JPH08134632A - Production of zinc-magnesium alloy plated steel sheet - Google Patents

Production of zinc-magnesium alloy plated steel sheet

Info

Publication number
JPH08134632A
JPH08134632A JP30285294A JP30285294A JPH08134632A JP H08134632 A JPH08134632 A JP H08134632A JP 30285294 A JP30285294 A JP 30285294A JP 30285294 A JP30285294 A JP 30285294A JP H08134632 A JPH08134632 A JP H08134632A
Authority
JP
Japan
Prior art keywords
vapor deposition
steel sheet
nitrogen atmosphere
alloy
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30285294A
Other languages
Japanese (ja)
Inventor
Yasushi Fukui
康 福居
Kazuyuki Sakamoto
和志 坂本
Yasumi Ariyoshi
康実 有吉
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30285294A priority Critical patent/JPH08134632A/en
Publication of JPH08134632A publication Critical patent/JPH08134632A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Abstract

PURPOSE: To inhibit the diffusion of Mg causing the formation of a brittle intermediate layer and to produce a dense and highly corrosion resistant Zn-Mg alloy plated steel sheet excellent in adhesion by a vapor deposition method. CONSTITUTION: Preliminary Zn vapor deposition is applied to the surface of a steel sheet so that the coating weight of Zn per unit area becomes >=1.5 times the coating weight of Mg, and then, Mg vapor deposition and Zn vapor deposition are applied to the steel sheet held at >=180 deg.C. A starting sheet 1 for plating is surface-activated by reducing heating 12, passed through a reducing atmosphere zone 13, a nitrogen substitution chamber 19, a nitrogen atmosphere duct 20, and a vacuum sealing device 31, and introduced into a vacuum vapor deposition chamber 30. In this vacuum vapor deposition chamber 30, preliminary Zn vapor deposition 40, Mg vapor deposition 50, and Zn vapor deposition 60, 70 are successively clone. At this time, the steel sheet is passed through the nitrogen atmosphere duct 20 under the conditions satisfying X×Z<=1.2 and Y×Z<=35 when X, Y, and Z(sec) represent theO2 , concentration (vol.%) of the nitrogen atmosphere duct 20, H2 O concentration (vol.%), and sheet passing time, respectively. Further, H2 can be added to the nitrogen atmosphere duct 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密着性及び組織的に優
れたZn−Mg合金めっき層を鋼板表面に確実に形成す
るZn−Mg合金めっき鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Zn-Mg alloy plated steel sheet which surely forms a Zn-Mg alloy plated layer having excellent adhesiveness and structure on the surface of the steel sheet.

【0002】[0002]

【従来の技術】鋼材の耐食性を向上させるため、従来か
ら各種の表面処理が施されている。なかでも、Znめっ
き鋼板は、主として溶融めっきや電気めっき等で製造さ
れている。また、一部では、蒸着めっき法によってZn
めっき鋼板を製造している。耐食性の向上に関する要求
は、年々高まる傾向にある。これに伴って、溶融めっき
法や電気めっき法等で種々の改良が試みられている。溶
融めっき法でZnめっき鋼板の耐食性を向上させようと
すると、Znめっき層の付着量を増加させることが先ず
考えられる。しかし、製造面から付着量の上限が制約さ
れることから、めっき層を厚くして耐食性の向上を図る
ことには限界がある。また、付着量の増加、すなわちめ
っき層の厚膜化は、Znめっき鋼板をプレス成形すると
きにカジリ,フレーキング等の欠陥を発生させる原因に
なり易い。電気めっき法で同様に厚膜のめっき層を形成
しようとすると、ラインスピードを遅くしなければなら
ず、生産性が著しく損なわれる。そこで、電気めっき法
では、Zn−Ni系等のZn合金めっきを施すことによ
って耐食性の向上を図っている。しかし、Zn−Ni合
金めっき層は、硬くて脆いめっき層となり易いため、プ
レス成形時に割れ,欠け等の欠陥をめっき層に発生させ
易い。このような欠陥がめっき層に発生すると、下地鋼
がめっき層を欠陥部を介して露出するため、めっき層本
来の性能が発揮されず、欠陥部を起点とした腐食が進行
する。
2. Description of the Related Art Conventionally, various surface treatments have been performed to improve the corrosion resistance of steel materials. Above all, the Zn-plated steel sheet is mainly manufactured by hot dipping, electroplating, or the like. Also, in some cases, Zn is deposited by vapor deposition.
Manufactures plated steel sheets. The demand for improved corrosion resistance tends to increase year by year. Along with this, various improvements have been attempted by a hot dipping method, an electroplating method, and the like. When attempting to improve the corrosion resistance of a Zn-plated steel sheet by the hot dip coating method, it is first thought that the amount of the Zn-plated layer deposited is increased. However, since the upper limit of the adhesion amount is restricted from the manufacturing aspect, there is a limit to thickening the plating layer to improve the corrosion resistance. Further, an increase in the amount of adhesion, that is, an increase in the thickness of the plated layer, tends to cause defects such as galling and flaking when press-forming a Zn-plated steel sheet. If an attempt is made to similarly form a thick plating layer by electroplating, the line speed must be slowed down, resulting in a marked loss of productivity. Therefore, in the electroplating method, Zn-Ni-based Zn alloy plating is applied to improve the corrosion resistance. However, since the Zn-Ni alloy plating layer is likely to be a hard and brittle plating layer, defects such as cracks and chips are likely to occur in the plating layer during press molding. When such a defect occurs in the plated layer, the underlying steel exposes the plated layer through the defective portion, so that the original performance of the plated layer is not exhibited and corrosion starting from the defective portion proceeds.

【0003】以上のような背景から、高耐食性のZn系
合金めっき鋼板を蒸着法で製造することが試みられてい
る。なかでも、Zn−Mg合金めっきは、優れた防食作
用を呈する。たとえば、特開昭64−17853号公報
では、0.5〜40重量%のMgを含有するZn−Mg
合金めっき層を形成することが開示されている。また、
Zn−Mg合金めっき層と下地鋼との間にZn,Ni,
Cu,Mg,Al,Fe,Co,Ti等の中間層を介在
させるとき、めっき層の密着性及び加工性が向上するこ
とが特開平2−141588号公報で紹介されている。
Zn−Mg合金めっき層を主としてZn−Mg系金属間
化合物で構成し、且つMg相を含まないものとすると
き、塗装後の耐塗膜剥離性が向上することが特開昭64
−17853号公報で紹介されている。更に、特開昭6
4−25990号公報では、Zn−Mg合金めっき層の
上にZn−Ti合金めっき層を設けることによって、塗
装後の耐食性を向上させている。蒸着Znめっき鋼板
は、溶融めっき鋼板と同様の無酸化炉及び還元処理炉で
鋼板を加熱還元して鋼板表面を活性化した後、蒸着を行
うことによって連続的に製造される[日新製鋼技報第5
6号(1987)第41頁]。無酸化炉で表面に付着し
ている油分の燃焼除去及び加熱された鋼板は、H2 −N
2 ,H2 等の雰囲気に維持された還元焼鈍炉で焼鈍され
ると共に表面の酸化膜が除去され、活性化される。その
後、鋼板は、還元雰囲気で冷却され、真空ポンプ中にH
2 が入ることによる爆発を防ぐために設けられている窒
素雰囲気ダクトを通過し、真空シール装置を経て真空蒸
着室に導入される。真空蒸着室では、送り込まれた鋼板
にZnが蒸着され、出側の真空シール装置を経て大気中
に送り出される。この蒸着Znめっき鋼板の製造方法
は、溶融めっき法と同じ前処理を採用していることか
ら、既存の設備を一部利用することができる。また、無
酸化炉に替えて脱脂洗浄装置が採用される場合もある。
このような蒸着Znめっき法は、電気Znめっき法と同
等以上の製造効率をもっている。
From the above background, it has been attempted to manufacture a Zn-based alloy plated steel sheet having high corrosion resistance by a vapor deposition method. Among them, Zn-Mg alloy plating exhibits an excellent anticorrosion effect. For example, in Japanese Patent Laid-Open No. 64-17853, Zn-Mg containing 0.5 to 40% by weight of Mg.
Forming an alloy plating layer is disclosed. Also,
Between the Zn-Mg alloy plating layer and the base steel, Zn, Ni,
JP-A-2-141588 discloses that when an intermediate layer of Cu, Mg, Al, Fe, Co, Ti or the like is interposed, the adhesion and workability of the plating layer are improved.
When the Zn-Mg alloy plating layer is composed mainly of Zn-Mg based intermetallic compound and does not contain Mg phase, the coating film peeling resistance after coating is improved.
-17853. Furthermore, JP-A-6
In Japanese Patent Publication No. 4-25990, a Zn-Ti alloy plating layer is provided on a Zn-Mg alloy plating layer to improve the corrosion resistance after coating. The vapor-deposited Zn-plated steel sheet is continuously produced by heating and reducing the steel sheet surface in a non-oxidizing furnace and a reduction treatment furnace similar to the hot-dip galvanized steel sheet to activate the steel sheet surface, and then performing vapor deposition [Nisshin Steel Engineering Co., Ltd. Report No. 5
6 (1987), page 41]. Burning off and heated steel sheet of oil adhering to the surface in non-oxidizing furnace, H 2 -N
It is annealed in a reduction annealing furnace maintained in an atmosphere of 2 , H 2, etc., and the oxide film on the surface is removed and activated. After that, the steel sheet is cooled in a reducing atmosphere, and H
It passes through a nitrogen atmosphere duct provided to prevent explosion caused by the entry of 2, and is introduced into the vacuum deposition chamber through a vacuum sealing device. In the vacuum vapor deposition chamber, Zn is vapor-deposited on the fed steel plate and is delivered to the atmosphere through the vacuum sealing device on the delivery side. Since this vapor-deposited Zn-plated steel sheet manufacturing method employs the same pretreatment as the hot dipping method, some of the existing equipment can be used. In addition, a degreasing cleaning device may be used instead of the non-oxidizing furnace.
Such a vapor deposition Zn plating method has a production efficiency equal to or higher than that of the electric Zn plating method.

【0004】[0004]

【発明が解決しようとする課題】Mg及びZnをこの順
番で蒸着し、その後の拡散処理でZn−Mg合金めっき
鋼板を製造する方法では、鋼板が還元雰囲気で加熱され
ることによって表面酸化膜が除去される。しかし、鋼板
は、表面が活性化された後でも、窒素雰囲気ダクトを通
過するために、良好なめっき密着性が得られない場合が
ある。これは、窒素雰囲気中にある微量のO2 及びH2
Oにより鋼板表面が酸化し、生成した酸化膜がMg,F
e及び拡散してきたZnと反応し、脆弱な反応生成物を
作ることに原因があるものと考えられる。また、鋼板温
度が低い場合、めっき層に空隙が生じ始める。その結
果、得られためっき層が緻密でなくなり、下地鋼が腐食
性雰囲気にめっき層を介して曝されることになるので、
本来の耐食性が発揮されない。本発明は、このような問
題を解消すべく案出されたものであり、Mg蒸着に先立
ってZn蒸着を施すことにより、めっき密着性及びめっ
き層の緻密化を図り、耐食性に優れたZn−Mg合金め
っき鋼板を得ることを目的とする。
In the method of vapor-depositing Mg and Zn in this order and manufacturing the Zn-Mg alloy plated steel sheet by the subsequent diffusion treatment, the surface oxide film is formed by heating the steel sheet in a reducing atmosphere. To be removed. However, since the steel sheet passes through the nitrogen atmosphere duct even after the surface has been activated, good plating adhesion may not be obtained in some cases. This is due to the small amount of O 2 and H 2 in the nitrogen atmosphere.
The surface of the steel sheet is oxidized by O, and the produced oxide film is Mg, F
It is considered that the cause is that it reacts with e and Zn that has diffused to form a brittle reaction product. Further, when the steel plate temperature is low, voids start to appear in the plating layer. As a result, the obtained plating layer is not dense and the base steel is exposed to a corrosive atmosphere through the plating layer,
The original corrosion resistance is not exhibited. The present invention has been devised to solve such a problem, and Zn deposition excellent in corrosion resistance is achieved by performing Zn deposition prior to Mg deposition to achieve plating adhesion and densification of the plating layer. The purpose is to obtain a Mg alloy plated steel sheet.

【0005】[0005]

【課題を解決するための手段】本発明のZn−Mg合金
蒸着めっき鋼板製造方法は、その目的を達成するため、
単位面積当りのZn付着量をMg付着量の1.5倍以上
でプレZn蒸着を鋼板表面に施し、次いでMg蒸着及び
Zn蒸着することを特徴とする。Mg蒸着及びZn蒸着
に際しては、鋼板温度を180℃以上に保持することが
好ましい。被めっき鋼板は、還元加熱により鋼板表面を
活性化させる還元雰囲気帯,窒素置換室,窒素雰囲気ダ
クト及び真空シール装置を経て真空蒸着室に導入され
る。蒸着室では、プレZn蒸着,Mg蒸着及びZn蒸着
を順次行い、相互拡散によってZn−Mg合金めっき層
が形成される。このとき、窒素雰囲気ダクトのO2 濃度
(容量%)をX,H2 O濃度(容量%)をY,通板時間
をZ(秒)とするとき、X×Z≦1.2及びY×Z≦3
5を満足する条件下で窒素雰囲気ダクトを通板させる。
窒素雰囲気ダクトには、好ましくは0.05〜4容量%
のH2 を添加する。この場合、X×Z≦3.8及びY×
Z≦80を満足する条件下で窒素雰囲気ダクトを通板さ
せる。
The method for producing a Zn-Mg alloy vapor-deposited plated steel sheet according to the present invention, in order to achieve the object,
Pre-Zn vapor deposition is performed on the surface of the steel sheet at a Zn deposition amount per unit area of 1.5 times or more the Mg deposition amount, and then Mg vapor deposition and Zn vapor deposition are performed. During Mg vapor deposition and Zn vapor deposition, it is preferable to maintain the steel plate temperature at 180 ° C. or higher. The steel sheet to be plated is introduced into the vacuum deposition chamber through a reducing atmosphere zone which activates the surface of the steel sheet by reduction heating, a nitrogen substitution chamber, a nitrogen atmosphere duct and a vacuum sealing device. In the vapor deposition chamber, pre-Zn vapor deposition, Mg vapor deposition, and Zn vapor deposition are sequentially performed, and a Zn-Mg alloy plating layer is formed by mutual diffusion. At this time, when the O 2 concentration (volume%) of the nitrogen atmosphere duct is X, the H 2 O concentration (volume%) is Y, and the strip running time is Z (seconds), X × Z ≦ 1.2 and Y × Z ≦ 3
Pass the nitrogen atmosphere duct under the condition satisfying the condition 5.
The nitrogen atmosphere duct is preferably 0.05 to 4% by volume
Of H 2 is added. In this case, X × Z ≦ 3.8 and Y ×
A nitrogen atmosphere duct is passed under the condition of satisfying Z ≦ 80.

【0006】[0006]

【作用】本発明においては、Mg蒸着に先立ってプレZ
n蒸着を鋼板に施している。鋼板表面に薄い酸化膜があ
ってもZnは密着性良く蒸着できるため、その上に形成
されるMg蒸着層及びZn蒸着層の密着性が向上する。
しかし、Mg蒸着からZn蒸着までに数秒以上の時間が
かかり、めっき層の密着性を向上させるために180℃
以上の鋼板温度で蒸着する場合、プレZn層が薄いと多
量のMgが鋼板界面まで拡散し、脆弱な中間層が形成さ
れ易くなる。また、めっき層の拡散処理時にMgがプレ
Zn層に拡散し、同様に脆弱な中間層が形成される。脆
弱な中間層の生成は、Mg蒸着層の付着量に対して重量
比率で1.5倍以上のプレZn層を形成することにより
防止できる。この付着量のプレZn層は、鋼板温度を1
80℃以上にした蒸着時や拡散加熱処理時に鋼板界面ま
でMgが拡散することを抑制し、また拡散しても少量に
規制する。その結果、脆弱な中間層が生成せず、下地鋼
に対するZn−Mg合金めっき層の密着性が向上する。
In the present invention, the pre-Z is performed before the Mg vapor deposition.
n Steel plate is vapor-deposited. Even if there is a thin oxide film on the surface of the steel sheet, Zn can be vapor-deposited with good adhesiveness, so that the adhesiveness of the Mg vapor deposition layer and the Zn vapor deposition layer formed thereon is improved.
However, it takes several seconds or more from Mg vapor deposition to Zn vapor deposition, and 180 ° C. is required to improve the adhesion of the plating layer.
In the case of vapor deposition at the above steel plate temperatures, if the pre-Zn layer is thin, a large amount of Mg diffuses to the steel plate interface, and a brittle intermediate layer is likely to be formed. In addition, Mg diffuses into the pre-Zn layer during the diffusion treatment of the plating layer, and similarly a fragile intermediate layer is formed. The formation of a brittle intermediate layer can be prevented by forming a pre-Zn layer having a weight ratio of 1.5 times or more the amount of the deposited Mg layer. This amount of pre-Zn layer has a steel plate temperature of 1
It suppresses the diffusion of Mg to the steel sheet interface at the time of vapor deposition at 80 ° C. or higher or at the time of diffusion heat treatment, and limits the diffusion amount to a small amount. As a result, a brittle intermediate layer is not formed, and the adhesion of the Zn-Mg alloy plating layer to the base steel is improved.

【0007】窒素雰囲気ダクト内を被めっき鋼板を通過
させる際、N2 ガス雰囲気のO2 濃度をX(容量%),
2 O濃度をY(容量%)及び通板時間をZ(秒)とす
るとき、X×Z≦1.2及びY×Z≦35の条件を満足
させると、再酸化によって鋼板表面に生成する酸化皮膜
の厚膜化が防止される。その結果、プレZn蒸着したと
きの密着性が確保される。また、窒素雰囲気ダクトに少
量のH2 を添加すると、窒素雰囲気ダクトの雰囲気及び
通板時間に加わる制約が緩和され、Zn−Mg合金めっ
き鋼板の製造が容易になる。本発明に従ったZn−Mg
合金蒸着めっき鋼板は、たとえば概略を図1に示すめっ
き設備で製造される。めっき原板1は、ペイオフリール
2から巻き戻され、無酸化炉11,還元焼鈍炉12及び
還元雰囲気冷却帯13からなる前処理ゾーン10から窒
素置換室19及び窒素雰囲気ダクト20を経て真空蒸着
室30に導かれる。還元焼鈍炉12では、たとえば50
%H2 −N2 組成の還元雰囲気での加熱により、めっき
原板1が酸化膜除去及び焼鈍される。
When the steel sheet to be plated is passed through the nitrogen atmosphere duct, the O 2 concentration in the N 2 gas atmosphere is X (volume%),
When the H 2 O concentration is Y (volume%) and the strip running time is Z (seconds), if the conditions of X × Z ≦ 1.2 and Y × Z ≦ 35 are satisfied, it is generated on the steel sheet surface by reoxidation. The oxide film is prevented from becoming thicker. As a result, the adhesion when pre-Zn vapor deposition is secured. Further, when a small amount of H 2 is added to the nitrogen atmosphere duct, restrictions on the atmosphere of the nitrogen atmosphere duct and the passage time are alleviated, and the production of the Zn—Mg alloy plated steel sheet becomes easy. Zn-Mg according to the invention
The alloy vapor deposition plated steel sheet is produced, for example, by a plating facility whose outline is shown in FIG. The plating base plate 1 is rewound from the pay-off reel 2, and is transferred from the pretreatment zone 10 including the non-oxidizing furnace 11, the reduction annealing furnace 12 and the reducing atmosphere cooling zone 13 to the vacuum chamber 30 through the nitrogen substitution chamber 19 and the nitrogen atmosphere duct 20. Be led to. In the reduction annealing furnace 12, for example, 50
The original plating plate 1 is subjected to oxide film removal and annealing by heating in a reducing atmosphere having a composition of% H 2 —N 2 .

【0008】真空蒸着室30は、入側真空ロール31及
び出側真空ロール32によって内部が気密状態に維持さ
れ、真空ポンプ(図示せず)により1×10-2トール程
度まで減圧される。真空蒸着室30の内部には、めっき
原板1の搬送経路に沿ってプレZn蒸着室40,Mg蒸
着室50,第1Zn蒸着室60及び第2Zn蒸着室70
が配列される。また、必要に応じて、補助的なZn蒸着
室65を第1Zn蒸着室60と第2Zn蒸着室70との
間に設けても良い。Mgの蒸着は、電気抵抗加熱蒸発,
高周波加熱蒸発,電子ビーム加熱蒸発,アーク蒸発等が
採用可能である。図示の設備では、Mg蒸発源51及び
Mg蒸気案内フード52をめっき原板の両面に対向配置
している。Mg蒸発源51は、片面めっき又は両面めっ
きに対応させて何れか一方又は双方を稼動させる。
The inside of the vacuum deposition chamber 30 is kept airtight by the inlet vacuum roll 31 and the outlet vacuum roll 32, and the pressure is reduced to about 1 × 10 -2 Torr by a vacuum pump (not shown). Inside the vacuum deposition chamber 30, the pre-Zn deposition chamber 40, the Mg deposition chamber 50, the first Zn deposition chamber 60, and the second Zn deposition chamber 70 are arranged along the transport path of the plating original plate 1.
Are arranged. If necessary, an auxiliary Zn vapor deposition chamber 65 may be provided between the first Zn vapor deposition chamber 60 and the second Zn vapor deposition chamber 70. The vapor deposition of Mg is performed by electric resistance heating evaporation,
High frequency heating evaporation, electron beam heating evaporation, arc evaporation, etc. can be adopted. In the illustrated equipment, the Mg evaporation source 51 and the Mg vapor guide hood 52 are arranged opposite to each other on both sides of the original plating plate. The Mg evaporation source 51 operates either one or both in accordance with single-sided plating or double-sided plating.

【0009】Zn蒸着室40,60,70は、Zn蒸気
発生器41,61,71及びZn蒸気案内フード42,
62,72を、めっき原板1及びMg蒸着されためっき
原板3に対向させている。プレZn蒸着室40では、蒸
気案内フード42をめっき原板1の両面に対向させ、両
面同時にZn蒸着ができるようにしている。第1Zn蒸
着室60及び第2Zn蒸着室70では、めっき原板3を
巻付けロール63,73に巻き付け、片面づつZnを蒸
着している。Zn蒸着後のめっき鋼板4は、出側真空ロ
ール32を経て加熱炉80に導かれる。めっき鋼板4
は、加熱炉80で高周波加熱等の適宜に加熱手段によ
り、必要に応じて加熱処理される。加熱後のめっき鋼板
5は、後処理ゾーン90を通過するとき、必要な化成処
理等の処理が施される。最終的に、Zn−Mg合金蒸着
めっき鋼板6として巻取りリール7に巻き取られる。加
熱炉80で加熱処理を行わない場合、別途の加熱炉でめ
っき鋼板4をバッチ加熱することも可能である。このよ
うにして製造されためっき鋼板は、必要に応じて片面又
は両面にZn−Mg合金めっき層を形成している。たと
えば、片面にZn−Mg合金蒸着めっき層を形成する場
合には、何れか一方のMg蒸発源51又は51及びZn
蒸気発生器61又は71を稼動させる。
The Zn vapor deposition chambers 40, 60, 70 include Zn vapor generators 41, 61, 71 and a Zn vapor guide hood 42.
62 and 72 are opposed to the plating original plate 1 and the Mg-deposited original plate 3. In the pre-Zn vapor deposition chamber 40, the vapor guide hoods 42 are opposed to both sides of the original plating plate 1 so that Zn vapor deposition can be performed on both sides simultaneously. In the first Zn vapor deposition chamber 60 and the second Zn vapor deposition chamber 70, the original plating plate 3 is wound around the winding rolls 63 and 73, and Zn is vapor-deposited on each side. The plated steel sheet 4 after Zn vapor deposition is guided to the heating furnace 80 via the exit side vacuum roll 32. Plated steel plate 4
Is subjected to heat treatment in the heating furnace 80 as needed by appropriate heating means such as high frequency heating. When passing through the post-treatment zone 90, the plated steel sheet 5 after heating is subjected to necessary chemical conversion treatment and the like. Finally, the Zn-Mg alloy vapor-deposited steel plate 6 is taken up by the take-up reel 7. When the heating process is not performed in the heating furnace 80, the plated steel sheet 4 can be batch-heated in a separate heating furnace. The plated steel sheet thus manufactured has a Zn—Mg alloy plating layer formed on one side or both sides as necessary. For example, when forming a Zn-Mg alloy vapor deposition plating layer on one side, either one of the Mg evaporation sources 51 or 51 and Zn
The steam generator 61 or 71 is operated.

【0010】[0010]

【実施例】めっき原板として、表1に示した組成を持つ
板厚1.0mm及び板幅918mmの未焼鈍冷延鋼板を
使用した。図1に示しためっき設備にめっき原板1を通
板し、Zn−Mg合金蒸着めっき鋼板を製造した。
[Example] An unannealed cold-rolled steel sheet having a composition shown in Table 1 and a thickness of 1.0 mm and a width of 918 mm was used as a plating original sheet. The original plating plate 1 was passed through the plating equipment shown in FIG. 1 to produce a Zn—Mg alloy vapor deposition plated steel plate.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例1:窒素雰囲気ダクト20内の雰囲
気をO2 濃度0.001容量%,H2 O濃度0.06容
量%のN2 雰囲気とし、窒素雰囲気ダクト20をめっき
原板1が通過する時間を70秒に設定した。鋼板温度
は、プレZn蒸着室40及び第1Zn蒸着室60にめっ
き原板1が入るときの温度が所定値になるように調整し
た。蒸着等によって鋼板温度が僅かに上昇するが、この
ときの温度上昇分を所定温度に対して10℃未満になる
ように調整した。この条件下で第1Zn蒸着室60及び
第2Zn蒸着室70で蒸着させるZnの付着量を、それ
ぞれ片面当り10g/m2 に設定した。そして、めっき
後の鋼板4を高周波加熱炉80に導入し、N2 雰囲気中
でめっき鋼板4を310℃に5秒間加熱した。プレZn
付着量,Mg付着量及び蒸着時の鋼板温度を変化させ、
めっき層の密着性及び組織に及ぼす影響を調査した。密
着性は、180度密着折曲げテープ剥離試験による剥離
の有無を調べ、剥離が全く観察されないものを良として
評価した。めっき層の組織は、断面をSEMで観察し、
その緻密性を調査した。
Example 1: The atmosphere in the nitrogen atmosphere duct 20 is an N 2 atmosphere having an O 2 concentration of 0.001% by volume and an H 2 O concentration of 0.06% by volume, and the plating base plate 1 passes through the nitrogen atmosphere duct 20. The time was set to 70 seconds. The steel plate temperature was adjusted so that the temperature when the plating original plate 1 enters the pre-Zn vapor deposition chamber 40 and the first Zn vapor deposition chamber 60 has a predetermined value. Although the steel plate temperature slightly rises due to vapor deposition or the like, the temperature rise amount at this time was adjusted to be less than 10 ° C. with respect to the predetermined temperature. Under these conditions, the amount of Zn deposited in the first Zn vapor deposition chamber 60 and the second Zn vapor deposition chamber 70 was set to 10 g / m 2 on each side. Then, the plated steel plate 4 was introduced into the high-frequency heating furnace 80, and the plated steel plate 4 was heated to 310 ° C. for 5 seconds in an N 2 atmosphere. Pre Zn
By changing the amount of deposition, the amount of Mg deposition, and the steel plate temperature during vapor deposition,
The effect of the plated layer on the adhesion and structure was investigated. Regarding the adhesiveness, the presence or absence of peeling was examined by the 180-degree tightly folded tape peeling test, and when no peeling was observed at all, it was evaluated as good. The structure of the plating layer, the cross section is observed by SEM,
We investigated its precision.

【0013】調査結果を示す表2にみられるように、プ
レZn付着量をMg付着量の1.5倍以上とし、蒸着時
の鋼板温度を180℃以上に保持したものでは、密着性
がよく緻密な組織をもつZn−Mg合金めっき層が形成
されていた。これに対し、プレZn付着量がMg付着量
の1.5倍に満たないものでは、めっき層の一部又は全
部に剥離が生じ、密着性の良好なZn−Mg合金めっき
鋼板が得られなかった。また、加熱処理を施さない場
合、プレZn付着量がMg付着量の1.5倍に満たない
ものでは、めっき層の一部に剥離が生じた。更に、蒸着
時に鋼板温度が180℃未満のものでは、密着性が良好
であっても、めっき層中に空隙があり、緻密なZn−M
g合金めっき層が得られなかった。
As can be seen from Table 2 showing the results of the investigation, when the pre-Zn deposition amount is 1.5 times or more the Mg deposition amount and the steel sheet temperature during vapor deposition is kept at 180 ° C. or higher, the adhesion is good. A Zn-Mg alloy plating layer having a dense structure was formed. On the other hand, if the pre-Zn adhesion amount is less than 1.5 times the Mg adhesion amount, peeling occurs in part or all of the plating layer, and a Zn-Mg alloy plated steel sheet with good adhesion cannot be obtained. It was Further, when the pre-Zn adhesion amount was less than 1.5 times the Mg adhesion amount without heat treatment, peeling occurred in a part of the plating layer. Furthermore, when the steel sheet temperature is less than 180 ° C. during vapor deposition, even if the adhesion is good, there are voids in the plating layer and a dense Zn-M
The g alloy plating layer could not be obtained.

【0014】[0014]

【表2】 [Table 2]

【0015】実施例2:窒素雰囲気ダクト20内のO2
濃度X(容量%),H2 O濃度Y(容量%),通板時間
Z(秒)及びH2 添加量を変化させ、めっき密着性に及
ぼす影響を調査した。なお、プレZnの付着量は5g/
2 ,Mg付着量は1.2g/m2 ,蒸着時の鋼板温度
は250℃にそれぞれ設定した。そして、めっき後の鋼
板4をN2 雰囲気に保持された高周波加熱炉80で30
0℃に加熱処理した。調査結果を示す表3にみられるよ
うに、H2 の添加がない場合にはX×Z≦1.2及びY
×Z≦35で良好な密着性が得られている。しかし、X
×Z≦1.2及びY×Z≦35の何れかの条件が満足さ
れないと、表4にみられるように密着性が低下してい
た。また、窒素雰囲気ダクトにH2 を添加したとき、X
×Z≦3.8及びY×Z≦80で良好な密着性が得られ
ている。しかし、X×Z≦3.8及びY×Z≦80の何
れかの条件が満足されないと、密着性が低下していた。
このように雰囲気条件を緩和させるH2 の効果は、添加
量0.05容量%以上で顕著になった。
Example 2: O 2 in the nitrogen atmosphere duct 20
The effects on the plating adhesion were investigated by changing the concentration X (volume%), the H 2 O concentration Y (volume%), the strip running time Z (seconds) and the H 2 addition amount. The amount of pre-Zn deposited is 5 g /
The amount of m 2 and Mg deposited was set to 1.2 g / m 2 , and the temperature of the steel sheet during vapor deposition was set to 250 ° C. Then, the plated steel sheet 4 is heated in a high frequency heating furnace 80 kept in an N 2 atmosphere for 30
Heat treatment was performed at 0 ° C. As can be seen in Table 3 showing the survey results, X × Z ≦ 1.2 and Y without addition of H 2
Good adhesion is obtained when xZ ≦ 35. But X
If any of the conditions of × Z ≦ 1.2 and Y × Z ≦ 35 was not satisfied, the adhesiveness was lowered as shown in Table 4. Also, when H 2 is added to the nitrogen atmosphere duct, X
Good adhesiveness is obtained with xZ ≦ 3.8 and Y × Z ≦ 80. However, if any of the conditions of X × Z ≦ 3.8 and Y × Z ≦ 80 was not satisfied, the adhesiveness was lowered.
As described above, the effect of H 2 for alleviating the atmospheric conditions became remarkable when the added amount was 0.05% by volume or more.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、蒸着法でZn−Mg合金蒸着めっき鋼板を製造する
際、Mg付着量の1.5倍以上のZnをMg蒸着に先立
って蒸着させることにより、めっき槽の密着性を改善
し、下地鋼とめっき層との間に脆弱な中間層が生成する
ことを防止している。また、真空蒸着室に導入される前
の雰囲気制御によって、還元焼鈍によって活性化された
鋼板表面の再酸化を抑制し、めっき密着性を向上させて
いる。このようにして得られたZn−Mg合金蒸着めっ
き鋼板は、良好なめっき層密着性を呈することから、Z
n−Mg合金めっき層本来の高耐食性を活かした用途に
使用される。
As described above, in the present invention, when a Zn-Mg alloy vapor deposition plated steel sheet is manufactured by the vapor deposition method, 1.5 times or more of the amount of Mg deposited is deposited prior to the Mg vapor deposition. This improves the adhesion of the plating tank and prevents the formation of a brittle intermediate layer between the base steel and the plating layer. Further, by controlling the atmosphere before being introduced into the vacuum deposition chamber, reoxidation of the steel sheet surface activated by reduction annealing is suppressed, and plating adhesion is improved. The Zn-Mg alloy vapor-deposited steel sheet thus obtained exhibits good adhesion of the plating layer,
Used for applications that take advantage of the high corrosion resistance inherent in the n-Mg alloy plating layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従ってZn−Mg合金蒸着めっき鋼
板を製造するめっき設備
FIG. 1 is a plating facility for producing a Zn-Mg alloy vapor-deposited steel sheet according to the present invention.

【符号の説明】[Explanation of symbols]

1:めっき原板 3:Mg蒸着されためっき原板
4:Zn蒸着後のめっき鋼板 5:加熱後のめっき鋼
板 6:Zn−Mg合金蒸着めっき鋼板 10:前
処理ゾーン 11:無酸化炉 12:還元焼鈍炉
13:還元雰囲気冷却帯 19:窒素置換室 2
0:窒素雰囲気ダクト 30:真空蒸着室 40:
プレZn蒸着室 50:Mg蒸着室 60:第1Z
n蒸着室 70:第2Zn蒸着室 80:加熱炉 90:後処
理ゾーン
1: Plating base plate 3: Mg-deposited plating base plate
4: Zn plated steel sheet after vapor deposition 5: Plated steel sheet after heating 6: Zn-Mg alloy vapor deposited steel sheet 10: Pretreatment zone 11: Non-oxidizing furnace 12: Reduction annealing furnace
13: Cooling zone for reducing atmosphere 19: Nitrogen replacement chamber 2
0: Nitrogen atmosphere duct 30: Vacuum deposition chamber 40:
Pre-Zn vapor deposition chamber 50: Mg vapor deposition chamber 60: 1st Z
n vapor deposition chamber 70: second Zn vapor deposition chamber 80: heating furnace 90: post-treatment zone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Saito 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単位面積当りのZn付着量をMg付着量
の1.5倍以上でプレZn蒸着を鋼板表面に施し、次い
でMg蒸着及びZn蒸着することを特徴とするZn−M
g合金めっき鋼板の製造方法。
1. A Zn-M characterized in that a Zn deposition amount per unit area is 1.5 times or more the Mg deposition amount, pre-Zn vapor deposition is performed on the surface of a steel sheet, and then Mg vapor deposition and Zn vapor deposition are performed.
Method for producing g-alloy plated steel sheet.
【請求項2】 180℃以上の温度に保持した鋼板に請
求項1記載のMg蒸着及びZn蒸着を行うZn−Mg合
金めっき鋼板の製造方法。
2. A method for producing a Zn—Mg alloy plated steel sheet, wherein Mg vapor deposition and Zn vapor deposition according to claim 1 are performed on a steel sheet kept at a temperature of 180 ° C. or higher.
【請求項3】 還元加熱により表面を活性化させた鋼板
を還元雰囲気帯,窒素置換室,窒素雰囲気ダクト及び真
空シール装置を経て真空蒸着室に導入し、プレZn蒸
着,Mg蒸着及びZn蒸着を順次行う際、窒素雰囲気ダ
クトのO2 濃度(容量%)をX,H2 O濃度(容量%)
をY,通板時間をZ(秒)とするとき、X×Z≦1.2
及びY×Z≦35を満足する条件下で窒素雰囲気ダクト
を通板させる請求項1又は2記載のZn−Mg合金めっ
き鋼板の製造方法。
3. A steel sheet whose surface has been activated by reduction heating is introduced into a vacuum deposition chamber through a reducing atmosphere zone, a nitrogen substitution chamber, a nitrogen atmosphere duct and a vacuum sealing device to perform pre-Zn vapor deposition, Mg vapor deposition and Zn vapor deposition. When performing sequentially, change the O 2 concentration (volume%) of the nitrogen atmosphere duct to the X, H 2 O concentration (volume%).
Is Y and the strip running time is Z (seconds), X × Z ≦ 1.2
And a method of manufacturing a Zn-Mg alloy-plated steel sheet according to claim 1 or 2, wherein a nitrogen atmosphere duct is passed under a condition satisfying Y x Z ≤ 35.
【請求項4】 請求項3記載の窒素雰囲気ダクトにH2
を添加するZn−Mg合金めっき鋼板の製造方法。
4. The nitrogen atmosphere duct according to claim 3, wherein H 2 is added to the nitrogen atmosphere duct.
The manufacturing method of the Zn-Mg alloy plating steel plate which adds.
【請求項5】 請求項3又は4記載の窒素雰囲気ダクト
に0.05〜4容量%のH2 を添加し、X×Z≦3.8
及びY×Z≦80を満足する条件下で窒素雰囲気ダクト
を通板させるZn−Mg合金めっき鋼板の製造方法。
5. The nitrogen atmosphere duct according to claim 3 or 4, to which 0.05 to 4% by volume of H 2 is added, and X × Z ≦ 3.8.
And a method for producing a Zn-Mg alloy-plated steel sheet in which a nitrogen atmosphere duct is passed under conditions satisfying Y × Z ≦ 80.
JP30285294A 1994-11-11 1994-11-11 Production of zinc-magnesium alloy plated steel sheet Withdrawn JPH08134632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30285294A JPH08134632A (en) 1994-11-11 1994-11-11 Production of zinc-magnesium alloy plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30285294A JPH08134632A (en) 1994-11-11 1994-11-11 Production of zinc-magnesium alloy plated steel sheet

Publications (1)

Publication Number Publication Date
JPH08134632A true JPH08134632A (en) 1996-05-28

Family

ID=17913879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30285294A Withdrawn JPH08134632A (en) 1994-11-11 1994-11-11 Production of zinc-magnesium alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JPH08134632A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730045A2 (en) * 1995-02-28 1996-09-04 Nisshin Steel Co., Ltd. Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US6607844B1 (en) 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2012516944A (en) * 2009-02-04 2012-07-26 ユミコア ソシエテ アノニム Method for coating discrete products having an alloy layer based on zinc
US9623632B2 (en) 2009-02-04 2017-04-18 Umicore Process for coating discrete articles with a zinc-based alloyed layer and articles obtained therefrom
CN113227437A (en) * 2018-12-19 2021-08-06 Posco公司 Dissimilar plated steel sheet having excellent workability and corrosion resistance and method for producing same
JP2022514409A (en) * 2018-12-19 2022-02-10 ポスコ Plated steel material with excellent plating adhesion and corrosion resistance and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730045A2 (en) * 1995-02-28 1996-09-04 Nisshin Steel Co., Ltd. Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
EP0730045A3 (en) * 1995-02-28 1997-09-17 Nisshin Steel Co Ltd Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US5747111A (en) * 1995-02-28 1998-05-05 Nisshin Steel Co., Ltd. Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US6607844B1 (en) 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
US9382630B2 (en) 2007-12-28 2016-07-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2012516944A (en) * 2009-02-04 2012-07-26 ユミコア ソシエテ アノニム Method for coating discrete products having an alloy layer based on zinc
US8895106B2 (en) 2009-02-04 2014-11-25 Umicore Process for coating discrete articles with a zinc-based alloyed layer
US9623632B2 (en) 2009-02-04 2017-04-18 Umicore Process for coating discrete articles with a zinc-based alloyed layer and articles obtained therefrom
CN113227437A (en) * 2018-12-19 2021-08-06 Posco公司 Dissimilar plated steel sheet having excellent workability and corrosion resistance and method for producing same
JP2022514409A (en) * 2018-12-19 2022-02-10 ポスコ Plated steel material with excellent plating adhesion and corrosion resistance and its manufacturing method
CN113227437B (en) * 2018-12-19 2023-06-30 浦项股份有限公司 Heterogeneous plated steel sheet excellent in workability and corrosion resistance and method for producing same

Similar Documents

Publication Publication Date Title
US5747111A (en) Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
KR20200075778A (en) Alloy-coated steel sheet and manufacturing method of the same
CN1846014A (en) A satainless steel strip coated with aluminium.
JPH08134632A (en) Production of zinc-magnesium alloy plated steel sheet
JPH07268605A (en) Production of alloyed zn-mg vapor deposition-coated steel sheet
KR20110066689A (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
JPS6328857A (en) Alloyed zinc plated steel sheet and its production
JPH083728A (en) Zinc-magnesium plated steel sheet excellent in corrosion resistance and its production
JPS60116787A (en) Method and device for plating
JPH02194162A (en) Production of zn-mg alloy plated metallic material
JPH09143682A (en) Zinc-magnesium vapor deposition method using multiple duct and vapor deposition equipment
KR0166099B1 (en) Al-si-cr plated steel sheet excellent in corrosion resistance and production thereof
JP2938658B2 (en) Multi-layer alloy plated steel sheet and method for producing the same
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet
JPH05320875A (en) Multi-ply zn-ti alloy plated steel sheet and its production
JPH05271908A (en) Multi-ply zn-ti plated steel sheet and its manufacture
JPH09256157A (en) Production of vapor deposition zinc-magnesium plated steel sheet
JP3207958B2 (en) Composite Al alloy plated steel sheet and method for producing the same
JP2912029B2 (en) Alloyed galvanized steel sheet
JPH0860342A (en) Vapor deposited zinc-magnesium alloy plated steel sheet having excellent adhesion property and its manufacture
JPH06346254A (en) High corrosion resistant zn/cr series multi-ply plated steel sheet and its production
JPH06228725A (en) Hot-dip al-si-cr base plated steel sheet and its production
JPH0688208A (en) Highly corrosion resistant surface treated metallic material and its production
JPH06240432A (en) Production of ti-containing hot dipped steel sheet
JPH06158285A (en) Production of al base vapor deposition plating material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115