JP4272601B2 - Continuous casting equipment and continuous casting method - Google Patents
Continuous casting equipment and continuous casting method Download PDFInfo
- Publication number
- JP4272601B2 JP4272601B2 JP2004216875A JP2004216875A JP4272601B2 JP 4272601 B2 JP4272601 B2 JP 4272601B2 JP 2004216875 A JP2004216875 A JP 2004216875A JP 2004216875 A JP2004216875 A JP 2004216875A JP 4272601 B2 JP4272601 B2 JP 4272601B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- flat plate
- support means
- mold
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009749 continuous casting Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 21
- 238000001816 cooling Methods 0.000 claims description 59
- 238000005266 casting Methods 0.000 claims description 34
- 239000000498 cooling water Substances 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 239000002184 metal Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000007921 spray Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 206010039509 Scab Diseases 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、断面方形の連続鋳造鋳片を鋳造する連続鋳造設備及び連続鋳造方法に関するものである。 The present invention relates to a continuous casting facility and a continuous casting method for casting a continuous cast slab having a square cross section.
溶融金属の連続鋳造、例えば溶鋼の連続鋳造においては、溶鋼が鋳型内に注入され、鋳型に接する部分で溶鋼が凝固して凝固シェルが形成され、凝固シェルが溶鋼とともに鋳型の下方に引き抜かれ、凝固が完了して鋳片が形成される。鋳片の断面形状は、長方形や正方形を含む方形の形状が一般的である。 In continuous casting of molten metal, for example, continuous casting of molten steel, the molten steel is injected into the mold, the molten steel is solidified at a portion in contact with the mold to form a solidified shell, and the solidified shell is drawn together with the molten steel below the mold, Solidification is completed and a slab is formed. The cross-sectional shape of the slab is generally a rectangular shape including a rectangle and a square.
鋳型を出た鋳片は、鋼の熱伝導率の低さや鋳型内での滞留時間の短さなどで凝固シェルが薄く、高温のため静圧によるバルジング現象が発生しやすく、特別な鋳片支持装置が必要である。 The slab exiting the mold has a thin solidified shell due to the low thermal conductivity of steel and the short residence time in the mold. Equipment is needed.
鋳型直下における鋳片の支持方法としては、非特許文献1に記載のように、図6(a)に示すフートロール方式、図6(b)に示すクーリングプレート方式、図6(c)に示すクーリンググリッド方式などが採用されている。フートロール方式においては、フートロール20を用いて鋳片1を支持しつつ、スプレーノズル24によって冷却水や気水を鋳片1に噴射して冷却する。クーリングプレート方式においては、例えば特許文献1に記載されているように、鋳型直下の鋳片1がクーリングプレート21で支持されると同時に、クーリングプレート表面に設けた開口部23内のスプレーノズル24から噴射される冷却水によって鋳片の凝固が促進される。また特許文献2はクーリンググリッド方式に関するものであり、ブレークアウト防止には鋳型内における1次冷却と共に、鋳型直下における鋳片の安定保持が重要であり、2次冷却として最近では従来のロールに代わってクーリンググリッド装置が多く採用されていると記載されている。即ち、鋳型から連続的に引き抜かれる鋳片が鋳型直下に配置されたクーリンググリッド22に支持され、このときに鋳片はクーリンググリッド間の開口部23に配置した冷却水噴射スプレー24から噴射される冷却水により冷却される。
As described in
連続鋳造、特にブルーム連続鋳造などのように鋳片厚みが厚くなる連続鋳造においては、鋳型直下の鋳片支持を鋳片の4面について行うことが必要になってくる。フートロール方式、クーリングプレート方式、クーリンググリッド方式のいずれにおいても、鋳片厚みが厚い場合には鋳片の4面すべてについて鋳片支持を行うこととなる。 In continuous casting, particularly continuous casting in which the thickness of a slab increases, such as bloom continuous casting, it is necessary to support the slab directly below the mold on four sides of the slab. In any of the foot roll method, the cooling plate method, and the cooling grid method, when the slab thickness is large, all four surfaces of the slab are supported.
断面方形の連続鋳造鋳片を鋳造する連続鋳造において、鋳型直下の鋳片支持について鋳片の4面をクーリングプレートで支持する方法を採用した場合、特に鋳造速度を高速化した際に、図5(a)に示すように鋳造を完了した鋳片1の内部のコーナー部付近に内部割れ14が発生することがある。内部割れ14は、固液界面付近において発生した凝固シェルの割れ部に不純物濃化溶鋼が入り込んで形成されるものであり、この部分は不純物が濃化しているために製造した鋳片の品質を低下させる原因となる。
In continuous casting in which a continuous casting slab having a square cross section is cast, when a method of supporting four surfaces of a slab with a cooling plate for supporting a slab immediately below the mold, particularly when the casting speed is increased, FIG. As shown to (a), the
連続鋳造において鋳造速度が速い高速鋳造を行うと、鋳型直下においてブレークアウトが発生する頻度が増大する。特にフートロール方式においては高速鋳造時のブレークアウト発生頻度が高い。また、クーリングプレート21やクーリンググリッド22は、いずれも冷却水スプレーノズル24を配置するための開口部23を鋳片支持面の中に有している。鋳型内あるいは鋳型直下で発生した凝固シェルの湯漏れ部が鋳型下方を通過する際において、これらスプレーノズル開口部に湯漏れ部のかさぶた状凹凸が引っかかり、鋳型直下の鋳片支持部においてブレークアウトを防止することができないという状況が発生している。
When continuous casting is performed at a high speed and the casting speed is high, the frequency of occurrence of breakout directly under the mold increases. In particular, in the foot roll method, breakout occurs frequently during high speed casting. Further, the
本発明は、鋳型直下の鋳片支持にクーリングプレートを用いたときに発生する内部割れを防止することを第1の目的とする。また、高速鋳造時においてもブレークアウトの発生しない鋳型直下鋳片支持方式を提供することを第2の目的とする。 A first object of the present invention is to prevent internal cracks that occur when a cooling plate is used to support a slab directly under a mold. Another object of the present invention is to provide a mold direct slab support system that does not cause breakout even during high speed casting.
即ち、本発明の要旨とするところは以下の通りである。
(1)断面方形の連続鋳造鋳片を鋳造するための鋳型の下部に、鋳片1のコーナー部12およびその周辺部へ直接冷却水又は気水を噴射する噴射手段7と、鋳片1のコーナー部12およびその周辺部を除く部分において鋳片の4面をそれぞれ支持するための平板状支持手段5であってその背面に冷却手段7を有するものとを具備し、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xは、左右ともに、平板状支持手段5の上端においては、該上端位置での凝固シェル厚t U 以上かつ凝固シェル厚t U の2倍以下であり、上端以外の部分においては、上端における平板状支持手段の幅端部と鋳片のコーナー部との間の距離X U 以上かつ平板状支持手段の下端位置での凝固シェル厚t L の2倍以下であることを特徴とする連続鋳造設備。
(2)断面方形の連続鋳造鋳片を鋳造するための鋳型の下部において、平板状支持手段5によって鋳片の4面をコーナー部12およびその周辺部を除く部分でそれぞれ支持し、平板状支持手段5はその背面に冷却手段7を有し、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xは、左右ともに、平板状支持手段5の上端においては、該上端位置での凝固シェル厚tU以上かつ凝固シェル厚tUの2倍以下とし、上端以外の部分においては、上端における平板状支持手段の幅端部と鋳片のコーナー部との間の距離XU以上かつ平板状支持手段の下端位置での凝固シェル厚tLの2倍以下とし、隣り合う平板状支持手段間に露出した鋳片1のコーナー部12およびその周辺部へ直接冷却水又は気水を噴射することを特徴とする連続鋳造方法。
That is, the gist of the present invention is as follows.
(1) An injection means 7 for directly injecting cooling water or air water to the
(2) At the lower part of the mold for casting a continuous casting slab having a square cross section, the plate-like support means 5 supports the four surfaces of the slab at the portions excluding the
本発明は、断面方形の連続鋳造鋳片を鋳造するための鋳型の下部において、平板状支持手段によって鋳片の4面をコーナー部およびその周辺部を除く部分でそれぞれ支持し、隣り合う平板状支持手段間に露出した鋳片のコーナー部およびその周辺部へ直接冷却水又は気水を噴射することにより、鋳片内部のコーナー部付近の内部割れ発生を防止することができる。また、平板状支持手段はその背面に冷却手段を有し、鋳片冷却用スプレーノズルのための開口部が存在しないので、高速鋳造において発生するブレークアウトの発生頻度を低減させることができる。 In the present invention, at the lower part of a mold for casting a continuous cast slab having a square cross section, the four surfaces of the slab are supported by the flat plate support means at the portions excluding the corner portion and the peripheral portion thereof, and adjacent flat plate shapes. By directly injecting cooling water or air water to the corner portion of the slab exposed between the supporting means and its peripheral portion, it is possible to prevent the occurrence of internal cracks near the corner portion inside the slab. Further, the flat plate supporting means has a cooling means on the back surface thereof, and since there is no opening for the slab cooling spray nozzle, it is possible to reduce the occurrence frequency of breakout occurring in high speed casting.
断面方形、即ち長方形あるいは正方形断面の鋳片を鋳造する鋼のブルーム連続鋳造を例にとって、図1〜3に基づいて本発明の実施の形態について説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 3 by taking as an example a continuous bloom bloom casting of a slab having a square cross section, that is, a rectangular or square cross section.
本発明において、鋳型直下に導かれた鋳片1はその4面を平板状支持手段5によって支持される。平板状支持手段5とは、鋳片1に接する面が開口部のない平板状であり、鋳片1は平板状支持手段5に接することによって支持されつつ抜熱される。平板状支持手段5はその背面に冷却手段7を有する。具体的には図4に示すように、平板状支持手段5の鋳片に面する側を、銅などの熱伝導率の高い金属板8で形成し、その金属板8の背面(鋳片に接する面の反対側)に冷却水通路10を形成し、背面から冷却水9を循環させることによって金属板8を冷却する。金属板8は背面支持板11によって支持される。金属板8の材料として銅を用いる場合、鋳片と接する面についてはNiめっきなどのコーティングを行い、表面の耐摩耗特性を向上させることができる。銅の材質や表面コーティングの方法については、水冷銅鋳型において用いられる技術を適用すると好ましい。
In the present invention, the
従来のクーリングプレート方式においては、鋳型直下の鋳片を4面から支持するに際し、鋳片各面の幅方向全幅についてクーリングプレートによる支持が行われていた。従って、図5(b)に示すように、鋳片1はコーナー部12を含めて表面全体がクーリングプレート21によって支持されていた。
In the conventional cooling plate system, when the slab directly below the mold is supported from four surfaces, the entire width in the width direction of each surface of the slab is supported by the cooling plate. Therefore, as shown in FIG. 5B, the entire surface of the
一方、このような鋳片の表面全面を支持するクーリングプレート方式を用いて鋳造した鋳片において、特に鋳造速度を高速化した際に、図5(a)に示すように鋳片コーナー部12付近の表層直下に内部割れ14が発生する現象が見られた。内部割れは、前述のとおり、固液界面付近において発生した凝固シェルの割れ部に不純物濃化溶鋼が入り込んで形成されるものであり、この部分は不純物が濃化しているために製造した鋳片の品質を低下させる原因となる。
On the other hand, in the slab cast using the cooling plate system that supports the entire surface of the slab, especially when the casting speed is increased, the vicinity of the
内部割れの発生原因について究明したところ、鋳型直下のクーリングプレートで冷却される凝固部位において、図5(b)に示すように鋳片コーナー部12付近の冷却が不足し、凝固シェル2の成長がコーナー部12において遅れている現象が見られた。このような現象が見られる場合において、特に高速鋳造を行った際に、鋳片コーナー部12の凝固界面に割れが発生し、この割れに不純物濃化溶鋼が入り込み、そのまま凝固して内部割れ14が形成されることが判明した。
As a result of investigating the cause of the occurrence of internal cracks, in the solidified portion cooled by the cooling plate directly under the mold, the cooling of the vicinity of the
本発明は、鋳型直下の鋳片支持を幅方向全面で行うのではなく、図1に示すように平板状支持手段5は鋳片1のコーナー部12およびその周辺部を除く部分において鋳片1の4面をそれぞれ支持する、即ち、鋳片1のコーナー部12およびその周辺部は平板状支持手段5による支持を行わない方法を採用した。そして、隣り合う平板状支持手段間に露出した鋳片のコーナー部12およびその周辺部へ噴射手段6によって直接冷却水を噴射して鋳片の冷却を行った。その結果、鋳片コーナー部12の冷却が強化され、コーナー部付近における鋳片の冷却遅れが解消され、内部割れの発生を防止できることがわかった。
The present invention does not support the slab directly under the mold in the entire width direction, but as shown in FIG. 1, the flat plate-like support means 5 has the
即ち本発明の連続鋳造設備は、断面方形の連続鋳造鋳片を鋳造するための鋳型の下部に、鋳片1のコーナー部12およびその周辺部へ直接冷却水又は気水を噴射する噴射手段6と、鋳片1のコーナー部12およびその周辺部を除く部分において鋳片の4面をそれぞれ支持するための平板状支持手段5であってその背面に冷却手段7を有するものとを具備したことを基本的構造とする連続鋳造設備である。このような連続鋳造設備を用いて連続鋳造を行うことにより、鋳片コーナー部付近表皮下の内部割れ発生を防止することができる。
That is, the continuous casting equipment of the present invention is an injection means 6 for directly injecting cooling water or air water to the
隣り合う平板状支持手段間に露出した鋳片のコーナー部およびその周辺部への直接冷却については、スプレーノズルを用いて冷却水を鋳片に直接噴射する方法、あるいは気水噴霧ノズルを用いて冷却水を噴霧化し、この気水を鋳片に直接噴射する方法を採用することができる。このように冷却水や気水を噴射するノズルをここでは総称して噴射手段6と称する。 For direct cooling to the corner portion of the slab exposed between adjacent flat plate supporting means and its peripheral portion, a method of directly injecting cooling water to the slab using a spray nozzle, or using a water spray nozzle A method can be employed in which the cooling water is atomized and the air is directly injected onto the slab. The nozzles for injecting cooling water and air are referred to collectively as the injection means 6 here.
噴射手段6による鋳片コーナー部および周辺部の直接冷却は、鋳片中央部の平板状支持手段5による冷却能と同程度になるように冷却水量等を決定すると好ましい。 It is preferable to determine the amount of cooling water or the like so that the direct cooling of the slab corner portion and the peripheral portion by the jetting means 6 is approximately the same as the cooling capacity by the flat plate support means 5 at the slab center.
本発明の平板状支持手段5で鋳片のコーナー部およびその周辺部を除く部分において鋳片を支持する際において、鋳片のコーナー部およびその周辺部の平板状支持手段5による支持を行わない領域の広さについて好適範囲が存在する。 When the slab is supported by the flat plate-like support means 5 of the present invention at a portion excluding the corner portion and its peripheral portion of the slab, the flat plate support means 5 does not support the corner portion of the slab and its peripheral portion. There is a preferred range for the area size.
鋳片のコーナー部付近の平板状支持手段5による支持を行わない領域の広さが狭すぎると、冷却水又は気水を噴射することによる直接冷却効果が十分に得られないこととなる。その結果、図3(a)に示すように、鋳片コーナー部12の凝固遅れが生じて内部割れ14が発生することとなる。逆に図3(b)に示すように鋳片のコーナー部付近の平板状支持手段5による支持を行わない領域の広さが広すぎると、鋳片コーナー部においてバルジングを防止するための鋳片支持が十分ではなくなり、鋳片コーナー部が外方にバルジングすることによってかえって内部割れ14が増大することになりかねない。
If the area of the area that is not supported by the plate-like support means 5 near the corner portion of the slab is too narrow, the direct cooling effect by injecting cooling water or air water cannot be sufficiently obtained. As a result, as shown in FIG. 3A, a solidification delay of the
本発明の上記範囲について、図2(a)に基づいて説明を行う。平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xは、凝固シェル厚t以上とすることにより、冷却水又は気水による直接冷却の範囲を十分に確保し、直接冷却の効果を十分に得ることができるので、鋳片コーナー部の冷却遅れを防止することができる。また、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xを凝固シェル厚tの2倍以下とすることにより、鋳片コーナー部が外方に膨れるバルジングを防止して良好な鋳造を行うことが可能である。平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xを凝固シェル厚tの1.5倍以下とするとより好ましい。
The said range of this invention is demonstrated based on Fig.2 (a). The distance X between the
鋳造方向には図2(b)に示すように、平板状支持手段5の上端16において、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xを該上端位置での凝固シェル厚tU以上かつ凝固シェル厚tUの2倍以下とする。平板状支持手段上端16における平板状支持手段の幅端部15と鋳片のコーナー部12との間の距離をXUとおく。
In the casting direction, as shown in FIG. 2 (b), at the
凝固シェルの成長に伴い、平板状支持手段5の範囲内においても鋳造方向において凝固シェル厚tは次第に厚くなる。そのため、平板状支持手段5の上端以外の部分における平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xについては、平板状支持手段上端16における平板状支持手段の幅端部と鋳片のコーナー部との間の距離XU以上かつ平板状支持手段の下端17位置での凝固シェル厚tLの2倍以下となるように調整する。
As the solidified shell grows, the solidified shell thickness t gradually increases in the casting direction even within the range of the flat plate support means 5. Therefore, with respect to the distance X between the
本発明の平板状支持手段5の鋳造方向長さは、従来のクーリングプレート方式等におけるバルジング抑制と同様な考え方で決定され、何ら制約が生じるものではない。 The length in the casting direction of the flat plate-like support means 5 of the present invention is determined based on the same concept as the bulging suppression in the conventional cooling plate system and the like, and no restriction is generated.
鋳型下端から下方に引き出される鋳片の表面にはパウダーが固着している。鋳片が本発明の平板状支持手段に導入される際に、この鋳片固着パウダーは平板状支持手段の上端部で剥離・破砕され、鋳片表面から除去される。この鋳片表面から剥離したパウダーが鋳型と平板状支持手段との間の空間に堆積すると、鋳片の冷却が阻害されるので好ましくない。 Powder adheres to the surface of the slab drawn downward from the lower end of the mold. When the slab is introduced into the flat plate support means of the present invention, the slab fixing powder is peeled and crushed at the upper end of the flat plate support means and removed from the surface of the slab. If the powder peeled from the surface of the slab is deposited in the space between the mold and the flat plate support means, cooling of the slab is hindered, which is not preferable.
本発明において、鋳型の下端と平板状支持手段の上端との間の間隔は、鋳片表面から剥離したパウダーを平板状支持手段の背面側に排出するに十分な間隔を確保するとともに、この空間で鋳片がバルジングすることのない範囲に抑える必要がある。間隔が10mm程度であれば、鋳片表面から剥離したパウダーを平板状支持手段の背面側に排出できるとともに、バルジングの発生を抑えられるので好ましい。 In the present invention, the space between the lower end of the mold and the upper end of the flat plate supporting means is sufficient to discharge the powder peeled from the slab surface to the back side of the flat plate supporting means, and this space. Therefore, it is necessary to keep the slab in a range where no bulging occurs. An interval of about 10 mm is preferable because the powder peeled off from the surface of the slab can be discharged to the back side of the plate-like support means and the occurrence of bulging can be suppressed.
なお、破砕したパウダーを排出するため、あるいは鋳片の冷却を促進するため、鋳型と平板状支持手段との間の空間にスプレーノズルを配置し、スプレーノズルから鋳片に向けて冷却水や気水を噴射することとしても良い。 In order to discharge the crushed powder or to accelerate the cooling of the slab, a spray nozzle is arranged in the space between the mold and the flat plate support means, and cooling water and air are directed from the spray nozzle toward the slab. It is good also as injecting water.
鋳型を抜けた鋳片は、下方に行くに従って凝固収縮によって鋳片が収縮する。凝固収縮の度合いは、約0.5%/m程度である。また、本発明では平板状支持手段によって鋳片を支持するので、バルジングによる鋳片の膨張も抑えられる。従って、鋳片の凝固収縮に沿って鋳片を的確に支持して接触性を確保するためには、対面する2枚の平板状支持手段の間隔が下に行くほど狭まる、いわゆる鋳造方向テーパーを設けると好ましい。一方、鋳造方向テーパーが大きすぎると、平板状支持手段の下方において鋳片が圧縮を受け、矯正割れが発生することとなる。本発明においては、平板状支持手段の鋳造方向テーパーを1.0%/m以下とすることにより、矯正割れの発生しない良好な鋳造を行うことが可能になる。 The slab that has passed through the mold shrinks due to solidification shrinkage as it goes downward. The degree of coagulation shrinkage is about 0.5% / m. Further, in the present invention, since the slab is supported by the flat plate-like support means, expansion of the slab due to bulging can be suppressed. Therefore, in order to support the slab accurately along the solidification shrinkage of the slab and to ensure contact, a so-called casting direction taper that becomes narrower as the distance between the two flat plate supporting means facing each other decreases. It is preferable to provide it. On the other hand, when the taper in the casting direction is too large, the slab is subjected to compression below the flat plate-like support means, and a corrective crack is generated. In the present invention, when the taper in the casting direction of the plate-like support means is 1.0% / m or less, it becomes possible to perform good casting without occurrence of straightening cracks.
平板状支持手段の上端において、対面する2枚の平板状支持手段の間隔は、鋳型下端における対面する鋳型表面間の間隔と同一、乃至はそれより凝固収縮量を引いた値の範囲内の間隔とすると好ましい。凝固収縮量とは、鋳型下端と平板状支持手段の上端との間の距離において鋳片が凝固収縮する量を意味する。このような間隔にすることにより、平板状支持手段に導入される鋳片はバルジングを起こすことなく、平板状支持手段によって良好に支持されることとなる。同時に、鋳片が平板状支持手段に導入されるときに過度に圧縮されることがなく、矯正内部割れの発生しない鋳造を行うことができる。 At the upper end of the flat plate support means, the distance between the two flat plate support means facing each other is the same as the distance between the mold surfaces facing each other at the lower end of the mold, or within the range of the value obtained by subtracting the amount of solidification shrinkage. This is preferable. The amount of solidification shrinkage means the amount by which the slab solidifies and shrinks at the distance between the lower end of the mold and the upper end of the plate-like support means. By setting such an interval, the slab introduced into the flat plate supporting means is favorably supported by the flat plate supporting means without causing bulging. At the same time, when the slab is introduced into the flat plate-like supporting means, it is possible to perform casting without causing excessive compression and no occurrence of straightening internal cracks.
さらに、対面する2枚の平板状支持手段の間隔が上記の値に一定となるように固設すると好ましい。固設した方が、設備強度を高くして間隔を常に一定とすることができ、設備費を安価にすることができるからである。間隔が鋳片押し付け力によって変化する弾性押しつけを採用すると、鋳片押し付け力によって間隔が変化してしまうので好ましくない。 Further, it is preferable that the two flat plate-like support means facing each other are fixed so that the distance between them is constant. This is because the fixed installation can increase the equipment strength and make the interval always constant, thereby reducing the equipment cost. Adopting elastic pressing in which the interval changes with the slab pressing force is not preferable because the interval changes with the slab pressing force.
高速鋳造を行うと、鋳型内で成長するシェル厚みが薄くなるので、鋳型内バルジング変形により鋳型と鋳片の隙間が小さくなることによるパウダーの不均一流入または流入不足が発生しやすくなり、結果としてシェル厚みの不均一による割れ性ブレークアウトや、拘束性ブレークアウトの発生起点(湯漏れ部)が生じやすくなる。 When high-speed casting is performed, the thickness of the shell that grows in the mold becomes thin, so that the gap between the mold and the slab becomes smaller due to bulging deformation in the mold, which tends to cause uneven powder inflow or insufficient inflow. Cracking breakout due to non-uniform shell thickness and starting point of occurrence of constraining breakout (hot water leakage portion) are likely to occur.
鋳型下の鋳片支持がフートロール方式(図6(a))の場合は、鋳型下端部に露出した湯漏れ部が全く修復されることなく、直ちにブレークアウトが発生することとなる。また、フートロール方式ではロール間の間隔が広いので、高速鋳造でシェル厚が薄くなるとこの部分で溶鋼静圧に起因してシェルが破断し、ブレークアウトに至ることとなりやすい。特にシェル厚みの不均一が生じているときには、シェル厚が薄い部分においてフートロール部でブレークアウトに至ることとなる。 When the slab support under the mold is of the foot roll type (FIG. 6A), the leaked portion exposed at the lower end of the mold is not repaired at all, and a breakout occurs immediately. In addition, since the distance between rolls is wide in the foot roll method, when the shell thickness is reduced by high-speed casting, the shell is easily broken at this portion due to the molten steel static pressure, and breakout is likely to occur. In particular, when the shell thickness is non-uniform, breakout occurs at the foot roll portion at the portion where the shell thickness is thin.
鋳型下の鋳片支持方式として従来のクーリングプレート方式(図6(b))やクーリンググリッド方式(図6(c))を採用した場合においては、いずれもスプレーノズル24を配置して鋳片をスプレーで直接冷却するための開口部23を有している。上記湯漏れ部がクーリングプレート21やクーリンググリッド21を通過する過程で上記開口部23に到達したとき、湯漏れ部のかさぶた状の凹凸が開口部に引っかかり、かえって湯漏れ部が拡大して結局ブレークアウトに至ることとなる。
When the conventional cooling plate method (FIG. 6 (b)) or the cooling grid method (FIG. 6 (c)) is adopted as the slab support system under the mold, the
本発明の平板状支持手段5は、フートロール方式と異なり鋳型下端と鋳片支持開始点との間の距離が短いので、フートロール方式と比較してブレークアウトの発生を抑えることができる。さらに、本発明の平板状支持手段5は、従来のクーリングプレート方式やクーリンググリッド方式と異なり、鋳片と接する面にはスプレーノズルを配置するための開口部が存在しないので、鋳型内で発生した湯漏れ部のかさぶた状の凹凸が引っかかることがなく、湯漏れ部が平板状支持手段内を通過中に修復されてふさがるので、ブレークアウトの発生を防止することができる。 Unlike the foot roll method, the flat plate support means 5 of the present invention has a short distance between the lower end of the mold and the slab support start point, so that the occurrence of breakout can be suppressed as compared with the foot roll method. Furthermore, unlike the conventional cooling plate method and cooling grid method, the flat plate-like support means 5 of the present invention is generated in the mold because there is no opening for placing the spray nozzle on the surface in contact with the slab. The scab-like unevenness of the hot water leaking portion is not caught and the hot water leaking portion is repaired and closed while passing through the flat plate-like support means, so that the occurrence of breakout can be prevented.
鋳型サイズ240mm角の湾曲型ブルーム連続鋳造装置において、本発明を適用した。鋳型下端での鋳型サイズが240mm角、鋳造対象品種はS45C、鋳造速度は1.7m/分である。 The present invention was applied to a curved bloom continuous casting apparatus having a mold size of 240 mm square. The mold size at the lower end of the mold is 240 mm square, the casting type is S45C, and the casting speed is 1.7 m / min.
本発明の平板状支持手段5として、図4に示すように、平板状支持手段5の鋳片に面する側を銅製の金属板8で形成し、金属板8の背面(鋳片に接する面の反対側)に冷却水通路10を形成し、背面から冷却水9を循環させることによって金属板8を冷却する構造としている。金属板8は背面支持板11によって支持される。金属板8の鋳片と接する面についてはNiめっきコーティングを行っている。平板状支持手段5の鋳造方向長さは340mmである。平板状支持手段5上端の対面間隔は鋳型下端における鋳型対面間隔と同一とし、平板状支持手段5のテーパーを0.5%/mとした。鋳型下端と平板状支持手段上端との間の距離を10mmとした。
As shown in FIG. 4, as the flat plate support means 5 of the present invention, the side facing the cast piece of the flat plate support means 5 is formed of a
鋳片コーナー部の噴射手段6として、各コーナー毎に平板状支持手段5の鋳造方向の中央部に広角の1個の気水噴射ノズルを配置して、コーナー部および周辺部の全面を直接冷却することとした。 As the injection means 6 at the slab corner portion, a wide-angle air-water injection nozzle is arranged at the center portion of the flat plate support means 5 in the casting direction for each corner to directly cool the entire corner portion and peripheral portion. It was decided to.
凝固シェル厚tは、平板状支持手段5の上端における凝固シェル厚tUが14mm、下端における凝固シェル厚tLが17mmであった。 As for the solidified shell thickness t, the solidified shell thickness t U at the upper end of the flat plate-like support means 5 was 14 mm, and the solidified shell thickness t L at the lower end was 17 mm.
ひとつの平板状支持手段5においては、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xは、いずれのコーナー部についてもすべて同一とし、また鋳造方向いずれの部位についてもXの値を同一とした。Xの値を平板状支持手段5の上端における凝固シェル厚tUで割った値をαとする。6種類の平板状支持手段5を製作し、表1に示すようにαを0から2.5まで変化させた。これらの平板状支持手段5を用いて連続鋳造を行ったときの内部割れ発生率(%)の挙動について調査した。表1に結果を示す。
In one plate-like support means 5, the distance X between the
表1から明らかなように、α=1.0〜2.0の範囲において内部割れ発生率が低いことがわかる。即ち、平板状支持手段5の幅端部15と鋳片のコーナー部12との間の距離Xを平板状支持手段5上端位置での凝固シェル厚tU以上かつ凝固シェル厚tUの2倍以下とすると内部割れ発生率が低いことがわかる。α=1.0〜1.5の範囲とするとより好ましい。
As is clear from Table 1, it can be seen that the internal crack occurrence rate is low in the range of α = 1.0 to 2.0. That is, the distance X between the
上記の平板状支持手段を用いた本発明例おいては、鋳型直下でのブレークアウト発生率が0.03%であった。フートロール方式を採用した従来法では、鋳型直下でのブレークアウト発生率が0.09%であったので、本発明法の採用によってブレークアウト発生率が低減していることが明らかである。 In the present invention example using the above plate-like support means, the breakout occurrence rate directly under the mold was 0.03%. In the conventional method adopting the foot roll method, the breakout occurrence rate directly under the mold was 0.09%, so it is clear that the breakout occurrence rate is reduced by adopting the method of the present invention.
1 鋳片
2 凝固シェル
3 未凝固溶鋼部
4 鋳型
5 平板状支持手段
6 噴射手段
7 冷却手段
8 金属板
9 冷却水
10 冷却水通路
11 背面支持板
12 コーナー部
13 鋳片表面
14 内部割れ
15 平板状支持手段の幅端部
16 上端
17 下端
20 フートロール
21 クーリングプレート
22 クーリンググリッド
23 開口部
24 スプレーノズル
X 平板状支持手段の幅端部と鋳片のコーナー部との間の距離
XU 平板状支持手段の上端における平板状支持手段の幅端部と鋳片のコーナー部との間の距離
t 鋳片の凝固シェル厚
tU 平板状支持手段の上端における鋳片の凝固シェル厚
tL 平板状支持手段の下端における鋳片の凝固シェル厚
DESCRIPTION OF
Claims (2)
前記平板状支持手段の幅端部と鋳片のコーナー部との間の距離は、左右ともに、平板状支持手段の上端においては、該上端位置での凝固シェル厚以上かつ該凝固シェル厚の2倍以下とし、上端以外の部分においては、前記上端における平板状支持手段の幅端部と鋳片のコーナー部との間の距離以上かつ平板状支持手段の下端位置での凝固シェル厚の2倍以下とし、
隣り合う平板状支持手段間に露出した鋳片のコーナー部およびその周辺部へ直接冷却水又は気水を噴射することを特徴とする連続鋳造方法。 At the bottom of the mold for casting a continuous casting slab having a rectangular cross section, the four surfaces of the slab are supported by flat plate support means at portions other than the corner portion and its peripheral portion, and the flat plate support means is the back surface thereof. Has a cooling means,
The distance between the width end portion of the flat plate supporting means and the corner portion of the slab is equal to or larger than the solidified shell thickness at the upper end position and 2% of the solidified shell thickness at the upper end of the flat plate supporting means. In a portion other than the upper end, the solidified shell thickness at the lower end position of the flat plate supporting means is twice the distance between the width end portion of the flat plate supporting means and the corner portion of the slab at the upper end. And
A continuous casting method characterized by injecting cooling water or air directly into a corner portion of a slab exposed between adjacent flat plate supporting means and its peripheral portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004216875A JP4272601B2 (en) | 2004-07-26 | 2004-07-26 | Continuous casting equipment and continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004216875A JP4272601B2 (en) | 2004-07-26 | 2004-07-26 | Continuous casting equipment and continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006035248A JP2006035248A (en) | 2006-02-09 |
JP4272601B2 true JP4272601B2 (en) | 2009-06-03 |
Family
ID=35900790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004216875A Expired - Lifetime JP4272601B2 (en) | 2004-07-26 | 2004-07-26 | Continuous casting equipment and continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4272601B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104117646A (en) * | 2014-07-02 | 2014-10-29 | 西安理工大学 | Manufacturing method for non-alloy casting-state high-strength cast iron bars |
CN105382232B (en) * | 2015-12-07 | 2017-05-24 | 攀钢集团西昌钢钒有限公司 | Method for preventing generation of center line cracks in steel board continuous casting process |
-
2004
- 2004-07-26 JP JP2004216875A patent/JP4272601B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006035248A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5817689B2 (en) | Secondary cooling method for continuous casting | |
KR101252645B1 (en) | Continuous Casting Method and Continuous Casting Apparatus | |
JP4272601B2 (en) | Continuous casting equipment and continuous casting method | |
JP2008100253A (en) | Cast slab draining device in continuous casting machine | |
KR20070067323A (en) | Casting roll having different dimple surface rate according to the surface position | |
JP5402678B2 (en) | Steel continuous casting method | |
KR20140020544A (en) | Casting mold | |
JP3526705B2 (en) | Continuous casting method for high carbon steel | |
JP2019171435A (en) | Method of continuous casting | |
KR100770342B1 (en) | Casting roll of strip caster | |
KR101195219B1 (en) | Method for making surface of casting roll of strip casting process | |
JP6148447B2 (en) | Secondary cooling method for continuous casting | |
JP2006199992A (en) | Method for water-cooling steel slab | |
JP2867894B2 (en) | Continuous casting method | |
KR101660773B1 (en) | Mold for casting | |
KR101712828B1 (en) | Mold for casting | |
JP2002066726A (en) | Method for cooling casting piece made by continuous casting | |
JP4506691B2 (en) | Cooling grid equipment for continuous casting machine and method for producing continuous cast slab | |
KR100737392B1 (en) | Apparatus for casting strip of magnesium alloy with excellent solidification uniformity | |
KR101795469B1 (en) | APPARATUS FOR CONTINUOUS CASTING AND Method OF CONTIOUOUS CASTING | |
JP2010221237A (en) | Cast slab supporting device directly below mold of continuous casting machine | |
JP2000005855A (en) | Corner cracking preventing method for steel piece | |
JPH01284463A (en) | Short wall side plate for continuous casting machine for cast strip | |
KR20120000783A (en) | Guider for continuous casting mold | |
KR101316149B1 (en) | Twin roll strip casting method for reducing scum input |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4272601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |