JP5817689B2 - Secondary cooling method for continuous casting - Google Patents

Secondary cooling method for continuous casting Download PDF

Info

Publication number
JP5817689B2
JP5817689B2 JP2012198365A JP2012198365A JP5817689B2 JP 5817689 B2 JP5817689 B2 JP 5817689B2 JP 2012198365 A JP2012198365 A JP 2012198365A JP 2012198365 A JP2012198365 A JP 2012198365A JP 5817689 B2 JP5817689 B2 JP 5817689B2
Authority
JP
Japan
Prior art keywords
slab
continuous casting
injection
cooling
injection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012198365A
Other languages
Japanese (ja)
Other versions
JP2014050874A (en
Inventor
土岐 正弘
正弘 土岐
峰郎 新妻
峰郎 新妻
林 聡
聡 林
康彦 大谷
康彦 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012198365A priority Critical patent/JP5817689B2/en
Publication of JP2014050874A publication Critical patent/JP2014050874A/en
Application granted granted Critical
Publication of JP5817689B2 publication Critical patent/JP5817689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連続鋳造機において鋳片を均一に冷却するための、連続鋳造の二次冷却方法に関するものである。   The present invention relates to a secondary cooling method for continuous casting for uniformly cooling a slab in a continuous casting machine.

鉄鋼業において、溶鋼を凝固させて鋳片を製造する際、一般に、連続鋳造設備が用いられる。連続鋳造設備は、図1に示すように、鋳型2で一次冷却されて表面が凝固した鋳片3を、鋳型2の下方に少しずつ引き出し、ガイドロール4で挟みながら連続して送り出し、これにより鋳片3が連続して生産される。鋳片3がガイドロール4で送り出される間、二次冷却として、鋳片3の表面に冷却水が噴射される。この二次冷却では、例えば図8に示すように、鋳片3の幅方向の冷却性能を均一にするために、均一な水量密度分布を有する噴射パターンとなるように、複数のノズルの噴射口21が配置されている。   In the iron and steel industry, when a molten steel is solidified to produce a slab, a continuous casting facility is generally used. As shown in FIG. 1, the continuous casting equipment draws the cast piece 3 that has been primarily cooled by the mold 2 and solidified on the surface little by little below the mold 2, and continuously feeds it while being sandwiched between the guide rolls 4. The slab 3 is produced continuously. While the slab 3 is fed out by the guide roll 4, cooling water is injected onto the surface of the slab 3 as secondary cooling. In this secondary cooling, for example, as shown in FIG. 8, in order to make the cooling performance in the width direction of the slab 3 uniform, the injection ports of a plurality of nozzles are formed so as to have an injection pattern having a uniform water density distribution. 21 is arranged.

このような二次冷却が行われる際、従来、鋳片3がほぼ鉛直下方に引き出される部分で、鋳片3の表面に噴射された冷却水の一部が、図9に示すように、排水されずにガイドロール4の上部と鋳片3との間に滞留し、溜まり水13となっていた。   When such secondary cooling is performed, conventionally, a part of the cooling water sprayed on the surface of the slab 3 is drained as shown in FIG. Instead, it stayed between the upper part of the guide roll 4 and the slab 3, and became pooled water 13.

一般に、ガイドロール4に滞留する溜まり水は、幅方向中央部で最も少なく、両側方に向かって増加する分布を示す。このように、鋳片3の幅方向で溜まり水13の分布が異なると、均一な冷却ができない要因となる。また、ガイドロール4で鋳片3を強く押し付ける必要がある場合には、ガイドロール4の剛性を増すために、図8に示すように、ガイドロール4が鋳片3の幅方向に分割される。このような場合、分割された各ガイドロール4の間の軸受け部5の位置では、冷却水の排水による溜まり水が発生しない。したがって、鋳片3がガイドロール4と接触している位置と軸受け部5の位置とでは、溜まり水13の分布が不均一となり、鋳片3の幅方向に冷却むらができる。   In general, the accumulated water staying in the guide roll 4 is the smallest at the center in the width direction and shows a distribution that increases toward both sides. Thus, if the distribution of the accumulated water 13 is different in the width direction of the slab 3, it becomes a factor in which uniform cooling cannot be performed. Further, when it is necessary to strongly press the slab 3 with the guide roll 4, the guide roll 4 is divided in the width direction of the slab 3 as shown in FIG. 8 in order to increase the rigidity of the guide roll 4. . In such a case, the accumulated water due to the drainage of the cooling water is not generated at the position of the bearing portion 5 between the divided guide rolls 4. Therefore, the distribution of the accumulated water 13 is non-uniform between the position where the slab 3 is in contact with the guide roll 4 and the position of the bearing portion 5, and uneven cooling can occur in the width direction of the slab 3.

このように、ガイドロール4の溜まり水13が、鋳片3の均一な冷却を阻害する大きな要因となっていることが判明した。冷却が不均一になると、鋳片3の表面性状や内部の品質に欠陥が生じる。したがって、ガイドロール4の溜まり水13を無くすか、溜まり水13の影響が幅方向に均一になるように制御して、鋳片3の品質低下を防ぐことが必要である。   Thus, it has been found that the accumulated water 13 of the guide roll 4 is a major factor that hinders uniform cooling of the slab 3. If the cooling becomes uneven, defects occur in the surface properties and internal quality of the slab 3. Therefore, it is necessary to prevent the deterioration of the quality of the slab 3 by eliminating the accumulated water 13 of the guide roll 4 or by controlling the influence of the accumulated water 13 to be uniform in the width direction.

冷却むらを低減させるために、特許文献1には、連続鋳造装置内に、高圧気体を噴射する噴射ノズルを設けたものが開示されている。また、特許文献2には、連続鋳造装置内に、残留水を吸引する吸引管を設けたものが開示されている。   In order to reduce cooling unevenness, Patent Document 1 discloses a continuous casting apparatus provided with an injection nozzle for injecting high-pressure gas. Patent Document 2 discloses a continuous casting apparatus provided with a suction pipe for sucking residual water.

また、特許文献3には、エアミストの噴射面を傾斜させた冷却方法が開示されている。   Patent Document 3 discloses a cooling method in which an air mist injection surface is inclined.

特開2010−253528号公報JP 2010-253528 A 特開2010−253529号公報JP 2010-253529 A 特開2009−255127号公報JP 2009-255127 A

しかしながら、上記特許文献1および2はいずれも、噴射ノズルまたは吸引管という新たな装置を取り付けたものであり、設置のためのコストやスペースを要するという問題点がある。   However, both of Patent Documents 1 and 2 are provided with a new device such as an injection nozzle or a suction pipe, and there is a problem that a cost and a space for installation are required.

また、上記特許文献3は、隣り合うノズルから噴霧されるエアミストが互いに重なり合わないようにして均一な冷却を図るものであり、ガイドロール部分の溜まり水を低減させることについては考慮されていない。なお、従来、エアミストが重なり合う部分で冷却が不均一になるという問題に対しては、ノズルの噴霧パターンを工夫し、隣り合うノズル同士の重なりを考慮した状態で水量密度(単位面積当たりの噴霧水量)分布が均一になるように予め設計されたノズルを使用している。   Moreover, the said patent document 3 aims at uniform cooling so that the air mist sprayed from an adjacent nozzle may not mutually overlap, and is not considered about reducing the accumulated water of a guide roll part. Conventionally, for the problem of non-uniform cooling at the part where the air mist overlaps, the spray pattern of the nozzle is devised, and the water amount density (the amount of spray water per unit area) in consideration of the overlap between adjacent nozzles ) Nozzles designed in advance so that the distribution is uniform are used.

本発明の目的は、装置等を新設することなく低コストで、ガイドロール位置の溜まり水を低減させて鋳片を均一に冷却し、優れた品質の鋳片を製造するための連続鋳造の二次冷却方法を提供することにある。   The object of the present invention is to reduce the accumulated water at the guide roll position at a low cost without newly installing a device or the like, to uniformly cool the slab, and to produce an excellent quality slab. It is to provide a next cooling method.

上記問題を解決するため、本発明は、連続鋳造装置で鋳造される鋳片に向けて冷却水を噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、前記冷却水の前記鋳片への噴射面の長軸方向が傾くように、前記冷却水を噴射するノズルの噴射方向を、前記噴射面の面内方向に回転させ、前記噴射面の長軸方向の傾きを、前記鋳片の幅方向の列毎に、交互に逆向きとすることを特徴とする、連続鋳造の二次冷却方法を提供する。   In order to solve the above problem, the present invention provides a secondary cooling method in which cooling water is sprayed toward a slab cast by a continuous casting apparatus to cool the slab during continuous casting. The injection direction of the nozzle for injecting the cooling water is rotated in the in-plane direction of the injection surface so that the long axis direction of the injection surface to the piece is inclined, and the inclination of the injection surface in the long axis direction is There is provided a secondary cooling method for continuous casting, characterized in that the direction is alternately reversed for each row in the width direction of the pieces.

また、本発明は、連続鋳造装置で鋳造される鋳片に向けて冷却水を噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、前記冷却水の前記鋳片への噴射面の長軸方向が傾くように、前記冷却水を噴射するノズルの噴射方向を、前記噴射面の面内方向に回転させ、前記噴射面の長軸方向の傾きを、前記鋳片の幅方向中央を境界として左右対称の向きとし、前記噴射面の下流側が前記鋳片の側方に向くように傾けることを特徴とする、連続鋳造の二次冷却方法を提供する。 Further, the present invention provides a secondary cooling method in which cooling water is sprayed toward a slab casted by a continuous casting apparatus, and the slab during continuous casting is cooled. The injection direction of the nozzle that injects the cooling water is rotated in the in-plane direction of the injection surface so that the major axis direction of the slab is inclined in the center in the width direction of the slab. A secondary cooling method for continuous casting, characterized in that the direction is symmetrical with respect to the boundary and is inclined so that the downstream side of the injection surface faces the side of the slab.

上記連続鋳造の二次冷却方法においては、前記噴射面の長軸方向の傾き角度が、3°〜30°の範囲であることが好ましい。   In the secondary cooling method of continuous casting, it is preferable that the inclination angle of the jet surface in the major axis direction is in the range of 3 ° to 30 °.

前記ノズルが二流体ノズルであり、前記冷却水は、水に空気を混合したエアミストであってもよい。   The nozzle may be a two-fluid nozzle, and the cooling water may be an air mist obtained by mixing air with water.

本発明によれば、噴射面の長軸方向を傾けることにより、冷却水が、ガイドロール位置の溜まり水をかき出す方向に噴射され、鋳片の側方に向けて排水される。つまり、冷却水の噴射とともに溜まり水を排除することができるので、専用の装置等を設けることなく、鋳片の幅方向の冷却むらを低減して均一に冷却し、優れた品質の鋳片を製造することができる。   According to the present invention, by inclining the major axis direction of the injection surface, the cooling water is injected in a direction for scooping out the accumulated water at the guide roll position and drained toward the side of the slab. In other words, since the accumulated water can be removed together with the cooling water injection, the cooling unevenness in the width direction of the slab is reduced and uniformly cooled without providing a dedicated device or the like, and an excellent quality slab can be obtained. Can be manufactured.

連続鋳造設備の概要を示す側面図である。It is a side view which shows the outline | summary of a continuous casting installation. 本発明の冷却水噴射の様子を示す側面図である。It is a side view which shows the mode of the cooling water injection of this invention. 図2の部分拡大正面図である。FIG. 3 is a partially enlarged front view of FIG. 2. 本発明の実施の形態を示す正面図である。It is a front view which shows embodiment of this invention. 図4の冷却方法を実施したときの鋳片の温度分布を示すグラフである。It is a graph which shows the temperature distribution of slab when the cooling method of FIG. 4 is implemented. 本発明の異なる実施の形態を示す正面図である。It is a front view which shows different embodiment of this invention. 図6の冷却方法を実施したときの鋳片の温度分布を示すグラフである。It is a graph which shows the temperature distribution of slab when the cooling method of FIG. 6 is implemented. 従来の二次冷却方法の例を示す正面図である。It is a front view which shows the example of the conventional secondary cooling method. 図8の冷却水噴射の様子を示す側面図である。It is a side view which shows the mode of the cooling water injection of FIG. 噴射面を全て同方向に傾けた二次冷却方法の例を示す正面図である。It is a front view which shows the example of the secondary cooling method which inclined all the injection surfaces to the same direction.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明にかかる連続鋳造設備1の概要を示す。鋳型2の上側から、タンディッシュ(図示せず)内の溶鋼が注入され、鋳型2で一次冷却されて表面が凝固した状態の鋳片3が、鋳型2の下方から少しずつ引き出される。鋳型2の下方において、鋳片3は、それぞれ対向して設置された複数対のガイドロール4で挟み込まれながら連続的に送り出され、これにより、連続した鋳片3が生産される。図1は連続鋳造設備1の一例であり、鋳片3の両側のガイドロール4により、鋳片3が鋳型2のほぼ鉛直下方へ引き抜かれた後、徐々に90°程度曲げられて、水平方向へ移動していく彎曲型のものである。本発明は、彎曲型の連続鋳造設備に限らず、垂直型などでも同様に適用できる。   FIG. 1 shows an outline of a continuous casting facility 1 according to the present invention. Molten steel in a tundish (not shown) is poured from the upper side of the mold 2, and the slab 3 in a state where the surface is first cooled by the mold 2 and solidified is pulled out little by little from the lower side of the mold 2. Below the mold 2, the slab 3 is continuously fed out while being sandwiched between a plurality of pairs of guide rolls 4 disposed to face each other, whereby a continuous slab 3 is produced. FIG. 1 shows an example of a continuous casting facility 1. After the slab 3 is pulled out substantially vertically below the mold 2 by the guide rolls 4 on both sides of the slab 3, the slab 3 is gradually bent by about 90 ° to be horizontal. It is a fold type that moves to. The present invention is not limited to a curved-type continuous casting facility, but can be similarly applied to a vertical type or the like.

鋳片3は、冷却水を噴射する二次冷却手段によって冷却されながら、ガイドロール4で連続的に送り出される。二次冷却手段は、図2に示すように、各ガイドロール4同士の隙間から鋳片3に向けてエアミスト12を噴射する二流体ノズル11からなり、二流体ノズル11内で空気と水が混合されて、エアミスト12が噴射される。二流体ノズル11は、鋳片3の幅方向に均一な水量密度分布を有する噴射パターンとなるように、鋳片3の幅方向に適宜間隔で複数、例えば2200mm程度の幅の鋳片3に対して、幅方向の1列につき7〜8本配置される。そして、通常、1本の二流体ノズル当たり5〜20リットル/分程度の水量が噴射される。   The slab 3 is continuously sent out by the guide roll 4 while being cooled by a secondary cooling means for injecting cooling water. As shown in FIG. 2, the secondary cooling means includes a two-fluid nozzle 11 that injects air mist 12 toward the slab 3 from the gap between the guide rolls 4. Air and water are mixed in the two-fluid nozzle 11. Then, the air mist 12 is injected. The two-fluid nozzle 11 applies to a plurality of slabs 3 having a width of about 2200 mm, for example, at appropriate intervals in the width direction of the slabs 3 so as to form an injection pattern having a uniform water density distribution in the width direction of the slabs 3. 7 to 8 lines are arranged in one row in the width direction. Usually, a water amount of about 5 to 20 liters / minute is ejected per one two-fluid nozzle.

エアミスト12は、二流体ノズル11の噴射口21から扇状に広がって噴射され、エアミスト12が鋳片3に衝突する噴射面22は、楕円形状になっている。図8に示すように、二流体ノズル11の噴射方向を回転させない場合、すなわち、噴射面22の長軸方向の向きがガイドロール4同士の隙間に沿って平行な場合、図9に示すように、鋳片3に接触しているガイドロール4の上部に、エアミスト12の排水が滞留して溜まり水13ができる。ガイドロール4が、図8に示すように鋳片3の幅方向に分割されている場合には、ガイドロール4と鋳片3とが接触する部分には溜まり水13ができるが、軸受け部5には溜まり水ができない。その結果、鋳片3の幅方向に温度むらが生じ、均一な冷却ができなくなる。   The air mist 12 spreads in a fan shape from the injection port 21 of the two-fluid nozzle 11 and is injected, and the injection surface 22 on which the air mist 12 collides with the slab 3 has an elliptical shape. As shown in FIG. 8, when the jet direction of the two-fluid nozzle 11 is not rotated, that is, when the direction of the major axis direction of the jet surface 22 is parallel along the gap between the guide rolls 4, as shown in FIG. The drainage of the air mist 12 stays on the upper portion of the guide roll 4 that is in contact with the slab 3 to form the accumulated water 13. When the guide roll 4 is divided in the width direction of the slab 3 as shown in FIG. 8, pooled water 13 is formed at the portion where the guide roll 4 and the slab 3 are in contact with each other, but the bearing part 5 Does not collect water. As a result, temperature unevenness occurs in the width direction of the slab 3, and uniform cooling cannot be performed.

そこで、本発明では、エアミストの噴射面22の長軸方向が傾くように、二流体ノズル11の噴射方向を、鋳片3の表面の面内方向に回転させる。これにより、図2に示すように、鋳片3の進行方向(矢印方向)におけるエアミスト12の見かけ上の上下幅が大きくなり、さらに、図3に示すように、噴射口21から斜め下向きにエアミストが吹き付けられるため、ガイドロール4の上部の溜まり水13を鋳片3の側方に向けてかき出すことができる。   Therefore, in the present invention, the injection direction of the two-fluid nozzle 11 is rotated in the in-plane direction of the surface of the slab 3 so that the major axis direction of the injection surface 22 of the air mist is inclined. As a result, as shown in FIG. 2, the apparent vertical width of the air mist 12 in the traveling direction (arrow direction) of the slab 3 increases, and further, as shown in FIG. Therefore, the accumulated water 13 at the upper part of the guide roll 4 can be scraped out toward the side of the slab 3.

噴射方向の回転角度は、ガイドロール4同士の上下の間隔、および、二流体ノズル11の噴射口21と鋳片3との距離に応じて設定される。すなわち、ガイドロール4の上下方向の隙間は、通常40〜50mm程度であり、二流体ノズル11の噴射口21から噴射されたエアミスト12が、上下のガイドロール4に遮られることなく鋳片3に到達できる範囲で、噴射方向の回転角度を決める。具体的には、噴射面22の長軸方向の傾き角度は3°〜30°の範囲、好ましくは10°程度とする。傾き角度が小さすぎると、溜まり水13に向けた斜め下向きのエアミスト12の噴射が十分でなく、溜まり水13の排出効果が低くなる。また、傾き角度が大きすぎると、エアミスト12の一部がガイドロール4に当たって鋳片3まで到達せず、冷却効率が低下する。   The rotation angle in the injection direction is set according to the vertical distance between the guide rolls 4 and the distance between the injection port 21 of the two-fluid nozzle 11 and the cast piece 3. That is, the gap in the vertical direction of the guide roll 4 is normally about 40 to 50 mm, and the air mist 12 injected from the injection port 21 of the two-fluid nozzle 11 is not blocked by the upper and lower guide rolls 4 in the slab 3. The rotation angle in the injection direction is determined within the reachable range. Specifically, the inclination angle in the major axis direction of the ejection surface 22 is in the range of 3 ° to 30 °, preferably about 10 °. If the inclination angle is too small, the jet of the air mist 12 obliquely downward toward the accumulated water 13 is not sufficient, and the effect of discharging the accumulated water 13 becomes low. On the other hand, if the tilt angle is too large, a part of the air mist 12 hits the guide roll 4 and does not reach the slab 3, so that the cooling efficiency is lowered.

図4は、本発明の実施形態の一例であり、噴射面22の長軸方向の傾きが、鋳片3の幅方向の列毎に、交互に逆向きになっている。すなわち、図4の上から1列目の噴射面22aは、下流方向(図4の下方向)が図4の左側に向けて傾けられ、上から2列目の噴射面22bは、下流方向が右側に向けて傾けられている。3列目は1列目と同様であり、4列目は2列目と同様である。同列に配置された噴射面22は同じ方向に傾いており、図4に示すように、それぞれの列で、噴射面22の向きに沿った方向に、溜まり水13が多く排出される。そして、列毎に交互に噴射方向の傾きを逆向きにすることにより、全体では均等に溜まり水13が排出される。図5のグラフの実線は、図4の二次冷却方法を実施した場合の、鋳片3の幅方向による温度分布を示す。破線は、図10に示すように噴射面22の長軸方向を全て同方向に傾けて二次冷却を実施した場合の鋳片3の温度分布であり、単純に噴射面22を傾けるだけではなく、列毎に交互に逆向きとした本実施形態において、均一な冷却効果が得られるようになった。   FIG. 4 is an example of an embodiment of the present invention, and the inclination of the injection surface 22 in the major axis direction is alternately reversed for each column in the width direction of the slab 3. That is, the injection surface 22a in the first row from the top in FIG. 4 is inclined in the downstream direction (downward in FIG. 4) toward the left side in FIG. 4, and the injection surface 22b in the second row from the top is in the downstream direction. Tilt to the right. The third column is the same as the first column, and the fourth column is the same as the second column. The ejection surfaces 22 arranged in the same row are inclined in the same direction, and as shown in FIG. 4, a large amount of accumulated water 13 is discharged in the direction along the direction of the ejection surface 22 in each row. And by alternately making the inclination of the injection direction reverse for every row, the water 13 is uniformly collected as a whole. The solid line in the graph of FIG. 5 shows the temperature distribution in the width direction of the slab 3 when the secondary cooling method of FIG. 4 is performed. The broken line is the temperature distribution of the slab 3 when the secondary cooling is performed by inclining all the major axis directions of the injection surface 22 in the same direction as shown in FIG. 10, and not only simply inclining the injection surface 22. In this embodiment, which is alternately reversed for each column, a uniform cooling effect can be obtained.

図6は、本発明の異なる実施形態を示し、噴射面22の長軸方向の傾きが、鋳片3の幅方向の中央を境界として、左右互いに逆向き、つまり左右対称であり、それぞれの噴射面22は、下流側が鋳片3の側方に向くように傾いている。すなわち、図6では、いずれの列も、鋳片3の幅方向中央から両側方へ向けて溜まり水13がかき出されるように、噴射面22が傾けられている。図7のグラフの実線は、図6の二次冷却方法を実施した場合の、鋳片3の幅方向による温度分布を示す。破線は、図10に示すように噴射面22の長軸方向を全て同方向に傾けて二次冷却を実施した場合の鋳片3の温度分布であり、単純に噴射面22を傾けるだけではなく、左右対称方向に傾けた本実施形態において、均一な冷却効果が得られるようになった。   FIG. 6 shows a different embodiment of the present invention, in which the inclination in the major axis direction of the injection surface 22 is opposite to each other, that is, symmetrical with respect to the center in the width direction of the slab 3. The surface 22 is inclined so that the downstream side faces the side of the slab 3. That is, in FIG. 6, the injection surface 22 is tilted so that the accumulated water 13 is scooped out from the center in the width direction of the slab 3 toward both sides in each row. The solid line in the graph of FIG. 7 shows the temperature distribution in the width direction of the slab 3 when the secondary cooling method of FIG. 6 is performed. The broken line is the temperature distribution of the slab 3 when the secondary cooling is performed by inclining all the major axis directions of the injection surface 22 in the same direction as shown in FIG. 10, and not only simply inclining the injection surface 22. In this embodiment tilted in the left-right symmetric direction, a uniform cooling effect can be obtained.

以上のように、本発明によれば、二流体ノズル11の噴射方向を鋳片3の面内方向に回転させて、エアミスト12の噴射面22の長軸方向を傾けることにより、鋳片3とガイドロール4上部との隙間に向けてエアミスト12が噴射され、溜まり水13の排出が促進される。したがって、溜まり水が要因となる二次冷却むらが低減し、優れた品質の鋳片を製造することができる。また、鋳片3の進行方向に配置された各ガイドロール4間の隙間の限られたスペースに、新たな装置を設けることなく、二次冷却手段として従来用いていた二流体ノズル11を利用して、二次冷却と同時に、溜まり水13の排出を行うことができる。   As described above, according to the present invention, the injection direction of the two-fluid nozzle 11 is rotated in the in-plane direction of the slab 3 and the major axis direction of the injection surface 22 of the air mist 12 is tilted. Air mist 12 is jetted toward the gap between the upper portion of the guide rolls 4 and the discharge of the accumulated water 13 is promoted. Therefore, the secondary cooling unevenness caused by the accumulated water is reduced, and an excellent quality slab can be manufactured. Moreover, the two-fluid nozzle 11 conventionally used as the secondary cooling means is used without providing a new device in the space where the gap between the guide rolls 4 arranged in the traveling direction of the slab 3 is limited. Thus, the accumulated water 13 can be discharged simultaneously with the secondary cooling.

しかも、噴射面22の傾きを列毎に交互に逆向きとしたり、左右対称方向に傾けたりすることにより、鋳片3全体の溜まり水を均等に排出し、均一な冷却効果を得ることができる。   In addition, by alternately making the inclination of the injection surface 22 reverse in every row or inclining in the left-right symmetric direction, the accumulated water of the entire slab 3 can be discharged uniformly and a uniform cooling effect can be obtained. .

なお、上記の実施の形態では、ガイドロール4は、鋳片3を強く拘束する高い剛性を確保するために、幅方向に分割されて軸受け部5で各ガイドロール4が連結されたものとしたが、本発明の実施に際しては、鋳片3の幅方向全体を押さえ付ける幅を有するガイドロールでも、同様に溜まり水を排出する効果を発揮することができる。   In the above-described embodiment, the guide roll 4 is divided in the width direction and the guide rolls 4 are connected to each other by the bearing portion 5 in order to ensure high rigidity that strongly restrains the slab 3. However, when carrying out the present invention, even a guide roll having a width for pressing the entire width direction of the slab 3 can exhibit the effect of discharging the accumulated water in the same manner.

本発明は、連続鋳造機等において、ロールで板状搬送物を搬送しながらノズルで冷却水を噴射する冷却方法に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a cooling method in which cooling water is ejected by a nozzle while conveying a plate-shaped conveyed product by a roll in a continuous casting machine or the like.

1 連続鋳造装置
2 鋳型
3 鋳片
4 ガイドロール
5 軸受け部
11 二流体ノズル
12 エアミスト
13 溜まり水
21 噴射口
22 噴射面
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Mold 3 Slab 4 Guide roll 5 Bearing part 11 Two-fluid nozzle 12 Air mist 13 Pool water 21 Injection port 22 Injection surface

Claims (4)

連続鋳造装置で鋳造される鋳片に向けて冷却水を噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、
前記冷却水の前記鋳片への噴射面の長軸方向が傾くように、前記冷却水を噴射するノズルの噴射方向を、前記噴射面の面内方向に回転させ、
前記噴射面の長軸方向の傾きを、前記鋳片の幅方向の列毎に、交互に逆向きとすることを特徴とする、連続鋳造の二次冷却方法。
In the secondary cooling method of injecting cooling water toward the slab cast by the continuous casting apparatus and cooling the slab during continuous casting,
Rotating the injection direction of the nozzle for injecting the cooling water in the in-plane direction of the injection surface so that the major axis direction of the injection surface to the slab of the cooling water is inclined;
The secondary cooling method for continuous casting, wherein the inclination of the injection surface in the major axis direction is alternately reversed for each row in the width direction of the slab.
連続鋳造装置で鋳造される鋳片に向けて冷却水を噴射し、連続鋳造中の鋳片を冷却する二次冷却方法において、
前記冷却水の前記鋳片への噴射面の長軸方向が傾くように、前記冷却水を噴射するノズルの噴射方向を、前記噴射面の面内方向に回転させ、
前記噴射面の長軸方向の傾きを、前記鋳片の幅方向中央を境界として左右対称の向きとし、前記噴射面の下流側が前記鋳片の側方に向くように傾けることを特徴とする、連続鋳造の二次冷却方法。
In the secondary cooling method of injecting cooling water toward the slab cast by the continuous casting apparatus and cooling the slab during continuous casting,
Rotating the injection direction of the nozzle for injecting the cooling water in the in-plane direction of the injection surface so that the major axis direction of the injection surface to the slab of the cooling water is inclined;
The inclination in the major axis direction of the injection surface is a bilaterally symmetric direction with the width direction center of the slab as a boundary, and is inclined so that the downstream side of the injection surface faces the side of the slab, Secondary cooling method for continuous casting.
前記噴射面の長軸方向の傾き角度が、3°〜30°の範囲であることを特徴とする、請求項1または2に記載の連続鋳造の二次冷却方法。   The secondary cooling method for continuous casting according to claim 1 or 2, wherein an inclination angle in a major axis direction of the injection surface is in a range of 3 ° to 30 °. 前記ノズルが二流体ノズルであり、前記冷却水は、水に空気を混合したエアミストであることを特徴とする、請求項1〜3のいずれかに記載の連続鋳造の二次冷却方法。   The secondary cooling method for continuous casting according to any one of claims 1 to 3, wherein the nozzle is a two-fluid nozzle, and the cooling water is an air mist obtained by mixing air with water.
JP2012198365A 2012-09-10 2012-09-10 Secondary cooling method for continuous casting Active JP5817689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198365A JP5817689B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198365A JP5817689B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Publications (2)

Publication Number Publication Date
JP2014050874A JP2014050874A (en) 2014-03-20
JP5817689B2 true JP5817689B2 (en) 2015-11-18

Family

ID=50609860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198365A Active JP5817689B2 (en) 2012-09-10 2012-09-10 Secondary cooling method for continuous casting

Country Status (1)

Country Link
JP (1) JP5817689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698296B (en) * 2018-06-26 2020-07-11 日商日本製鐵股份有限公司 Secondary cooling apparatus of continuous casting and secondary cooling method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517252B1 (en) * 2015-05-27 2019-03-15 Primetals Technologies Austria GmbH Avoidance of waterways in a strand guide
JP7356016B2 (en) 2018-11-02 2023-10-04 日本製鉄株式会社 Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
KR102631495B1 (en) * 2019-10-29 2024-01-30 제이에프이 스틸 가부시키가이샤 Secondary cooling method of continuous casting cast steel
KR102400467B1 (en) * 2020-12-21 2022-05-20 주식회사 포스코 Segment for continuous casting and continuous casting apparatus having the same
JPWO2023248632A1 (en) * 2022-06-21 2023-12-28

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651573C2 (en) * 1976-11-12 1983-04-28 Werner Dipl.-Ing. 4320 Hattingen Wilhelm Method and device for controlling secondary cooling of a steel strand emerging from a continuous casting mold
JPS63248550A (en) * 1987-04-03 1988-10-14 Sumitomo Metal Ind Ltd Method for cooling cast slab
JP2009255127A (en) * 2008-04-17 2009-11-05 Jfe Steel Corp Method and equipment for cooling of continuously cast slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698296B (en) * 2018-06-26 2020-07-11 日商日本製鐵股份有限公司 Secondary cooling apparatus of continuous casting and secondary cooling method

Also Published As

Publication number Publication date
JP2014050874A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5817689B2 (en) Secondary cooling method for continuous casting
JP5741874B1 (en) Secondary cooling method for continuous casting
KR20170003826A (en) Scarfing apparatus
KR101490663B1 (en) Dewatering device and dewatering method for cooling water for hot rolled steel sheet
CN108543922A (en) Fan-shaped section secondary cooling system is used under a kind of solidification end weight
KR101756205B1 (en) Water-jet device of scarfing apparatus
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP5970202B2 (en) Oblique nozzle
KR101450851B1 (en) Device for scarfing slab
JP2009255127A (en) Method and equipment for cooling of continuously cast slab
JP6570738B2 (en) Steel vertical continuous casting equipment
JP4398898B2 (en) Thick steel plate cooling device and method
JP6148447B2 (en) Secondary cooling method for continuous casting
JP5609199B2 (en) Secondary cooling method in continuous casting
JP2013094828A (en) Secondary cooling method in continuous casting
KR102426994B1 (en) Secondary cooling device and secondary cooling method of continuous casting
JP2018001208A (en) Secondary cooling apparatus and secondary cooling method for continuous casting
KR20130075861A (en) Apparatus for controlling cooling of mold
KR20090050657A (en) Spray nozzle equipment for continuous casting
JP4272601B2 (en) Continuous casting equipment and continuous casting method
KR101175429B1 (en) Apparatus and method for scarfing of slab
JP5109557B2 (en) Drainer
KR101147034B1 (en) Twin-roll casting machine
JP2007245213A (en) Method of and device for pulverizing molten steel outflowing due to breakout in continuous casting
KR101377510B1 (en) Rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350