JPS6296669A - Manufacture of galvanizing steel sheet by alloying vapor deposition - Google Patents

Manufacture of galvanizing steel sheet by alloying vapor deposition

Info

Publication number
JPS6296669A
JPS6296669A JP23542185A JP23542185A JPS6296669A JP S6296669 A JPS6296669 A JP S6296669A JP 23542185 A JP23542185 A JP 23542185A JP 23542185 A JP23542185 A JP 23542185A JP S6296669 A JPS6296669 A JP S6296669A
Authority
JP
Japan
Prior art keywords
steel strip
plating
vapor deposition
vapor
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23542185A
Other languages
Japanese (ja)
Other versions
JPH0424429B2 (en
Inventor
Nobuhiko Sakai
伸彦 酒井
Toshiharu Kikko
橘高 敏晴
Norio Tsukiji
築地 憲夫
Takehiko Ito
武彦 伊藤
Shozo Umeda
梅田 昭三
Heizaburo Furukawa
古川 平三郎
Mitsuo Kato
光雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23542185A priority Critical patent/JPS6296669A/en
Publication of JPS6296669A publication Critical patent/JPS6296669A/en
Publication of JPH0424429B2 publication Critical patent/JPH0424429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain automatically a galvanizing steel sheet by alloying vapor deposition in a continuous and efficient manner by regulating the temp. of a steel strip immediately before plating to a value within a range defined by a prescribed formula. CONSTITUTION:A steel strip 1 is introduced into vapor deposition chambers 5, 5', where both sides of the strip 1 are plated by vapor deposition. At this time, the temp. T( deg.C) of the strip 1 immediately before plating is regulated to a value within a range defined by a formula [-80l/V+0.7W1+0.41(W1+W2)/t +403]<=T<=[420-0.41(W1+W2)/t] [where V is line speed (m/min), (l) is the distance (m) from a position just behind the 1st plating part to the final outlet of the vapor deposition line, (t) is the thickness (mm) of the steel strip, W1 is the amount (g/m<2>) of plating stuck to the front side of the steel strip and W2 is the amount (g/m<2>) of plating stuck to the rear side].

Description

【発明の詳細な説明】 く技術分野〉 本発明は1合金化/A着亜鉛めっき層を有する鋼板の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a steel sheet having a 1-alloyed/A-coated galvanized layer.

〈従来技術とその問題点〉 合金化亜鉛めっき鋼板は、通常の亜鉛めっき鋼板に比べ
て。
<Prior art and its problems> Alloyed galvanized steel sheets are different from ordinary galvanized steel sheets.

イ)スポット溶接における連続作業性がよい。b) Good continuous workability in spot welding.

口)電着塗装における塗装密着性が良好であり、したが
って、゛准看塗装後の耐食性が良好である。
(1) Good paint adhesion in electrodeposition coating, and therefore good corrosion resistance after pre-coating.

という利点から広く一般に利用されている。It is widely used because of its advantages.

合金化亜鉛めっき鋼板の製造方法は。How is alloyed galvanized steel sheet manufactured?

a)溶融亜鉛めっきされた亜鉛が凝固しないうちに加熱
処理して合金化する方法。
a) A method in which hot-dip galvanized zinc is heat-treated and alloyed before it solidifies.

b)電気亜鉛めっき鋼板を再加熱して合金化する方法。b) A method of reheating and alloying electrogalvanized steel sheets.

に大別される。電気めっき法により亜鉛−鉄合金めっき
を施す方法も多数提案されているが、これは電気めっき
法自身の問題であるから、本発明に関しては考慮外に置
く。
It is broadly divided into Many methods have been proposed for applying zinc-iron alloy plating by electroplating, but since this is a problem with the electroplating method itself, it is not considered in the present invention.

北記a)の方法は溶融亜鉛めっきによる方法であるので
、片面あたり30g/m2以下の均一な薄めつきを得る
ことが困難であり、また、片面めっきを得ることが極め
て困難である。
Since method a) is a method using hot-dip galvanizing, it is difficult to obtain uniform thin plating of 30 g/m 2 or less per side, and it is extremely difficult to obtain plating on one side.

また上記b)の方法では、電気めっきされたコイルを密
閉または開放型のバッチ式焼鈍炉によって250〜35
0℃の低温で長時間加熱して合金化する方法が主流であ
るが、この方法には、i)バッチ式焼鈍炉を使用するの
で工程が複雑で長時間を要する。
In addition, in the method b) above, the electroplated coil is heated to a temperature of 250 to 350
The mainstream is a method of alloying by heating at a low temperature of 0° C. for a long time, but this method uses i) a batch-type annealing furnace, so the process is complicated and takes a long time.

肖)品質のばらつきが太きく作業管理が面倒である。(Portrait) There is wide variation in quality and work management is troublesome.

などの問題を有していた。これらの問題を解決する方策
として電気亜鉛めっきした後に直ちに再加熱する方法が
あるが、この方法では、一旦50〜60℃に冷却された
鋼帯を連続的に300〜430℃に再加熱保持するため
の設備が巨大なものになり、エネルギー消費も大きい。
It had problems such as: One way to solve these problems is to reheat the steel strip immediately after electrogalvanizing, but in this method, the steel strip that has been cooled to 50 to 60°C is continuously reheated and held at 300 to 430°C. The equipment required for this is huge and consumes a lot of energy.

またb)の方法は素材として電気亜鉛めっき鋼板を使用
するため、付着、140g/m2を越えるものは非常に
コスト高になる。
Furthermore, since the method b) uses electrogalvanized steel sheets as the material, the cost will be extremely high if the adhesion exceeds 140 g/m2.

これらの問題を解決するために、真空蒸着亜鉛めっき鋼
板全素材として使用し、X空蒸着亜鉛めっきされた鋼帯
が真空蒸着装置系外に導出された直後に連続して再加熱
し、合金化処理する方法が開発された(特願昭    
   )、シかしながら、この方法においても、再加熱
炉を設置する必要があり、設備の巨大化は免れない。
In order to solve these problems, a vacuum evaporation galvanized steel sheet is used as the entire material, and immediately after the vacuum evaporation galvanized steel strip is taken out of the vacuum evaporation equipment system, it is continuously reheated and alloyed. A method was developed to treat the
) However, even with this method, it is necessary to install a reheating furnace, which inevitably increases the size of the equipment.

く問題解決の手段〉 本発明はこれらの問題点に着目してなされたもので、蒸
着亜鉛めっき時の亜鉛蒸気の凝縮潜熱の開放による鋼板
温度の上昇を利用して合金化し。
Means for Solving the Problems The present invention has been made in view of these problems, and alloys the steel sheet by utilizing the rise in temperature of the steel sheet due to the release of the latent heat of condensation of the zinc vapor during vapor deposited galvanizing.

真空蒸着亜鉛めっき直前の鋼帯の温度を一定の範囲に限
定することによって、後加熱炉を設置することなく、合
金化蒸着亜鉛めっき鋼板を連続的に効率よく製造できる
ことを発見した。
It has been discovered that by limiting the temperature of the steel strip immediately before vacuum evaporation galvanizing to a certain range, it is possible to continuously and efficiently produce alloyed evaporation galvanized steel sheets without installing a post-heating furnace.

〈発明の構成〉 本発明は、ライン内で自動的かつ連続的に合金化蒸着亜
鉛めっき鋼板を製造する方法であって、蒸着亜鉛めっき
する直前の鋼帯温度T”0が、下記式(7) %式% ただし式中、 T:めっき直前の鋼帯温度(”0) v:ラインスピード(濡/win) fL:蒸着めっき直後より真空蒸着ラインの最終出口ま
でのの距離(m) t:鋼帯の板厚(膳l) wI:おもて面めっき付着量(g/m2)杓 :うら而
めっき付着量(g/m2)w2)で表わされる範囲であ
ることを特徴とする方法が提供される。
<Structure of the Invention> The present invention is a method for automatically and continuously producing alloyed vapor-deposited galvanized steel sheets in a line, in which the steel strip temperature T''0 immediately before vapor-deposited galvanizing is determined by the following formula (7 ) % formula % However, in the formula, T: Steel strip temperature just before plating ("0") v: Line speed (wet/win) fL: Distance from immediately after evaporation plating to the final exit of the vacuum evaporation line (m) t: The method is characterized in that the thickness of the steel strip is within the range expressed by: wI: front surface plating amount (g/m2): back surface plating amount (g/m2) w2) provided.

以下本発明は両面めっきについて具体的に記載されるが
、片面めっきについても適用できることは自明である・ 〈発明の具体的開示〉 次に図面を参照して本発明の詳細な説明する。
The present invention will be specifically described below regarding double-sided plating, but it is obvious that it can also be applied to single-sided plating. <Specific Disclosure of the Invention> Next, the present invention will be described in detail with reference to the drawings.

連続式真空蒸着めっき装置にはいくつかの様式が提案さ
れているが、第1図に例示するものはガス還元前処理炉
2.還元ガスあるいは空気が真空蒸着めっき室5,5°
に流入するのを防止するための賦圧室3.3゛、一連の
段階的に減圧または復圧する個別に真空排気手段を備え
た多数の隔室に納められた多数のシールロールからなる
第1および第2のシールロール室4.4′、鋼帯の片方
の面に真空蒸着めっきするための第1真空蒸着めっき室
5.鋼帯の他方の面に真空蒸着めっきするための、第1
真空蒸着めっき室に連通ずる第2真空蒸着めっき室5゛
から構成されている。真空蒸着めっき室の内部には亜鉛
浴6.6°およびデフレクタ−ロール7.7゛が配設さ
れている。
Several types of continuous vacuum evaporation plating equipment have been proposed, but the one illustrated in FIG. 1 is a gas reduction pretreatment furnace 2. Reducing gas or air enters the vacuum deposition plating chamber 5.5°
A first pressurization chamber 3.3 consisting of a number of sealing rolls housed in a number of compartments equipped with individual evacuation means for stepwise depressurization or re-pressurization. and a second seal roll chamber 4.4', a first vacuum deposition plating chamber 5.4 for vacuum deposition plating on one side of the steel strip. A first step for vacuum deposition plating on the other side of the steel strip.
It consists of a second vacuum evaporation plating chamber 5' which communicates with the vacuum evaporation plating chamber. A zinc bath of 6.6° and a deflector roll of 7.7° are arranged inside the vacuum deposition plating chamber.

シールロール室は真空蒸着室の真空を保ったまま鋼帯を
導入、導出するためのもので1例えば、特願昭59−1
92574号に詳細に記載されているが、それぞれ一対
のロールを納めた単位胞が真空排気され、全体が段階的
に減圧され真空蒸着室を所定の真空に保持する。
The seal roll chamber is for introducing and removing the steel strip while maintaining the vacuum in the vacuum deposition chamber.
As described in detail in No. 92574, the unit cells each containing a pair of rolls are evacuated, and the pressure of the entire unit is reduced in stages to maintain the vacuum deposition chamber at a predetermined vacuum.

各部分の長さは設定される操業条件によって適官設定さ
れ、装置自身は本明細書の記載に従って従来技術を知る
当業者が必要に応じて設計製作できることであるから、
詳細は省略する。
The length of each part is determined appropriately depending on the set operating conditions, and the device itself can be designed and manufactured as necessary by a person skilled in the art who is familiar with the prior art according to the description of this specification.
Details are omitted.

冷間圧延されたままの鋼帯lは前処理炉2に連続的に導
入され、焼鈍と同時にガス還元による前処理を施される
。鋼種により差はあるが、鋼帯が焼鈍されるためには、
600〜900℃の温度範囲で20〜180秒間の保持
が必要である。密着性のよい蒸着亜鉛めっき鋼板を得る
には、ガス還元による前処理において、炉内をH,3%
以上(残部N2)、露点−15℃以下の雰囲気にすれば
よい、前処理炉2の後半部分で鋼帯は冷却され、 20
0℃以上の任意の温度で前処理炉から導出される。特開
昭57−15241!5号に開示されるように、蒸着開
始前の鋼帯の温度は蒸着被膜の靭性、延性が良好である
ためには200℃以上であることが好ましいことが知ら
れている。鋼帯はさらに賦圧室3.第1シールロール室
4を経て第1真空蒸着室5に導入される。亜鉛浴6には
図示されない供給源から適当な手段(電気抵抗加熱手段
、電子ビーム加熱手段、等)によって加熱され亜鉛蒸気
が連続的に供給されて−、ます鋼帯の第1の面が蒸着め
っきされ、ついで鋼帯はデフレクタ−ロール7.7°に
よって反転され、第2真空蒸着室5′内で前記と同様に
その第2の面が蒸着めっきされる。その後、鋼帯は第2
シールロール室4′、第2賦圧室6°を経て真空蒸着系
外に出る。
The cold-rolled steel strip 1 is continuously introduced into the pretreatment furnace 2, where it is annealed and simultaneously pretreated by gas reduction. There are differences depending on the steel type, but in order for a steel strip to be annealed,
Holding for 20 to 180 seconds is required at a temperature range of 600 to 900°C. In order to obtain a vapor-deposited galvanized steel sheet with good adhesion, the inside of the furnace is heated to 3% H in the pretreatment by gas reduction.
Above (remaining N2), the steel strip is cooled in the latter half of the pretreatment furnace 2, where the atmosphere has a dew point of -15°C or less,
It is discharged from the pretreatment furnace at any temperature above 0°C. As disclosed in JP-A-57-15241!5, it is known that the temperature of the steel strip before the start of vapor deposition is preferably 200°C or higher in order to obtain good toughness and ductility of the vapor-deposited film. ing. The steel strip is further placed in a pressure chamber 3. It is introduced into the first vacuum deposition chamber 5 via the first seal roll chamber 4 . The zinc bath 6 is continuously supplied with zinc vapor heated by a suitable means (electrical resistance heating means, electron beam heating means, etc.) from a source not shown, so that the first surface of the steel strip is deposited. After being plated, the strip is turned over by a deflector roll 7.7 DEG and its second side is deposited and plated in the same manner as before in the second vacuum deposition chamber 5'. Then the steel strip
It exits the vacuum deposition system through the seal roll chamber 4' and the second pressure application chamber 6°.

鋼帯が真空蒸着めっきされるとき、亜鉛蒸気の凝固潜熱
の解放により、その温度は上昇するが、その温度上昇は
次式(りにより求められる。
When a steel strip is vacuum-deposited, its temperature rises due to the release of the latent heat of solidification of zinc vapor, and the temperature rise is determined by the following equation.

Δ”l”==q・W/ρ・t @c        (
1)ただし、 ΔT:鋼帯の温度上昇(℃) q:めっき金属の凝縮熱(kcal/g)wI:おもて
面めっき付着量(g/m2)w2)讐2 :うら而t)
 ッS付!t(g/m2)ρ:鋼帯の密度(g/m2) t:鋼帯の板厚(−■) C:鋼帯の比熱(kcal/kg・”0)鋼帯に亜鉛を
蒸着めっきする場合には、q  : 0.415  k
cal/gp  : ?、85g/am3 c  :  O,13kcal/kg  −”Cであり
、(1)式は次の(2)式に書き替えられる。
Δ”l”==q・W/ρ・t @c (
1) However, ΔT: Temperature rise of the steel strip (°C) q: Heat of condensation of the plated metal (kcal/g) wI: Front surface coating amount (g/m2) w2) 2: Back t)
Comes with S! t (g/m2) ρ: Density of steel strip (g/m2) t: Thickness of steel strip (-■) C: Specific heat of steel strip (kcal/kg・"0) Zinc is vapor-deposited on the steel strip. In the case, q: 0.415 k
cal/gp: ? , 85 g/am3 c: O, 13 kcal/kg -''C, and equation (1) can be rewritten as equation (2) below.

ΔT=0.41(w、+ 112 ) /l     
  (2)この鋼帯が第2シールロール室4゛を通過す
る間は真空中であるため、放熱は少なく、実質的には板
温は保持される。蒸着めっき直後より、第2シール室4
°の最終ロール41′ までの長さを交(腸)とすると
、板温保持時間SはラインスピードV(■/l1in)
の関数として。
ΔT=0.41(w,+112)/l
(2) Since the steel strip is in a vacuum while passing through the second seal roll chamber 4', heat radiation is small and the strip temperature is substantially maintained. Immediately after vapor deposition plating, the second seal chamber 4
If the length up to the final roll 41' of ° is the cross (intestine), the plate temperature retention time S is line speed V (■/l1in)
as a function of.

5(see)=  60@J1/v        (
3)で表される。
5(see) = 60@J1/v (
3).

一方、亜鉛蒸着めっき鋼板を合金化するための加熱条件
は亜鉛めっきの付着量によって異なる。
On the other hand, the heating conditions for alloying a zinc vapor-deposited steel sheet vary depending on the amount of zinc plating deposited.

第1図に示す連続真空蒸着亜鉛めっき鋼板の製造装置を
用いて実験を重ねたところ、第2図に示すような合金化
可能範囲が判明した。
As a result of repeated experiments using the apparatus for producing continuous vacuum-deposited galvanized steel sheets shown in FIG. 1, the possible alloying range as shown in FIG. 2 was found.

第2図において、直線aは付着量によって変る直線であ
り、蒸着めっき後の板温T’(℃)と板温保持時間S 
(see)と付着にの関数でT ’  =   −4/
3   S  ÷ 403 中 0.7  Wt   
     (4)で表わされる。なお第2図中の直線a
は、この場合、付着Wk log/ m2を例として示
しである。
In Fig. 2, straight line a is a straight line that changes depending on the amount of coating, and is a straight line that changes depending on the coating amount, and the plate temperature T' (℃) after vapor deposition plating and the plate temperature holding time S.
(see) and adhesion as a function of T' = -4/
3 S ÷ 403 Medium 0.7 Wt
It is expressed as (4). Note that the straight line a in Figure 2
In this case, the adhesion Wk log/m2 is shown as an example.

直線すは蒸着後の板温T′の上限値であり、T’=  
420             (5)で表わされる
。420℃に限定される理由は、それ以上の温度では鋼
帯表面の亜鉛が溶解し、真空ロール室のロールに付着す
る可能性があるためである。これは付着量に対して不変
の値である。
The straight line is the upper limit of the plate temperature T' after vapor deposition, and T'=
420 (5). The reason why the temperature is limited to 420°C is that at higher temperatures, zinc on the surface of the steel strip may melt and adhere to the rolls in the vacuum roll chamber. This value remains unchanged with respect to the amount of adhesion.

直線Cは板温保持時間の下限を示すものであるが、これ
は実施の都合上室められる下限であり、これ以上に限定
されるものではない。
Although the straight line C indicates the lower limit of the plate temperature retention time, this is the lower limit that can be accommodated for practical reasons, and there is no further limitation.

直!idは板温保持時間の上限を示すもので、設備上、
操業上の経済性などを考慮して25秒以下が好ましく、
それを1例として示したが、これに限定されるものでは
ない。
straight! id indicates the upper limit of the plate temperature retention time, and depending on the equipment,
Considering operational economics, etc., the time is preferably 25 seconds or less,
Although this is shown as an example, it is not limited to this.

蒸着後の板温T′は基板温度(蒸着前鋼帯温度)Tおよ
び(2)式より T ’ = T + 0.41(w1+ 賛2 ) /
l      (8)で表わされる。
The plate temperature T' after vapor deposition is calculated from the substrate temperature (steel strip temperature before vapor deposition) T and equation (2), T' = T + 0.41 (w1 + 2) /
It is expressed as l (8).

第2図に示される範囲を(3)、(4)、(5)および
(6)式を用いて表わすと、 一80l/v+ 0.7wl −0,41(ill +
w2 )/1+403≦T≦420−0.41Cwt 
+  112 ) /l (7)で表される。しかって
、めっき前鋼帯温度を(7)式で表される範囲内に制御
することにより、ライン内で自動的かつ連続的に合金化
蒸着亜鉛めっき鋼板を製造することができる。
When the range shown in Fig. 2 is expressed using equations (3), (4), (5), and (6), -80 l/v + 0.7 wl -0,41 (ill +
w2 )/1+403≦T≦420−0.41Cwt
+112)/l (7) Therefore, by controlling the pre-plating steel strip temperature within the range expressed by equation (7), it is possible to automatically and continuously manufacture alloyed vapor-deposited galvanized steel sheets within the line.

〈実施態様〉 次に本発明を実施例により例示する。<Embodiment> The invention will now be illustrated by examples.

第1図に示す連続真空蒸着めっき装置を用いて末完I1
1の方法により、(7)式の範囲に蒸着前あ基板温度を
制御して真空蒸着亜鉛めっきを施し、自動的、連続的に
片面合金化差厚蒸着亜鉛めっき鋼板を製造した。
Completed I1 using the continuous vacuum evaporation plating equipment shown in Figure 1.
By method 1, vacuum evaporation galvanization was performed by controlling the substrate temperature before evaporation within the range of formula (7), and a single-sided alloyed differential thickness evaporation galvanized steel sheet was automatically and continuously produced.

実施例1 板厚0.6■の低炭素冷間圧延鋼板を用いた式(7)に
よる計算例及び実施例を第1−1表、表1−2表に示す
Example 1 Calculation examples and examples based on formula (7) using a low carbon cold rolled steel plate with a plate thickness of 0.6 cm are shown in Tables 1-1 and 1-2.

第1−2表 ○・・・合金化 X・・・全面合金化せず ×・・・めっき層溶融 製造条件は次の通りであった。Table 1-2 ○・・・Alloying X: Not fully alloyed ×・・・Plating layer melting The manufacturing conditions were as follows.

鋼帯寸法: 0.8mm厚、300■■幅通板速度: 
12〜80m/win 保持長さ=5I 蒸着室圧カニ 0.01 torr このようにして製造された合金化蒸着亜鉛めっき鋼板は
均一で美麗な肌を有し、加工性も良好であった。
Steel strip dimensions: 0.8mm thickness, 300mm width Threading speed:
12 to 80 m/win Holding length = 5I Vapor deposition chamber pressure 0.01 torr The alloyed vapor deposited galvanized steel sheet thus produced had a uniform and beautiful skin and had good workability.

実施例2 板厚1mmの低炭素冷間圧延鋼板を用いた(7)式の計
算例及び実施例を第2−1表、第2−2表に示す。
Example 2 Tables 2-1 and 2-2 show calculation examples and examples of formula (7) using a low carbon cold rolled steel plate with a thickness of 1 mm.

製造条件は次の通りであった。The manufacturing conditions were as follows.

鋼帯寸法:1.0膳鳳厚、300■層幅通板速度: 1
2〜EtOm/m2) win保持長さ: 5層 保持室圧カニ 0.01 torr このようにして製造された合金化蒸着亜鉛めっき鋼板は
均一で美麗な肌を有し、加工性も良好であった。
Steel strip dimensions: 1.0 mm thickness, 300 ■ layer width Threading speed: 1
2~EtOm/m2) Win holding length: 5-layer holding chamber pressure 0.01 torr The alloyed vapor deposited galvanized steel sheet manufactured in this way has a uniform and beautiful skin and has good workability. Ta.

第2−2表 O:合金化 X:全面合金化せず ×:めっき層溶融Table 2-2 O: Alloying X: Not fully alloyed ×: Plating layer melting

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は本発明方法を実施するための装置の1例の
概念を示す図式的断面図である。 第2図は本発明方法の実施可能条件を示す蒸着後鋼帯温
度と鋼帯温度保持時間の関係のグラフである。
The attached FIG. 1 is a schematic cross-sectional view showing the concept of an example of an apparatus for carrying out the method of the present invention. FIG. 2 is a graph showing the relationship between the steel strip temperature after vapor deposition and the steel strip temperature holding time, which shows the conditions under which the method of the present invention can be carried out.

Claims (1)

【特許請求の範囲】 1、ライン内で自動的かつ連続的に合金化蒸着亜鉛めっ
き鋼板を製造する方法であって、蒸着亜鉛めっきする直
前の鋼帯温度T℃が、下記式(7)で表わされる範囲で
あることを特徴とする方法。 −80l/v+0.7w_1+0.41(w_1+w_
2)/t+403≦T≦420−0.41(w_1+w
_2)/t(7) 式中、 T:めっき直前の鋼帯温度(℃) v:ラインスピード(m/min) l:蒸着めっき直後より真空蒸着ラインの最終出口まで
の距離(m) t:鋼帯の板厚(mm) w_1:おもて面めっき付着量(g/m^2) w_2:うら面めっき付着量(g/m^2)
[Claims] 1. A method for automatically and continuously manufacturing an alloyed vapor-deposited galvanized steel sheet within a line, wherein the steel strip temperature T°C immediately before vapor-deposited galvanizing is expressed by the following formula (7). A method characterized in that the range being represented. -80l/v+0.7w_1+0.41(w_1+w_
2)/t+403≦T≦420−0.41(w_1+w
_2)/t(7) In the formula, T: Steel strip temperature just before plating (℃) v: Line speed (m/min) l: Distance from immediately after vapor deposition plating to the final exit of the vacuum evaporation line (m) t: Thickness of steel strip (mm) w_1: Front side plating amount (g/m^2) w_2: Back side plating amount (g/m^2)
JP23542185A 1985-10-23 1985-10-23 Manufacture of galvanizing steel sheet by alloying vapor deposition Granted JPS6296669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23542185A JPS6296669A (en) 1985-10-23 1985-10-23 Manufacture of galvanizing steel sheet by alloying vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23542185A JPS6296669A (en) 1985-10-23 1985-10-23 Manufacture of galvanizing steel sheet by alloying vapor deposition

Publications (2)

Publication Number Publication Date
JPS6296669A true JPS6296669A (en) 1987-05-06
JPH0424429B2 JPH0424429B2 (en) 1992-04-27

Family

ID=16985851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23542185A Granted JPS6296669A (en) 1985-10-23 1985-10-23 Manufacture of galvanizing steel sheet by alloying vapor deposition

Country Status (1)

Country Link
JP (1) JPS6296669A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020216775A1 (en) * 2019-04-23 2020-10-29 Sms Group Gmbh Pvd thickness control
US11492695B2 (en) 2018-06-13 2022-11-08 Arcelormittal Vacuum deposition facility and method for coating a substrate
US12091744B2 (en) 2018-06-13 2024-09-17 Arcelormittal Vacuum deposition facility and method for coating a substrate
US12091739B2 (en) 2018-06-13 2024-09-17 Arcelormittal Vacuum deposition facility and method for coating a substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492695B2 (en) 2018-06-13 2022-11-08 Arcelormittal Vacuum deposition facility and method for coating a substrate
US12091744B2 (en) 2018-06-13 2024-09-17 Arcelormittal Vacuum deposition facility and method for coating a substrate
US12091739B2 (en) 2018-06-13 2024-09-17 Arcelormittal Vacuum deposition facility and method for coating a substrate
WO2020216775A1 (en) * 2019-04-23 2020-10-29 Sms Group Gmbh Pvd thickness control
CN113728122A (en) * 2019-04-23 2021-11-30 Sms集团有限公司 PVD thickness control

Also Published As

Publication number Publication date
JPH0424429B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
EP0730045B1 (en) Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
BRPI0414309B1 (en) METHOD FOR THE PRODUCTION OF METAL-COATED STEEL PRODUCTS
JPS6410592B2 (en)
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JPS6296669A (en) Manufacture of galvanizing steel sheet by alloying vapor deposition
JPS5983765A (en) Manufacture of vacuum deposited galvanized steel sheet efficient in adhesion of plated metal
WO1992012271A1 (en) Method of manufacturing alloyed hot dip zinc plated steel sheet having excellent moldability in pressing work and resistance to powdering
JPH0660396B2 (en) Method for producing alloyed vapor-deposited zinc plated steel strip
JPH07126863A (en) Flexible production equipment for metallic sheet and plated metallic sheet
JPH07268605A (en) Production of alloyed zn-mg vapor deposition-coated steel sheet
JPS6328857A (en) Alloyed zinc plated steel sheet and its production
JPS60116787A (en) Method and device for plating
JPS58189363A (en) Manufacture of steel plate coated with alloyed zinc by galvanization
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JPS6157905B2 (en)
JPS62256959A (en) Manufacture of alloying-plated steel sheet
JPS61195966A (en) Method and device for producing alloyed and galvanized steel sheet
JPS6296668A (en) Production of galvanized steel alloyed on one side and vapor-deposited to different thickness
KR950004778B1 (en) Method for making a galvannealed steel sheet with an excellant anti-powdering
JPH04276054A (en) Manufacture of galvanized steel sheet
JPH05222550A (en) Multiple layer alloy plated steel sheet and its manufacture
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPS61195965A (en) Production of alloyed and galvanized steel sheet
JPH0417652A (en) Hot-dip al-mn alloy coating method
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet