters the cooling room 14. In the cooling chamber 14, the steel strip is cooled by coming into contact with a plurality of cooling rolls 15 through which a cooling medium passes, and the temperature of the steel strip, which has risen due to the first stage of vapor deposition, is brought back to an appropriate temperature (200°C). ~250℃). The pressure in the cooling chamber 14 is approximately 1 torr, but the reason for this is that as shown in Figure 6, at a pressure of 10 -1 to 10 -4 torr, the heat transfer coefficient between the cooling roll and the steel strip is low and the cooling effect is poor. It is for this purpose. The steel strip cooled to an appropriate temperature passes through the pressure adjustment chamber 13', enters the second stage vacuum deposition chamber 16, is deposited to the required film thickness, and then exits to the atmosphere through differential pressure chambers 17 to 21. Although not shown, it is wound up into a recoiler 23 through a post-processing facility 22 consisting of a cooler, leveler, looper, white rust prevention treatment, shear, etc.
第5図は第4図に対応するものであり、通板中
の鋼帯1の温度と各室の圧力を示し、1段で全量
蒸着する時には鋼帯が点線で示すように再蒸発に
よる運転トラブルを起こさない上限温度T2を超
えるのに対し、本発明の場合には実線のように推
移するので、円滑な運転が保証されるばかりでな
く、蒸着メツキ皮膜の密着性および靭性より要求
される下限温度T1を下ることがない。なお図中
の数字は各室の真空度をtorrで示したものであ
る。 Figure 5 corresponds to Figure 4 and shows the temperature of the steel strip 1 and the pressure in each chamber during threading, and when the entire amount is evaporated in one stage, the steel strip is operated by re-evaporation as shown by the dotted line. In contrast to the upper limit temperature T 2 that does not cause trouble, in the case of the present invention, the transition is as shown by the solid line, which not only guarantees smooth operation, but also exceeds the temperature required by the adhesion and toughness of the vapor-deposited plating film. The temperature never drops below the lower limit temperature T 1 . The numbers in the figure indicate the degree of vacuum in each chamber in torr.
第4図、5図は2段蒸着の場合について説明し
たが、所要皮膜厚さが厚い場合には3段或いは4
段の蒸着を行なうことも可能である。 Figures 4 and 5 explain the case of two-stage deposition, but if the required film thickness is thick, three or four stages can be used.
It is also possible to carry out stepwise deposition.
第1図は板厚0.3mmの鋼帯に、それぞれ膜厚
10μ,6μ及び2μの亜鉛メツキ層を蒸着する時の、
蒸着前の鋼帯温度とメツキ亜鉛の再蒸発量との関
係を示す図表、第2図は板厚0.3mm、0.6mm及び1.2
mmの鋼帯についての、メツキ皮膜厚さと基板温度
上昇との関係を示す図表、第3図は鋼帯温度に着
目した皮膜性能不良範囲、良好な範囲及び再蒸発
のため運転不可範囲を示す図表、第4図は本発明
の一具体的方法を実施する装置の概略図、第5図
は本発明方法と従来方法との鋼帯の温度変化を比
較して示した図表、第6図は真空度と熱伝達率と
の関係を示す図表である。
Figure 1 shows the thickness of each film on a steel strip with a thickness of 0.3 mm.
When depositing 10μ, 6μ and 2μ galvanized layers,
A chart showing the relationship between the steel strip temperature before vapor deposition and the amount of reevaporation of plated zinc. Figure 2 is for plate thicknesses of 0.3 mm, 0.6 mm, and 1.2 mm.
Figure 3 is a chart showing the relationship between plating film thickness and substrate temperature rise for steel strips of mm. , Fig. 4 is a schematic diagram of an apparatus for carrying out a specific method of the present invention, Fig. 5 is a chart comparing the temperature change of steel strip between the method of the present invention and the conventional method, and Fig. 6 is a schematic diagram of an apparatus for carrying out a specific method of the present invention. 3 is a chart showing the relationship between degree and heat transfer coefficient.
Claims (1)
気中で加熱還元して表面活性化を行ない200〜250
℃に温度調整後、大気に曝すことなくそのまゝ真
空蒸着室に導いて該鋼帯表面に所望皮膜厚さの一
部の厚さの亜鉛を蒸着した後、蒸着室圧力より高
い圧力下で先の蒸着により上昇した鋼帯温度を冷
却して200〜250℃に戻し、ついで次段の蒸着室で
所望皮膜厚さの一部の厚さの亜鉛を更に蒸着して
は冷却するサイクルを、所望皮膜厚さになる迄数
回繰返し、かつ各段の亜鉛蒸着時鋼帯の温度が
250℃以上にならぬように操作することを特徴と
する多段蒸着亜鉛メツキ法。1 After degreasing a cold-rolled steel strip, surface activation is performed by heating and reducing it in a reducing atmosphere.
After adjusting the temperature to ℃, the steel strip is directly introduced into a vacuum deposition chamber without being exposed to the atmosphere, and zinc is deposited on the surface of the steel strip to a thickness that is a part of the desired film thickness. The temperature of the steel strip, which has increased due to the previous vapor deposition, is cooled back to 200 to 250°C, and then zinc is further vaporized to a thickness of a portion of the desired film thickness in the next vapor deposition chamber, and then the process is cooled. Repeat several times until the desired coating thickness is achieved, and the temperature of the steel strip during each stage of zinc evaporation is
A multi-stage evaporation galvanizing method characterized by operating in a manner that does not exceed 250℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1685781A JPS57131361A (en) | 1981-02-09 | 1981-02-09 | Zinc plating method by multi-stages vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1685781A JPS57131361A (en) | 1981-02-09 | 1981-02-09 | Zinc plating method by multi-stages vapor deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57131361A JPS57131361A (en) | 1982-08-14 |
JPS6325067B2 true JPS6325067B2 (en) | 1988-05-24 |
Family
ID=11927884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1685781A Granted JPS57131361A (en) | 1981-02-09 | 1981-02-09 | Zinc plating method by multi-stages vapor deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57131361A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6423280U (en) * | 1987-07-31 | 1989-02-07 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639686B2 (en) * | 1986-01-20 | 1994-05-25 | 日新製鋼株式会社 | Alloyed vacuum-deposited zinc plated steel plate with excellent workability |
JP2525165B2 (en) * | 1987-01-09 | 1996-08-14 | 日新製鋼株式会社 | Method for manufacturing high strength galvanized steel sheet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54110143A (en) * | 1978-02-17 | 1979-08-29 | Mitsubishi Heavy Ind Ltd | Zinc vacuum plating method and equipment |
JPS54155983A (en) * | 1978-05-31 | 1979-12-08 | Mitsubishi Heavy Ind Ltd | Vacuum deposition plating method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5489350U (en) * | 1977-12-07 | 1979-06-25 |
-
1981
- 1981-02-09 JP JP1685781A patent/JPS57131361A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54110143A (en) * | 1978-02-17 | 1979-08-29 | Mitsubishi Heavy Ind Ltd | Zinc vacuum plating method and equipment |
JPS54155983A (en) * | 1978-05-31 | 1979-12-08 | Mitsubishi Heavy Ind Ltd | Vacuum deposition plating method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6423280U (en) * | 1987-07-31 | 1989-02-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS57131361A (en) | 1982-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100295174B1 (en) | High corrosion resistance ZN-MG plated steel sheet and its manufacturing method | |
JPH01188666A (en) | Laminated vapor-deposition plated steel sheet | |
EP0756022B1 (en) | Steel sheet protected against corrosion and process for its production | |
EP2940180A1 (en) | Steel sheet coated with aluminum-magnesium, and method for manufacturing same | |
JPS6325067B2 (en) | ||
US5409553A (en) | Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property | |
JPH0660396B2 (en) | Method for producing alloyed vapor-deposited zinc plated steel strip | |
JPS6328857A (en) | Alloyed zinc plated steel sheet and its production | |
US5518769A (en) | Process for manufacturing galvannealed steel sheet having excellent anti-powdering property | |
JPH08134632A (en) | Production of zinc-magnesium alloy plated steel sheet | |
US5238510A (en) | Metal sheet and method for producing the same | |
JPS6157905B2 (en) | ||
JP3527374B2 (en) | Heat-resistant painted Zn-55% Al alloy plated steel sheet with excellent press workability | |
JP2938658B2 (en) | Multi-layer alloy plated steel sheet and method for producing the same | |
JPS61195965A (en) | Production of alloyed and galvanized steel sheet | |
JPH05320875A (en) | Multi-ply zn-ti alloy plated steel sheet and its production | |
JPS6296669A (en) | Manufacture of galvanizing steel sheet by alloying vapor deposition | |
JPH0688208A (en) | Highly corrosion resistant surface treated metallic material and its production | |
KR950004778B1 (en) | Method for making a galvannealed steel sheet with an excellant anti-powdering | |
JPH04235272A (en) | Vapor-deposited al-mn series alloy plating material having good corrosion resistance and workability and its production | |
JP3166568B2 (en) | Manufacturing method of hot-dip galvanized steel | |
JPS6280260A (en) | Surface treatment of steel sheet | |
JPH05311380A (en) | Manufacture of hot dip aluminum plated cr-containing steel sheet excellent in workability and plating adhesion | |
JPH06158285A (en) | Production of al base vapor deposition plating material | |
KR0164960B1 (en) | Zn-sn two layer coated steel sheet and production thereof |