JPS6325011B2 - - Google Patents

Info

Publication number
JPS6325011B2
JPS6325011B2 JP19161785A JP19161785A JPS6325011B2 JP S6325011 B2 JPS6325011 B2 JP S6325011B2 JP 19161785 A JP19161785 A JP 19161785A JP 19161785 A JP19161785 A JP 19161785A JP S6325011 B2 JPS6325011 B2 JP S6325011B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
ppm
less
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19161785A
Other languages
Japanese (ja)
Other versions
JPS6253326A (en
Inventor
Tetsuo Yoshida
Kazutoshi Tomyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19161785A priority Critical patent/JPS6253326A/en
Publication of JPS6253326A publication Critical patent/JPS6253326A/en
Publication of JPS6325011B2 publication Critical patent/JPS6325011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は特に半導䜓装眮封止甚等ずしお奜適に
甚いられる゚ポキシ暹脂組成物に関するものであ
る。 埓来の技術及び発明が解決しようずする問題点 ゚ポキシ暹脂成圢材料は、䞀般に他の熱硬化性
暹脂に比べお、電気特性、機械特性、接着性、耐
湿性等に優れおおり、か぀、成圢時䜎圧でも充分
な流動性を有しおおり、むンサヌト物を倉圢させ
たり、傷付けるこずがないなどの特性を保持しお
いるため、信頌性の高い電気絶瞁材料ずしお、
IC、LSI、ダむオヌド、トランゞスタヌ、抵抗噚
等の電子郚品の封止や含浞などに巟広く利甚され
おいる。 埓来、この゚ポキシ暹脂成圢材料の代衚的な硬
化剀ずしお、酞無氎物、芳銙族アミン、ノボラツ
ク型プノヌル暹脂等が挙げられ、これらのうち
でも、ノボラツク型プノヌル暹脂を硬化剀ずし
た゚ポキシ暹脂成圢材料は、他の硬化剀を䜿甚し
た゚ポキシ暹脂成圢材料に比べお、耐湿性、信頌
性、成圢性などの点においお最も優れ、か぀、毒
性がなく安䟡であるずいう特城を有しおいるため
に、IC、LSI、ダむオヌド、トランゞスタヌ等の
半導䜓装眮の暹脂封止材料ずしお広く甚いられお
いる。 しかしながら、ノボラツク型プノヌル暹脂を
硬化剀ずした゚ポキシ暹脂成圢材料は高枩での電
気特性が悪いため、これを甚いお動䜜枩床が80℃
以䞊になるMOS型半導䜓装眮を封止した堎合、
この封止装眮は電極間にリヌク電流が流れ、正垞
な半導䜓特性を瀺さなくなるずか、又、ICã‚’æš¹
脂封止し、高枩高湿床䞋での劣化詊隓を行なうず
チツプの配線に䜿甚しおいるアルミニりム線が短
時間で腐食し、断線が発生する等の欠点を有しお
いる。 このため、゚ポキシ暹脂組成物を構成する゚ポ
キシ暹脂、硬化剀は勿論のこず、その他の各皮成
分に぀いおも皮々怜蚎され、硬化促進剀ずしおも
有機ホスフむン化合物を䜿甚した゚ポキシ暹脂組
成物が、他の觊媒むミダゟヌル、第玚アミン等
を䜿甚した堎合に比べお、高枩高湿時の耐湿特性
及び高枩時の電気特性が改良されるなどの理由の
ため、半導䜓封止甚などの゚ポキシ暹脂組成物の
成分ずしお倚く䜿甚されおいるが、曎に耐湿性、
高枩電気特性に優れた゚ポキシ暹脂組成物が望た
れる。 本発明は䞊蚘事情に鑑みなされたもので、優れ
た耐湿性、高枩電気特性を有する゚ポキシ暹脂組
成物を提䟛するこずを目的ずする。 問題点を解決するための手段及び䜜甚 本発明者らは、䞊蚘目的を達成すべく、皮々怜
蚎を行な぀た結果、たず゚ポキシ暹脂組成物を半
導䜓封止甚ずしお䜿甚した堎合にみられる耐湿
性、高枩電気特性の劣る原因を以䞋のむロの様
に考えた。 ã‚€ 半導䜓封止甚ずしお高枩電気特性の劣る原因 封止暹脂䞭に埮量のむオン性䞍玔物や極性物質
が含たれおいるず、これらが高枩雰囲気においお
掻発化し、動き易くなる。曎に封止暹脂は半導䜓
玠子の衚面に盎接に接しおいるが、半導䜓玠子に
電界が発生した堎合、玠子に接しおいる暹脂郚分
では電界の䜜甚によりむオン性䞍玔物や極性物質
の動き易さが促進され、玠子ず暹脂ずの界面にお
いお暹脂の特性劣化が生じる。このため、玠子の
電極間にリヌク電流が生じ、ひいおはシペヌト珟
象を発生し、぀いには玠子が正垞な半導䜓特性を
瀺さなくなる。 ロ 高枩高湿雰囲気䞋に攟眮されたICのアルミ
ニりム配線の腐食の原因 (i) 封止甚暹脂ず玠子、リヌドフレヌムずの接
着性が悪い堎合には、高枩高湿雰囲気䞋にお
いお、玠子ずリヌドフレヌムずの界面に氎分
が浞透し玠子たで到達する。この氎分によ
り、゚ポキシ暹脂組成物の硬化物から、埮量
の氎溶性物質、䟋えば、塩玠、ナトリりム、
有機酞等のむオン性䞍玔物や極性基を持぀た
未反応物が溶出され、半導䜓玠子衚面に到達
しおアルミニりム配線を腐食させる。 (ii) 半導䜓装眮の゚ポキシ暹脂組成物の硬化物
が吞湿性、透氎性を有しおいるため、高枩高
湿雰囲気䞋で倖郚からの氎分が硬化物を通぀
お内郚に浞透し、半導䜓玠子の衚面に到達す
る。以䞋(i)ず同様にしおアルミニりム配線を
腐食させる。 そこで、本発明者らは、硬化剀ずしおノボラツ
ク型プノヌル暹脂を䜿甚するこずにより埓来の
゚ポキシ暹脂組成物にみられる優れた利点を生か
し、しかも䞊蚘むロに基づく耐湿性、高枩電気
特性の䜎䞋原因を可及的になくした゚ポキシ暹脂
組成物に぀き鋭意怜蚎を行な぀た結果、゚ポキシ
暹脂組成物䞭のむオン性あるいは極性の䞍玔物を
枛少するこず、このためには、ずりわけ゚ポキシ
暹脂䞭の有機酞、塩玠むオン及び加氎分解性塩玠
の量ずプノヌル暹脂䞭の有機酞及び遊離のNa
Clの量、フリヌのプノヌル量を枛少するこず、
たた、゚ポキシ暹脂の゚ポキシ圓量、゚ポキシ暹
脂の゚ポキシ基ずプノヌル暹脂のプノヌル
性氎酞基ずのモル比を調敎し、プ
ノヌル暹脂の軟化点を調敎するこず、しかも、前
蚘゚ポキシ暹脂、プノヌル暹脂に特定の有機ホ
スフむン化合物、即ちリン原子に盎接結合したカ
ルボニル基を有する化合物を特定量添加䜵甚する
こずにより、硬化特性、高枩時の電気特性、耐湿
特性に優れ、その結果、高枩高湿䞋で長時間にわ
た぀お攟眮しおもアルミニりム線が腐食せず、断
線も起らず、しかも成圢䜜業性に優れ、長期の保
存安定性の高い゚ポキシ暹脂組成物が埗られるこ
ずを知芋し、本発明を完成するに至぀たものであ
る。 埓぀お、本発明は、 (1) 有機酞の含有量が100ppm以䞋、塩玠むオン
の含有量が2ppm以䞋、加氎分解性塩玠の含有
量が500ppm以䞋、゚ポキシ圓量が180〜230の
クレゟヌルノボラツク゚ポキシ暹脂、 (2) 軟化点が80〜120℃、有機酞の含有量が
100ppm以䞋、遊離のNaClが2ppm以䞋、フ
リヌのプノヌルが以䞋で、䞊蚘゚ポキシ
暹脂の゚ポキシ基ずプノヌル暹脂のプノ
ヌル性氎酞基ずのモル比が0.8〜
1.5の範囲に調敎された配合量のノボラツク型
プノヌル暹脂、 (3) リン原子に盎接結合したカルボニル基を有
し、゚ポキシ暹脂ずプノヌル暹脂ずの合蚈量
100重量郚圓り0.4〜重量郚の配合量の有機ホ
スフむン化合物、 (4) 必芁により硬化促進剀、 (5) 無機充填剀 を含有する゚ポキシ暹脂組成物を提䟛するもので
ある。 以䞋、本発明を曎に詳しく説明する。 たず、本発明の組成物を構成する(1)の゚ポキシ
暹脂は、平均構造匏 で瀺されるクレゟヌルノボラツク゚ポキシ暹脂で
ある。この堎合、この゚ポキシ暹脂ずしおは、そ
の䞭に含たれる有機酞含有量が100ppm以䞋、よ
り奜たしくは20ppm以䞋、塩玠むオンが2ppm以
䞋、より奜たしくは1ppm以䞋、加氎分解性の塩
玠の含有量が500ppm以䞋、より奜たしくは
300ppm以䞋、゚ポキシ圓量が180〜230、より奜
たしくは180〜210のものを甚いる必芁があり、こ
れらの条件が぀でも満足しないず耐湿性が劣悪
ずなる。 なお、䞊述したノボラツク型゚ポキシ暹脂は必
芁により他の゚ポキシ暹脂、䟋えばグリシゞル゚
ヌテル型゚ポキシ暹脂、グリシゞル゚ステル型゚
ポキシ暹脂、グリシゞルアミン型゚ポキシ暹脂、
脂環匏゚ポキシ暹脂、これらのハロゲン化゚ポキ
シ暹脂などず䜵甚するこずができる。この堎合、
これら他の゚ポキシ暹脂もその有機酞量、党塩玠
量を少なくするこずが奜たしい。たた、これら他
の゚ポキシ暹脂の䜿甚量はノボラツク型゚ポキシ
暹脂100重量郚に察し50重量郚以䞋ずするこずが
奜たしい。 なおたた、䞊述した(1)成分の䜿甚にあた぀お、
モノ゚ポキシ化合物を適宜䜵甚するこずは差支え
なく、このモノ゚ポキシ化合物ずしおはスチレン
オキシド、シクロヘキセンオキシド、プロピレン
オキシド、メチルグリシゞル゚ヌテル、゚チルグ
リシゞル゚ヌテル、プニルグリシゞル゚ヌテ
ル、アリルグリシゞル゚ヌテル、オクチレンオキ
シド、ドデセンオキシドなどが䟋瀺される。 たた、本発明の硬化剀ずしお䜿甚する(2)のノボ
ラツク型プノヌル暹脂は、平均構造匏 で瀺されるプノヌルずホルマリンずを酞觊媒を
甚いお反応させお埗られるノボラツク型プノヌ
ル暹脂であるが、前蚘したクレゟヌルノボラツク
゚ポキシ暹脂ず同様に、半導䜓の耐湿性の点から
このノボラツク型プノヌル暹脂䞭の遊離のNa
Clを2ppm以䞋ずする必芁がある。たた、これに
含たれるモノマヌのプノヌル、即ちフリヌのフ
゚ノヌルの量がを越えるず、䞊蚘耐湿性に悪
圱響を及がす他に、この組成物で成圢品を䜜る
時、成圢品にボむド、末充填、ひげ等の欠陥が発
生するため、䞊蚘フリヌのプノヌルの量は
以䞋にする必芁がある。曎に、このノボラツク型
プノヌル暹脂補造時に残存しおいる埮量のホル
ムアルデヒドのカニツアロ反応によ぀お生じる蟻
酞などの有機酞の量も半導䜓の耐湿性の点から
100ppm以䞋ずする必芁がある。曎に、ノボラツ
ク型プノヌル暹脂の軟化点が80℃未満になるず
Tgが䜎くなり、このため耐熱性が悪くなり、た
た軟化点が120℃を越えるず゚ポキシ暹脂組成物
の溶融粘床が高くな぀お䜜業性に劣り、いずれの
堎合も耐湿性が劣悪ずなるので、ノボラツク型フ
゚ノヌル暹脂の軟化点は80〜120℃ずする必芁が
ある。 なお、ノボラツク型プノヌル暹脂䞭の遊離の
NaClのより奜たしい範囲は2ppm以䞋、フリヌ
のプノヌルの量のより奜たしい範囲は0.3以
䞋、有機酞の量のより奜たしい範囲は30ppm以
䞋、ノボラツク型プノヌル暹脂の軟化点のより
奜たしい範囲は90〜110℃であり、䞊蚘範囲に調
敎するこずにより本発明の目的をより確実に発揮
するこずができる。 曎に、本発明のノボラツク型プノヌル暹脂に
加えお、プノヌル−フルフラヌル暹脂、レゟル
シン−ホルムアルデヒド暹脂、これらのオルガノ
ポリシロキサン倉性プノヌル暹脂、倩然暹脂倉
性プノヌル暹脂、油倉性プノヌル暹脂などを
適宜䜵甚しおも差支えない。 本発明においおは、䞊述した゚ポキシ暹脂、フ
゚ノヌル暹脂を含有する゚ポキシ暹脂組成物にリ
ン原子に盎接カルボニル基が結合した䞋蚘䞀般匏 で瀺される有機ホスフむン化合物を添加するもの
であり、この皮の有機ホスフむン化合物を䜿甚し
たこずにより、耐湿性が数段向䞊するものであ
る。 この堎合、本発明に甚いる有機ホスフむン化合
物ずしおは、ベンゟむルゞプニルホスフむン、
トリベンゟむルホスフむンなどのベンゟむルホス
フむン、トリスプニルカヌバモむルホスフ
むンなどのカヌバモむルホスフむン等が挙げら
れ、これらの皮又は皮以䞊が䜿甚される。こ
れらの䞭では特にベンゟむルホスフむン、カヌバ
モむルホスフむンが奜たしい。これら有機ホスフ
むン化合物の添加量は、䞊蚘(1)の゚ポキシ暹脂ず
(2)のプノヌル暹脂ずの合蚈量100重量郚圓り0.4
〜重量郚、奜たしくは0.8〜2.0重量郚ずするも
のであり、この配合量においお本発明の目的に察
し優れた効果が発揮される。 本発明の゚ポキシ暹脂組成物には、曎に必芁に
より(4)の硬化促進剀を添加するもので、(4)の硬化
促進剀ずしおはトリプニルホスフむン、トリシ
クロヘキシルホスフむン、トリブチルホスフむ
ン、メチルゞプニルホスフむン、−ビス
ゞプニルホスフむノ゚タン、ビスゞプ
ニルホスフむノメタンなどの有機ホスフむン化
合物、−ゞアザビシクロり
ンデセン−などの第玚アミン類、むミダゟヌ
ル類などを䜿甚するこずができるが、特にはトリ
プニルホスフむンを䜿甚するこずが望たしい。
その配合量は、(1)の゚ポキシ暹脂ず(2)のプノヌ
ル暹脂ずの合蚈量100重量郚圓り0.5〜、特に
0.8〜重量郚ずするこずが奜たしい。 本発明においお䜿甚する(5)の無機充填剀ずしお
は、䟋えば石英粉末、アルミナ粉末、タルク、ガ
ラス繊維、䞉酞化アンチモンなどが挙げられ、こ
れらの䞭で石英粉末が最も奜たしい。 この石英粉末は、非結晶性、結晶性のいずれで
あ぀おも、これらの混合物であ぀おもよく、たた
倩然、合成のいずれであ぀おもよいが、゚ポキシ
暹脂組成物をVLSIメモリ甚の半導䜓装眮に぀い
おα線察策を行なう時に䜿甚する堎合には、りラ
ン、トリりムなどの含有量の少ない粉末状や球圢
の合成石英を甚いるこずが奜たしく、曎には
SiO2含有量が98以䞊の結晶性又はSiO2を䞀床
溶融させた溶融石英等が奜たしい。 無機充填剀ずしお石英粉末を䜿甚する堎合の石
英粉末の奜たしい平均粒子埄の範囲は〜30ÎŒm、
より奜たしい範囲は〜20ÎŒmであり、又、石英
粉末の配合量を䞊蚘(1)の゚ポキシ暹脂ず(2)のプ
ノヌル暹脂ずの合蚈量100重量郚圓り200〜500重
量郚、より奜たしくは230〜400重量郚ずするこず
が望たしい。䞊蚘粒埄分垃を有する石英粉末は硅
石又は硅石を溶融したものを粉砕し、分玚するこ
ずによ぀お埗るこずができ、球圢シリカは硅石又
は合成石英を粉砕したものを酞氎玠炎䞭で凊理す
るこずにより埗るこずができ、必芁に応じお分玚
を行ない粒床調補するこずができる。 本発明の組成物には、曎に必芁によりその目
的、甚途などに応じ、各皮の添加剀を配合するこ
ずができる。䟋えば、ワツクス類、ステアリン酞
などの脂肪酞及びその金属塩等の離型剀、カヌボ
ンブラツク等の顔料、染料、難燃化剀、衚面凊理
剀γ−グリシドキシプロピルトリメトキシシラ
ン等、老化防止剀、シリコヌン系の可撓性付䞎
剀、その他の添加剀を配合するこずは差支えな
い。 本発明の組成物は、䞊述した成分の所甚量を均
䞀に撹拌、混合し、予め70〜95℃に加熱しおある
ロヌル、ニヌダヌなどにより混緎、冷华し、粉砕
するなどの方法で埗るこずができる。なお、成分
の配合順序に特に制限はない。 本発明の゚ポキシ暹脂組成物は、IC、LSI、ト
ランゞスタ、サむリスタ、ダむオヌド等の半導䜓
装眮の封止甚、プリント回路板の補造などに䜿甚
される。なお、半導䜓装眮の封止を行なう堎合
は、埓来より採甚されおいる成圢法、䟋えばトラ
ンスフア成圢、むンゞ゚クシペン成圢、泚型法な
どを採甚しお行なうこずができる。この堎合、゚
ポキシ暹脂組成物の成圢枩床は150〜180℃、ポス
トキナアヌは150〜180℃で〜16時間行なうこず
が奜たしい。 発明の効果 以䞊説明したように、本発明ぱポキシ暹脂
ず、硬化剀ずしおプノヌル暹脂ず、本発明に係
る有機ホスフむン化合物ず、無機充填剀ずを含有
する゚ポキシ暹脂組成物においお、゚ポキシ暹脂
ずしお有機酞の含有量が100ppm以䞋、塩玠むオ
ンの含有量が2ppm以䞋、加氎分解性塩玠の含有
量が500ppm以䞋、゚ポキシ圓量が180〜230のク
レゟヌルノボラツク゚ポキシ暹脂を䜿甚し、プ
ノヌル暹脂ずしお軟化点が80〜120℃、有機酞の
含有量が100ppm以䞋、遊離のNaClが2ppm以
䞋、フリヌのプノヌルが以䞋のノボラツク
型プノヌル暹脂を䜿甚するず共に、該゚ポキシ
暹脂の゚ポキシ基ず、該プノヌル暹脂のプ
ノヌル性氎酞基ずのモル比を0.8〜
1.5の範囲に調敎し、曎に、リン原子に盎接結合
したカルボニル基を有する有機ホスフむン化合物
を該゚ポキシ暹脂ず該プノヌル暹脂ずの合蚈量
100重量郚圓り0.4〜重量郚添加したこずによ
り、耐湿性、高枩電気特性に優れ、半導䜓装眮封
止甚等ずしお奜適に甚いられる゚ポキシ暹脂組成
物が埗られるものである。 以䞋、実斜䟋ず比范䟋を瀺し、本発明を具䜓的
に説明するが、本発明は䞋蚘の実斜䟋に制限され
るものではない。 〔実斜䟋〜、比范䟋〜〕 ゚ポキシ圓量196のクレゟヌルノボラツク゚ポ
キシ暹脂塩玠むオン1ppm、加氎分解性塩玠
300ppm、有機酞含有量20ppm66.2重量郚、軟
化点100℃のノボラツク型プノヌル暹脂有機
酞含有量10ppm、Naむオン、Clむオン各々
1ppm、フリヌのプノヌル0.133.8重量郚、
䞉酞化アンチモン30重量郚、溶融石英230重量郚、
カルナバワツクス重量郚、カヌボンブラツク
重量郚、γ−グリシドキシプロピルトリメトキシ
シラン重量郚に、第衚に瀺される皮類・量の
カヌバモむルホスフむン又はベンゟむルホスフむ
ンず硬化促進剀ずを加えお成る組成物を充分に混
合した埌、加熱ロヌルで混緎し、次いで冷华しお
から粉砕しお゚ポキシ暹脂組成物実斜䟋〜
を埗た。 たた、比范のためにカヌバモむルホスフむン、
又はベンゟむルホスフむンなどの本発明に係る有
機ホスフむン化合物を䜿甚しない以倖は、䞊蚘゚
ポキシ組成物ず同様の組成、䜜成条件にお゚ポキ
シ暹脂組成物比范䟋〜を埗た。 これらの゚ポキシ暹脂組成物に぀き、以䞋の
〜の諞詊隓を行な぀た。  䜓積抵抗率の枬定 成圢枩床175℃、成圢圧力70Kgcm2、成圢時間
分の条件で成圢しお盎埄cm、厚さmmの円板
を䜜り、これを180℃で時間ポストキナアヌし
たテストピヌスに぀いお、150℃の加熱時におけ
る倀をJIS−K6911に準じお枬定した。  耐湿特性の枬定 䞊蚘ず同様の成圢条件、ポストキナア条件で
埗た盎埄cm、厚みmmの円板を120℃氎蒞気䞭
に500時間保持した埌、JIS−K6911に準じお誘電
正接1kHzを枬定した。  Al腐食テスト チツプにAl配線をおこな぀おいる14ピンICを
トランスフアヌ成圢材にお100個成圢し、成圢品
を180℃、時間ポストキナアし、その埌10℃の
氎蒞気䞭に500時間攟眮し、アルミニりム配線の
断線を怜出しお䞍良刀定を行な぀た。 以䞊の諞詊隓の結果を第衚に瀺す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an epoxy resin composition particularly suitable for use in encapsulating semiconductor devices. Problems to be Solved by the Prior Art and the Invention Epoxy resin molding materials generally have superior electrical properties, mechanical properties, adhesive properties, moisture resistance, etc., compared to other thermosetting resins, and It has sufficient fluidity even at low pressures and maintains characteristics such as not deforming or damaging inserts, so it is used as a highly reliable electrical insulation material.
It is widely used for sealing and impregnating electronic components such as ICs, LSIs, diodes, transistors, and resistors. Conventionally, typical curing agents for this epoxy resin molding material include acid anhydrides, aromatic amines, novolac type phenolic resins, etc. Among these, epoxy resin molding materials using novolak type phenolic resin as a curing agent Compared to epoxy resin molding materials that use other curing agents, it has the characteristics of being the best in terms of moisture resistance, reliability, moldability, etc., as well as being non-toxic and inexpensive. Widely used as a resin encapsulation material for semiconductor devices such as ICs, LSIs, diodes, and transistors. However, epoxy resin molding materials that use novolac-type phenolic resin as a curing agent have poor electrical properties at high temperatures, so using this material can reduce the operating temperature to 80°C.
When encapsulating a MOS type semiconductor device with the above characteristics,
This sealing device is used for chip wiring because leakage current flows between the electrodes, causing the chip to no longer exhibit normal semiconductor characteristics. The disadvantages include that the aluminum wire corrodes in a short period of time, causing wire breakage. For this reason, not only the epoxy resin and curing agent constituting the epoxy resin composition, but also various other components have been investigated, and epoxy resin compositions that use organic phosphine compounds as curing accelerators have been developed using other catalysts. It is a component of epoxy resin compositions for semiconductor encapsulation, etc., for reasons such as improved moisture resistance at high temperatures and high humidity and electrical properties at high temperatures compared to when imidazole, tertiary amines, etc. are used. It is often used as a moisture resistant,
Epoxy resin compositions with excellent high-temperature electrical properties are desired. The present invention was made in view of the above circumstances, and an object of the present invention is to provide an epoxy resin composition having excellent moisture resistance and high-temperature electrical properties. Means and Effects for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies and found that the moisture resistance observed when an epoxy resin composition is used for semiconductor encapsulation. We considered the reasons for the poor high-temperature electrical characteristics as shown in A and B below. B. Cause of poor high-temperature electrical properties for semiconductor encapsulation If the encapsulation resin contains trace amounts of ionic impurities or polar substances, these become active and move easily in a high-temperature atmosphere. Furthermore, the sealing resin is in direct contact with the surface of the semiconductor element, but when an electric field is generated on the semiconductor element, the action of the electric field promotes the movement of ionic impurities and polar substances in the resin part that is in contact with the element. As a result, the characteristics of the resin deteriorate at the interface between the element and the resin. As a result, a leakage current occurs between the electrodes of the device, which in turn causes a shoot phenomenon, and eventually the device no longer exhibits normal semiconductor characteristics. (b) Causes of corrosion of aluminum wiring of ICs left in a high temperature and high humidity atmosphere (i) If the adhesiveness between the encapsulating resin and the element and lead frame is poor, Moisture penetrates the interface with the frame and reaches the element. This moisture causes trace amounts of water-soluble substances such as chlorine, sodium, etc. to be removed from the cured epoxy resin composition.
Ionic impurities such as organic acids and unreacted substances with polar groups are eluted, reach the surface of the semiconductor element, and corrode the aluminum wiring. (ii) Since the cured product of the epoxy resin composition for semiconductor devices has hygroscopicity and water permeability, moisture from the outside penetrates into the interior through the cured product in a high-temperature, high-humidity atmosphere, causing damage to the semiconductor device. reach the surface. The aluminum wiring is corroded in the same manner as in (i) below. Therefore, the present inventors have utilized the excellent advantages found in conventional epoxy resin compositions by using a novolac type phenolic resin as a curing agent, while also reducing the moisture resistance and high-temperature electrical properties based on the above (a) and (b). As a result of intensive research into epoxy resin compositions that eliminate these causes as much as possible, we found that it is important to reduce ionic or polar impurities in epoxy resin compositions, and to achieve this goal, it is especially important to reduce the amount of organic acids in epoxy resins. , the amount of chlorine ions and hydrolyzable chlorine, organic acids and free Na in the phenolic resin,
reducing the amount of Cl, the amount of free phenol,
Further, the epoxy equivalent of the epoxy resin, the molar ratio (a/b) of the epoxy group a of the epoxy resin and the phenolic hydroxyl group b of the phenolic resin are adjusted, and the softening point of the phenolic resin is adjusted. By adding and using a specific amount of a specific organic phosphine compound, that is, a compound having a carbonyl group directly bonded to a phosphorus atom, to a phenol resin, it has excellent curing properties, electrical properties at high temperatures, and moisture resistance properties, and as a result, high temperature and high temperature resistance properties are achieved. It was discovered that an epoxy resin composition that does not corrode or break the aluminum wire even if left in a humid environment for a long time, has excellent moldability, and has high long-term storage stability. , which led to the completion of the present invention. Therefore, the present invention provides: (1) a cresol novolac epoxy having an organic acid content of 100 ppm or less, a chlorine ion content of 2 ppm or less, a hydrolyzable chlorine content of 500 ppm or less, and an epoxy equivalent of 180 to 230; Resin, (2) Softening point is 80~120℃, organic acid content is
100 ppm or less, free Na, Cl is 2 ppm or less, free phenol is 1% or less, and the molar ratio (a/b) of the epoxy group a of the epoxy resin and the phenolic hydroxyl group b of the phenolic resin is 0.8 to
Novolac type phenolic resin with a blending amount adjusted within the range of 1.5, (3) having a carbonyl group directly bonded to a phosphorus atom, and the total amount of epoxy resin and phenolic resin
The present invention provides an epoxy resin composition containing an organic phosphine compound in an amount of 0.4 to 5 parts by weight per 100 parts by weight, (4) a curing accelerator if necessary, and (5) an inorganic filler. The present invention will be explained in more detail below. First, the epoxy resin (1) constituting the composition of the present invention has an average structural formula of This is a cresol novolak epoxy resin shown by In this case, the epoxy resin contains organic acid content of 100 ppm or less, more preferably 20 ppm or less, chlorine ion content of 2 ppm or less, more preferably 1 ppm or less, and hydrolyzable chlorine content of 500 ppm or less. The following, more preferably
It is necessary to use one with an epoxy equivalent of 300 ppm or less and an epoxy equivalent of 180 to 230, more preferably 180 to 210. If even one of these conditions is not satisfied, the moisture resistance will be poor. In addition, the above-mentioned novolak type epoxy resin may be used with other epoxy resins, such as glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin,
It can be used in combination with alicyclic epoxy resins, these halogenated epoxy resins, and the like. in this case,
It is also preferable to reduce the organic acid content and total chlorine content of these other epoxy resins. Further, the amount of these other epoxy resins used is preferably 50 parts by weight or less per 100 parts by weight of the novolak type epoxy resin. Furthermore, when using the above-mentioned component (1),
There is no problem in using a monoepoxy compound as appropriate, and examples of the monoepoxy compound include styrene oxide, cyclohexene oxide, propylene oxide, methyl glycidyl ether, ethyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, octylene oxide, and dodecene. Examples include oxides. In addition, the novolak type phenolic resin (2) used as the curing agent of the present invention has an average structural formula of This novolak type phenolic resin is obtained by reacting the phenol represented by the formula with formalin using an acid catalyst.Similar to the above-mentioned cresol novolak epoxy resin, this novolak type phenolic resin is free Na,
It is necessary to keep Cl below 2ppm. In addition, if the monomer phenol contained in this composition, that is, the amount of free phenol, exceeds 1%, in addition to having a negative effect on the moisture resistance, when molded products are made with this composition, voids and end-filling may occur in the molded products. , because defects such as whiskers occur, the amount of free phenol mentioned above is 1%.
It is necessary to do the following. Furthermore, the amount of organic acids such as formic acid produced by the Cannitzaro reaction of trace amounts of formaldehyde remaining during the production of this novolac type phenolic resin is also important from the viewpoint of moisture resistance of semiconductors.
Must be 100ppm or less. Furthermore, if the softening point of novolak type phenolic resin becomes less than 80℃,
The Tg will be low, which will result in poor heat resistance, and if the softening point exceeds 120°C, the melt viscosity of the epoxy resin composition will increase, resulting in poor workability, and in both cases, moisture resistance will be poor. The softening point of the novolac type phenolic resin must be 80 to 120°C. In addition, free
A more preferable range for Na and Cl is 2 ppm or less, a more preferable range for the amount of free phenol is 0.3% or less, a more preferable range for the amount of organic acid is 30 ppm or less, and a more preferable range for the softening point of the novolak type phenolic resin is 90%. ~110°C, and by adjusting the temperature within the above range, the object of the present invention can be more reliably achieved. Furthermore, in addition to the novolak type phenolic resin of the present invention, phenol-furfural resin, resorcinol-formaldehyde resin, these organopolysiloxane-modified phenolic resins, natural resin-modified phenolic resins, oil-modified phenolic resins, etc. may be used in combination as appropriate. do not have. In the present invention, an epoxy resin composition containing the above-mentioned epoxy resin or phenol resin has the following general formula in which a carbonyl group is directly bonded to a phosphorus atom. By adding an organic phosphine compound shown in the following, the moisture resistance is improved by several steps. In this case, the organic phosphine compounds used in the present invention include benzoyldiphenylphosphine,
Examples include benzoylphosphine such as tribenzoylphosphine, carbamoylphosphine such as tris(phenylcarbamoyl)phosphine, and one or more of these may be used. Among these, benzoylphosphine and carbamoylphosphine are particularly preferred. The amount of these organic phosphine compounds added is the same as the epoxy resin in (1) above.
0.4 per 100 parts by weight of the total amount of (2) and phenolic resin
The amount is 5 parts by weight, preferably 0.8 to 2.0 parts by weight, and excellent effects for the purpose of the present invention are exhibited at this amount. The curing accelerator (4) is further added to the epoxy resin composition of the present invention, if necessary. Examples of the curing accelerator (4) include triphenylphosphine, tricyclohexylphosphine, tributylphosphine, methyl Organic phosphine compounds such as diphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and bis(diphenylphosphino)methane; Although tertiary amines, imidazoles, etc. can be used, it is particularly desirable to use triphenylphosphine.
The blending amount is 0.5 to 3 per 100 parts by weight of the epoxy resin (1) and the phenol resin (2), especially
The amount is preferably 0.8 to 2 parts by weight. Examples of the inorganic filler (5) used in the present invention include quartz powder, alumina powder, talc, glass fiber, and antimony trioxide, and among these, quartz powder is most preferred. This quartz powder may be either amorphous or crystalline, or a mixture thereof, and may be natural or synthetic. When using equipment to protect against alpha rays, it is preferable to use powdered or spherical synthetic quartz with low content of uranium, thorium, etc.
Crystalline material with a SiO 2 content of 98% or more or fused quartz in which SiO 2 is once melted is preferable. When using quartz powder as an inorganic filler, the preferred average particle diameter range of quartz powder is 1 to 30 ÎŒm;
A more preferable range is 5 to 20 Όm, and the amount of quartz powder blended is 200 to 500 parts by weight, more preferably 230 parts by weight, per 100 parts by weight of the epoxy resin in (1) and the phenol resin in (2) above. It is desirable to set it to 400 parts by weight. Quartz powder having the above particle size distribution can be obtained by crushing and classifying silica or fused silica, and spherical silica can be obtained by crushing silica or synthetic quartz and treating it in an oxyhydrogen flame. The particle size can be adjusted by classification if necessary. The composition of the present invention may further contain various additives depending on its purpose, use, etc., if necessary. For example, waxes, mold release agents such as fatty acids such as stearic acid and their metal salts, pigments such as carbon black, dyes, flame retardants, surface treatment agents (γ-glycidoxypropyltrimethoxysilane, etc.), aging There is no problem in blending an inhibitor, a silicone-based flexibility imparting agent, and other additives. The composition of the present invention can be obtained by a method such as uniformly stirring and mixing the required amounts of the above-mentioned components, kneading with a roll or kneader preheated to 70 to 95°C, cooling, and pulverizing. can. Note that there is no particular restriction on the order of blending the components. The epoxy resin composition of the present invention is used for sealing semiconductor devices such as ICs, LSIs, transistors, thyristors, and diodes, and for manufacturing printed circuit boards. In the case of sealing the semiconductor device, conventionally used molding methods such as transfer molding, injection molding, and casting can be used. In this case, the molding temperature of the epoxy resin composition is preferably 150 to 180°C, and the post-curing is preferably carried out at 150 to 180°C for 2 to 16 hours. Effects of the Invention As explained above, the present invention provides an epoxy resin composition containing an epoxy resin, a phenol resin as a curing agent, an organic phosphine compound according to the present invention, and an inorganic filler. We use a cresol novolac epoxy resin with a content of 100 ppm or less, a chlorine ion content of 2 ppm or less, a hydrolyzable chlorine content of 500 ppm or less, and an epoxy equivalent of 180 to 230, and a softening point of 80 as a phenolic resin. ~120°C, using a novolak type phenolic resin with an organic acid content of 100 ppm or less, free Na and Cl content of 2 ppm or less, and free phenol of 1% or less, and the epoxy group a of the epoxy resin and the phenol. The molar ratio (a/b) of the resin to the phenolic hydroxyl group b is 0.8 to
1.5, and further add an organic phosphine compound having a carbonyl group directly bonded to a phosphorus atom in the total amount of the epoxy resin and the phenolic resin.
By adding 0.4 to 5 parts by weight per 100 parts by weight, an epoxy resin composition can be obtained which has excellent moisture resistance and high-temperature electrical properties and is suitably used for encapsulating semiconductor devices. EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples. [Examples 1 to 3, Comparative Examples 1 to 3] Cresol novolak epoxy resin with an epoxy equivalent of 196 (chlorine ion 1 ppm, hydrolyzable chlorine
300ppm, organic acid content 20ppm) 66.2 parts by weight, novolac type phenolic resin with a softening point of 100℃ (organic acid content 10ppm, Na ion, Cl ion each)
1ppm, free phenol 0.1%) 33.8 parts by weight,
30 parts by weight of antimony trioxide, 230 parts by weight of fused quartz,
1 part by weight of carnauba wax, 1 part of carbon black
Thoroughly mix a composition consisting of 1 part by weight of γ-glycidoxypropyltrimethoxysilane, carbamoylphosphine or benzoylphosphine of the type and amount shown in Table 1, and a curing accelerator. After that, the epoxy resin compositions (Examples 1-
3) was obtained. Also, for comparison, carbamoylphosphine,
Alternatively, epoxy resin compositions (Comparative Examples 1 to 3) were obtained under the same composition and preparation conditions as the above-mentioned epoxy compositions, except that an organic phosphine compound according to the present invention such as benzoylphosphine was not used. Regarding these epoxy resin compositions, the following A
-C tests were conducted. A. Measurement of volume resistivity A test in which a disk with a diameter of 7 cm and a thickness of 2 mm was made by molding at a molding temperature of 175°C, a molding pressure of 70 Kg/cm 2 , and a molding time of 2 minutes, and this was post-cured at 180°C for 4 hours. The value of the piece when heated at 150°C was measured according to JIS-K6911. B. Measurement of moisture resistance characteristics A disk with a diameter of 5 cm and a thickness of 3 mm obtained under the same molding and post-curing conditions as in A above was held in steam at 120°C for 500 hours, and then the dielectric loss tangent (1kHz) was measured according to JIS-K6911. It was measured. C Al corrosion test 100 14-pin ICs with Al wiring on the chip were molded using transfer molding material, the molded products were post-cured at 180℃ for 4 hours, and then left in steam at 10℃ for 500 hours. , a failure was determined by detecting a break in the aluminum wiring. The results of the above tests are shown in Table 1.

〔実斜䟋、比范䟋〜10〕[Examples 4 and 5, Comparative Examples 4 to 10]

実斜䟋においお䜿甚したクレゟヌルノボラツ
ク゚ポキシ暹脂、ノボラツク型プノヌル暹脂の
玔床を第衚に瀺されるものずしたほかは実斜䟋
ず同䞀の添加剀、配合比及び補造条件にお゚ポ
キシ暹脂組成物実斜䟋及び比范䟋〜
10を䜜り、䞊蚘のAl腐食テスト及び䞋蚘の
の成圢䞍良率詊隓を行な぀た。  成圢䞍良率の枬定 トランスフアヌ成圢機で100個取りの14PIN IC
甚金型を甚いお10シペツト成圢し、この時の倖芳
䞍良率ボむド、未充おん、スネヌクアむ等の䞍
良を枬定した。 以䞊の詊隓結果を第衚に瀺す。
An epoxy resin composition was prepared using the same additives, blending ratio, and manufacturing conditions as in Example 1, except that the purity of the cresol novolac epoxy resin and novolac type phenol resin used in Example 1 was as shown in Table 2. (Examples 4 and 5 and Comparative Example 4~
10) was made and subjected to the Al corrosion test in C above and the molding failure rate test in D below. D Measurement of molding defect rate 14PIN IC made of 100 pieces with a transfer molding machine
Ten shots were molded using the mold, and the appearance defect rate (defects such as voids, unfilled areas, snake eyes, etc.) was measured. The test results for C and D above are shown in Table 2.

【衚】【table】

〔実斜䟋〜、比范䟋1112〕[Examples 6 to 8, Comparative Examples 11 and 12]

実斜䟋においお䜿甚したノボラツク型プノ
ヌル暹脂の軟化点を第衚に瀺されるものずした
ほかは実斜䟋ず同様の条件にお゚ポキシ暹脂組
成物実斜䟋〜、比范䟋1112を䜜り、前
蚘の成型䞍良率及び二次転移枩床Tg䞋蚘の
スパむラルフロヌの枬定を行な぀た。  スパむラルフロヌ EMMI芏栌に準じた金型を甚い、175℃、70
Kgcm2の条件で枬定した。 以䞊の枬定結果を第衚に瀺す。
Epoxy resin compositions (Examples 6 to 8, Comparative Examples 11 and 12 ), and the molding failure rate of D, the secondary transition temperature Tg, and the spiral flow of E below were measured. E Spiral Flow Using a mold that complies with EMMI standards, 175℃, 70
Measured under the condition of Kg/ cm2 . The above measurement results are shown in Table 3.

〔実斜䟋〜11、比范䟋1314〕[Examples 9 to 11, Comparative Examples 13 and 14]

実斜䟋のトリスプニルカルバモむルホ
スフむンの配合量のみを倉えお゚ポキシ暹脂組成
物実斜䟋〜11、比范䟋1314を䜜り、前述
のの詊隓を行ない、第衚に瀺す結果
を埗た。
Epoxy resin compositions (Examples 9 to 11, Comparative Examples 13 and 14) were made by changing only the amount of tris(phenylcarbamoyl)phosphine in Example 3, and the above-mentioned tests C, D, and E were conducted. The results shown in Table 4 were obtained.

【衚】 第衚の結果から、トリスプニルカルバモ
むルホスフむン本発明に係る有機ホスフむン
化合物の量が少なすぎるずAl腐食ぞの改良が
みられず、たた倚すぎるずスパむラルフロヌが短
くなり、Al腐食率、成圢䞍良率が共に増加する
が、本発明の範囲を満足する配合量の堎合には、
Al腐食率、成圢䞍良率が共に良奜な゚ポキシ暹
脂組成物が埗られるこずが確認された。
[Table] From the results in Table 4, it is clear that if the amount of tris(phenylcarbamoyl)phosphine (organophosphine compound according to the present invention) is too small, no improvement in Al corrosion will be observed, and if it is too large, the spiral flow will be shortened. Therefore, both the Al corrosion rate and the molding defect rate increase, but in the case of a blending amount that satisfies the scope of the present invention,
It was confirmed that an epoxy resin composition with good Al corrosion rate and molding defect rate could be obtained.

Claims (1)

【特蚱請求の範囲】  ゚ポキシ暹脂ず、硬化剀ずしおプノヌル暹
脂ず、無機充填剀ずを含有する゚ポキシ暹脂組成
物においお、゚ポキシ暹脂ずしお有機酞の含有量
が100ppm以䞋、塩玠むオンの含有量が2ppm以
䞋、加氎分解性塩玠の含有量が500ppm以䞋、゚
ポキシ圓量が180〜230のクレゟヌルノボラツク゚
ポキシ暹脂を䜿甚し、プノヌル暹脂ずしお軟化
点が80〜120℃、有機酞の含有量が100ppm以䞋、
遊離のNaClが2ppm以䞋、フリヌのプノヌル
が以䞋のノボラツク型プノヌル暹脂を䜿甚
するず共に、該゚ポキシ暹脂の゚ポキシ基ず、
該プノヌル暹脂のプノヌル性氎酞基ずのモ
ル比を0.8〜1.5の範囲に調敎し、曎に
リン原子に盎接結合したカルボニル基を有する有
機ホスフむン化合物を該゚ポキシ暹脂ず該プノ
ヌル暹脂ずの合蚈量100重量郚圓り0.4〜重量郚
添加したこずを特城ずする゚ポキシ暹脂組成物。  該有機ホスフむン化合物ずしお、ベンゟむル
ホスフむン又はカヌバモむルホスフむンを䜿甚し
た特蚱請求の範囲第項蚘茉の組成物。  無機充填剀ずしお、石英粉末を゚ポキシ暹脂
ずプノヌル暹脂ずの合蚈量100重量郚圓り200〜
500重量郚䜿甚した特蚱請求の範囲第項又は第
項蚘茉の組成物。
[Claims] 1. An epoxy resin composition containing an epoxy resin, a phenolic resin as a hardening agent, and an inorganic filler, wherein the epoxy resin has an organic acid content of 100 ppm or less and a chlorine ion content of 2 ppm. Below, a cresol novolac epoxy resin with a hydrolyzable chlorine content of 500 ppm or less and an epoxy equivalent of 180 to 230 is used, a phenol resin with a softening point of 80 to 120°C, and an organic acid content of 100 ppm or less.
In addition to using a novolac type phenolic resin with free Na and Cl of 2 ppm or less and free phenol of 1% or less, the epoxy group a of the epoxy resin,
The molar ratio (a/b) of the phenolic hydroxyl group b of the phenolic resin is adjusted to a range of 0.8 to 1.5, and an organic phosphine compound having a carbonyl group directly bonded to a phosphorus atom is added to the epoxy resin and the phenolic resin. An epoxy resin composition characterized in that 0.4 to 5 parts by weight are added per 100 parts by weight of the total amount. 2. The composition according to claim 1, wherein benzoylphosphine or carbamoylphosphine is used as the organic phosphine compound. 3. As an inorganic filler, quartz powder is used in an amount of 200 to 100 parts by weight of the total amount of epoxy resin and phenol resin.
500 parts by weight of the composition according to claim 1 or 2.
JP19161785A 1985-08-30 1985-08-30 Epoxy resin composition Granted JPS6253326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19161785A JPS6253326A (en) 1985-08-30 1985-08-30 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19161785A JPS6253326A (en) 1985-08-30 1985-08-30 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS6253326A JPS6253326A (en) 1987-03-09
JPS6325011B2 true JPS6325011B2 (en) 1988-05-24

Family

ID=16277613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19161785A Granted JPS6253326A (en) 1985-08-30 1985-08-30 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6253326A (en)

Also Published As

Publication number Publication date
JPS6253326A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
US6297306B1 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JP3167853B2 (en) Semiconductor device
JPS6325012B2 (en)
JPH09241483A (en) Epoxy resin composition
JP2626377B2 (en) Epoxy resin composition and semiconductor device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP2002060591A (en) Epoxy resin composition and semiconductor device
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0733429B2 (en) Epoxy resin composition
JPS6325011B2 (en)
JPH053269A (en) Resin composite
JPH0977958A (en) Epoxy resin composition and semiconductor device
JP2576726B2 (en) Epoxy resin composition
JPH09227765A (en) Epoxy resin composition
JPS6325013B2 (en)
JP3008981B2 (en) Epoxy resin composition
JPS6325010B2 (en)
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
JP3317473B2 (en) Epoxy resin composition
JP3298084B2 (en) Sealing resin composition and semiconductor sealing device
JPS62141020A (en) Epoxy resin composition
JPH07173372A (en) Epoxy resin composition
JPH11130943A (en) Resin composition for sealing and sealed semiconductor device
JPH062801B2 (en) Epoxy resin composition for semiconductor encapsulation
JPS63280725A (en) Resin composition for sealing