JPS63248550A - Method for cooling cast slab - Google Patents
Method for cooling cast slabInfo
- Publication number
- JPS63248550A JPS63248550A JP8238087A JP8238087A JPS63248550A JP S63248550 A JPS63248550 A JP S63248550A JP 8238087 A JP8238087 A JP 8238087A JP 8238087 A JP8238087 A JP 8238087A JP S63248550 A JPS63248550 A JP S63248550A
- Authority
- JP
- Japan
- Prior art keywords
- cast slab
- slab
- width direction
- injection
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 4
- 239000007921 spray Substances 0.000 claims abstract description 20
- 238000002347 injection Methods 0.000 abstract description 9
- 239000007924 injection Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、連続鋳造の2次冷却帯における鋳片の冷却
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for cooling a slab in a secondary cooling zone of continuous casting.
(従来技術とその問題点)
連続鋳造においては、鋳型内で表層部のみ凝固した鋳片
を2次冷却帯においてロール間に配設したスプレーノズ
ル(水スプレーあるいは水・空気ミストスプレーノズル
)で冷却している。(Prior art and its problems) In continuous casting, the slab whose surface layer has solidified in the mold is cooled by a spray nozzle (water spray or water/air mist spray nozzle) placed between the rolls in a secondary cooling zone. are doing.
このスプレーノズルの噴出孔は、ロール間隔が狭いとこ
ろから、鋳片幅方向に横長とされ、第8図に示すように
、長円状の噴流2で冷却しているが、スプレーノズル1
を2個以上鋳片幅方向に複数配設する場合には、隣接し
たノズル1から噴出する噴流2が互いに直接ラップして
いる。このようなラップ部分では互いに干渉しあって流
滴径が大きくなるなどから噴流分布が不安定となり、均
一冷却を得にくく、スラブ表面疵が発生し易い。The jet hole of this spray nozzle is elongated in the width direction of the slab due to the narrow roll interval, and as shown in FIG.
When two or more of these are arranged in the width direction of the slab, the jets 2 ejected from adjacent nozzles 1 directly overlap each other. In such lapped portions, the droplets interfere with each other and the diameter of the droplets becomes large, making the jet distribution unstable, making it difficult to obtain uniform cooling, and making it easy for slab surface defects to occur.
この発明はこのような問題点を解消すべく提案されたも
ので、その目的は、鋳片の幅方向の噴流分布を安定化さ
せ、鋳片の均一冷却が可能な冷却方法を提供することに
ある。This invention was proposed to solve these problems, and its purpose is to provide a cooling method that can stabilize the jet flow distribution in the width direction of the slab and uniformly cool the slab. be.
(問題点を解決するための手段)
この発明に係る冷却方法は、スプレーノズルの横長噴出
孔を鋳片幅方向に対して傾斜させ、隣接するスプレーノ
ズルからの噴流が互いに直接ラップせず、鋳片進行方向
に傾斜してずれてラップする噴流により鋳片を冷却し、
鋳片幅方向の噴流分布が安定化するようにしたものであ
る。(Means for Solving the Problems) The cooling method according to the present invention is such that the horizontally elongated jet holes of the spray nozzles are inclined with respect to the width direction of the slab, so that the jets from adjacent spray nozzles do not overlap directly with each other, and The slab is cooled by a jet that tilts in one direction and wraps at a different angle.
The jet flow distribution in the slab width direction is stabilized.
(実 施 例)
以下、この発明を図示する一実施例に基づいて説明する
。(Embodiment) The present invention will be described below based on an illustrative embodiment.
第1図に示すように、スプレーノズル1の横長噴出孔を
鋳片幅方向に対して角度αだけ傾斜させ隣接するスプレ
ーノズル1からの噴流が互いに直接ラップせず、鋳片進
行方向に傾斜して互いにずれた長円状噴流3により冷却
する。さらに、スプレーノズル1噴射角θ2を従来のθ
、より大きくし、ノズル1個当シの冷却面積を大きくす
る。As shown in Fig. 1, the horizontally elongated jet holes of the spray nozzles 1 are inclined at an angle α with respect to the width direction of the slab so that the jets from adjacent spray nozzles 1 do not overlap directly with each other but are inclined in the direction of slab movement. Cooling is performed by elliptical jets 3 that are offset from each other. Furthermore, the spray nozzle 1 injection angle θ2 was changed from the conventional θ
, to increase the cooling area per nozzle.
このようにすれば、鋳片幅方向の両端を除く各点におい
てほぼ等しい冷却水量が得られ、鋳片幅方向の噴流分布
をほぼ一定にでき、第2図に示すように、鋳片の均一冷
却を行なうことができる。In this way, approximately the same amount of cooling water can be obtained at each point in the width direction of the slab except for both ends, and the jet flow distribution in the width direction of the slab can be made almost constant. Cooling can be performed.
これにより鋳片表面疵を第3図に示すように低減できる
。As a result, surface defects on the slab can be reduced as shown in FIG.
次に、本発明の冷却方法を用いて長期実機試験を行なっ
た具体例について示す。Next, a specific example in which a long-term actual machine test was conducted using the cooling method of the present invention will be described.
これは、第7図に示すように、鋳片幅2215間の連鋳
機の第2.第3セグメントにノズルを多数配設し、ノズ
ル間隔17(1+++、ノズル高さ13Qmyx、θ、
、=100°、α=200.スプレー幅31ONで行な
った例であり幅径1ONいてはθ、=830.α=0°
である。As shown in FIG. A large number of nozzles are arranged in the third segment, nozzle spacing 17 (1+++, nozzle height 13Qmyx, θ,
, = 100°, α = 200. This is an example in which the spray width was 31ON, and when the width diameter was 1ON, θ = 830. α=0°
It is.
本発明では第4図に示すようなほぼ均一な水量密度分布
が得られ、この結果、第6図に示す従来の横ひび割れ発
生率が、第5図に示すように減少した。In the present invention, a substantially uniform water density distribution as shown in FIG. 4 is obtained, and as a result, the incidence of horizontal cracks in the conventional case shown in FIG. 6 is reduced as shown in FIG.
なお、冷却面積が従来よシも太きいため、特に鋳片コー
ナ一部の冷却コントロールが有利になる。Additionally, since the cooling area is larger than in the past, it is especially advantageous to control the cooling of a portion of the corner of the slab.
(発明の効果)
前述のとおシこの発明によれば、長円状の噴流を鋳片幅
方向に傾斜させ、隣接する噴流を直接ラップさせず、ず
らしてラップするようにして冷却するようにしたため、
鋳片の幅方向の噴流分布が安定化し、鋳片の均一な冷却
が可能となり、これにより鋳片表面疵を減少させること
ができる。(Effects of the Invention) As described above, according to the present invention, the oval jets are inclined in the width direction of the slab, and the adjacent jets are not lapped directly, but are cooled by shifting and wrapping. ,
The jet flow distribution in the width direction of the slab is stabilized, and uniform cooling of the slab becomes possible, thereby reducing surface flaws in the slab.
第1図は、この発明に係る冷却方法を示す概略斜視図、
第2図、第3図は本発明の鋳片表面温度の均一化効果、
鋳片表面疵低減効果を示すグラフ第4図は本発明の具体
例を示す、(5)は斜視図、(ロ)はグラフ、第5図は
本発明のひび割れ発生率の低減効果を示すグラフ、第6
図は、ノズルの配置例を示す概略図、第7図は従来例を
示す概略斜視図である。
1・・スプレーノズル、2・・長円状噴流3・・長円状
噴流
耀計チ皿誓M婬
垣
米
は
軍饗凹輩M暢FIG. 1 is a schematic perspective view showing a cooling method according to the present invention;
Figures 2 and 3 show the uniformity effect of the slab surface temperature of the present invention,
Graph showing the effect of reducing cracks on the surface of slabs Figure 4 shows a specific example of the present invention, (5) is a perspective view, (B) is a graph, Figure 5 is a graph showing the effect of reducing the crack incidence rate of the present invention , 6th
The figure is a schematic diagram showing an example of arrangement of nozzles, and FIG. 7 is a schematic perspective view showing a conventional example. 1. Spray nozzle, 2. Elliptical jet 3. Elliptical jet.
Claims (1)
ルを鋳片幅方向に複数配設し、スプレーノズルからの噴
流により鋳片を冷却する方法において、前記スプレーノ
ズルの横長噴出孔を鋳片幅方向に対して傾斜させ、隣接
するスプレーノズルからの噴流が互いに直接ラップせず
、鋳片進行方向に傾斜してずれてラップする噴流により
鋳片を冷却することを特徴とする鋳片の冷却方法。(1) In a method in which a plurality of spray nozzles having horizontally elongated jetting holes in the slab width direction are arranged in the slab width direction and the slab is cooled by a jet stream from the spray nozzles, the horizontally long jetting holes of the spray nozzles are A slab is cooled by jets that are inclined with respect to one side width direction so that the jets from adjacent spray nozzles do not directly overlap each other, but are tilted in the slab advancing direction and overlap with a deviation. Cooling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8238087A JPS63248550A (en) | 1987-04-03 | 1987-04-03 | Method for cooling cast slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8238087A JPS63248550A (en) | 1987-04-03 | 1987-04-03 | Method for cooling cast slab |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63248550A true JPS63248550A (en) | 1988-10-14 |
Family
ID=13772974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8238087A Pending JPS63248550A (en) | 1987-04-03 | 1987-04-03 | Method for cooling cast slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63248550A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014050874A (en) * | 2012-09-10 | 2014-03-20 | Nippon Steel & Sumitomo Metal | Secondary cooling method for continuous casting |
JP2018103220A (en) * | 2016-12-27 | 2018-07-05 | 新日鐵住金株式会社 | Secondary cooling device and secondary cooling method of continuous casting |
-
1987
- 1987-04-03 JP JP8238087A patent/JPS63248550A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014050874A (en) * | 2012-09-10 | 2014-03-20 | Nippon Steel & Sumitomo Metal | Secondary cooling method for continuous casting |
JP2018103220A (en) * | 2016-12-27 | 2018-07-05 | 新日鐵住金株式会社 | Secondary cooling device and secondary cooling method of continuous casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3468362A (en) | Method of cooling cast members from a continuous casting operation | |
US2871529A (en) | Apparatus for casting of metal | |
JP5817689B2 (en) | Secondary cooling method for continuous casting | |
JPS63248550A (en) | Method for cooling cast slab | |
US3989093A (en) | Continuous casting plant for slabs | |
JPS62259610A (en) | Method and apparatus for cooling bottom surface of steel sheet | |
CA2331078C (en) | Method and apparatus for preventing undesirable cooling of the strip edge areas of a cast strand | |
KR100843920B1 (en) | Method for uniforming congelation speed of cast slab surface in continuous casting | |
JPH0383897A (en) | Vapor-phase growth device | |
JPH0413054B2 (en) | ||
KR20090050657A (en) | Spray nozzle equipment for continuous casting | |
JPH04319057A (en) | Secondary cooling method and cooling nozzle for continuously cast slab | |
JPH09201661A (en) | Method for secondary-cooling continuously cast slab | |
JPH10192951A (en) | Method and device for cooling high temp. steel plate | |
JPH09287026A (en) | Method for hot treatment of metal bar material and cooling device | |
JPH04279260A (en) | Nozzle for cooling roll in continuous casting | |
JPS6359762B2 (en) | ||
JPH04200844A (en) | Cooling method for continuously casting steel beam blank | |
JPH1157836A (en) | Method of and device for cooling steel plate | |
JP2551663Y2 (en) | Cooling equipment for hot rolled steel sheets | |
JP3225721B2 (en) | Cooling water control device for H-section steel inner surface | |
SU1482755A1 (en) | Secondary cooling system of slab continuous casting installation | |
JPS60196253A (en) | Header pipe for billet cooler of continuous casting machine for round billet | |
JPH079100A (en) | Secondary cooling method in continuous casting | |
JP2903988B2 (en) | Cooling water control device for H-section steel inner surface |