JPS63248068A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS63248068A
JPS63248068A JP8147087A JP8147087A JPS63248068A JP S63248068 A JPS63248068 A JP S63248068A JP 8147087 A JP8147087 A JP 8147087A JP 8147087 A JP8147087 A JP 8147087A JP S63248068 A JPS63248068 A JP S63248068A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
alkaline battery
active material
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8147087A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8147087A priority Critical patent/JPS63248068A/en
Publication of JPS63248068A publication Critical patent/JPS63248068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To remarkably reduce an amalgamation rate of the negative electrode of a zinc alkaline battery by using a kind selected from a group of a specific saturated monocarboxylic acid and a salt obtained by neutralizing it with alkali metal as the corrosion inhibitor of a negative active material. CONSTITUTION:At least a kind selected from a group of a specific saturated monocarboxylic acid indicated in the formula RCOOH and a salt obtained by neutralizing it with alkali metal is used as the corrosion inhibitor of the negative electrode of a zinc alkaline battery in which alkaline aqueous solution mainly comprising potassium hydroxide or sodium hydroxide is used as electrolyte, zinc or zinc alloy as negative active material, and manganese dioxide, silver oxide, oxygen, nickel oxyhydroxide, or mercuric oxide as positive active material. Thereby, the corrosion resistance of zinc negative electrode is increased and the zinc alkaline battery in which an amalgamation rate is low and practicality is high can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、オキシ水酸化ニッケル等を用いる亜鉛
アルカリ電池の亜鉛負極の氷化に用いる水銀量の低減に
有効な手段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
The present invention provides an effective means for reducing the amount of mercury used to freeze the zinc negative electrode of a zinc alkaline battery using mercury oxide, oxygen, nickel oxyhydroxide, or the like.

従来の技術 亜鉛負極の電解液の腐食を抑制するため、従来から、7
〜10重量%程度の水銀を亜鉛に添加する方法が工業的
に採られて来た。しかし、近年、低公害化のため、水銀
含有量の低減化の社会的ニーズが高まシ、少量の水銀の
使用で十分な耐食性を確保するため、種々の耐食性亜鉛
合金が開発、又は提案されている。例えば、亜鉛中にイ
ンジウム、鉛、ガリウム、アルミニウムなどを添加した
耐食性亜鉛合金粉末が有力なものとされ、インジウムと
鉛を添加した亜鉛合金がすでに実用化され、さらに耐食
性を向上させるため、インジウム、鉛に加えて、アルミ
ニウム、必要に応じてガリウムを添加した亜鉛合金が代
表的なものとして検討されている。これらの耐食性亜鉛
合金を用いた場合、汞化率(負極亜鉛中の水銀の重量百
分率)を減少させても耐食性が確保でき、インジウムと
鉛を添加した亜鉛合金の場合で水化率3%、さらにこれ
を改良した上記のインジウム、鉛に加えてアルミニウム
、必要に応じてガリウムを添加した亜鉛合金では汞化率
1.5%程度でも純亜鉛の場合の汞化率7〜10チに相
当する耐食性が得られる。水化率を低減させる方法とし
て耐食性亜鉛合金を用いることが有効なことは上述の例
に見られる通りであるが、他の有効な方法として、防食
剤の添加が考えられ、電池内の水銀含有量を極限にまで
減少させる技術として耐食性亜鉛合金と防食剤の併用は
不可欠と考えられる。
Conventional technology In order to suppress the corrosion of the electrolyte of the zinc negative electrode, 7
A method of adding about 10% by weight of mercury to zinc has been adopted industrially. However, in recent years, there has been a growing social need to reduce mercury content in order to reduce pollution, and various corrosion-resistant zinc alloys have been developed or proposed to ensure sufficient corrosion resistance with the use of small amounts of mercury. ing. For example, corrosion-resistant zinc alloy powder, which is made by adding indium, lead, gallium, aluminum, etc. to zinc, is considered to be effective. Zinc alloys containing indium and lead have already been put into practical use, and in order to further improve corrosion resistance, indium, A zinc alloy to which aluminum and, if necessary, gallium are added in addition to lead is being considered as a typical example. When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even if the hydration rate (weight percentage of mercury in negative electrode zinc) is reduced; in the case of zinc alloys containing indium and lead, the hydration rate is 3%, Furthermore, in the improved zinc alloy mentioned above, in which aluminum is added in addition to indium and lead, and gallium is added as necessary, even a 1.5% filtration rate is equivalent to 7 to 10% of the filtration rate of pure zinc. Provides corrosion resistance. As seen in the above example, it is effective to use a corrosion-resistant zinc alloy as a method to reduce the hydration rate, but another effective method is to add anti-corrosion agents. The combination of corrosion-resistant zinc alloy and anti-corrosion agent is considered to be essential as a technology to reduce the amount to the utmost limit.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防食
のため、エチレングリコール等のグリコール類、メルカ
プトカルボン酸、アミノナフタリンスルホン酸、アゾナ
フタリン類、カルバソール。
Conventionally, glycols such as ethylene glycol, mercaptocarboxylic acid, aminonaphthalene sulfonic acid, azonaphthalenes, and carbazole have been used to prevent corrosion of zinc negative electrodes in alkaline aqueous electrolytes.

シアンヒドリン、2−メルトカプトベンゾチアゾール等
のチアゾール誘導体、ペンゾトリアゾールスはその誘導
体など枚挙にいとまのない種々の防食剤の適用が提案さ
れている。これらの防食剤は電解液中に少量を添加する
のが一般的な適用法である。然し、何れの防食剤も顕著
な防食効果が認められず、水化率を低減させるための有
効な手段になっていないのが現状である。
Application of various anticorrosive agents has been proposed, including cyanohydrin, thiazole derivatives such as 2-meltocaptobenzothiazole, and derivatives of penzotriazole. The general application method is to add a small amount of these anticorrosive agents to the electrolyte. However, none of the anticorrosive agents has been found to have a significant anticorrosive effect, and currently they are not effective means for reducing the hydration rate.

発明が解決しようとする問題点 亜鉛負極の防食が不十分な場合は電池の貯蔵中に亜鉛の
消耗とともに水素ガスが発生し、電池内圧が上昇して電
解液の漏出、電池の変形の原因となシ、著しい場合は電
池の破裂の原因となる。しかも、亜鉛の腐食は電池の容
量低下など貯蔵後の電池性能の劣化をもたらす原因とも
なる。本発明は上記の諸問題の発生を防止するに十分な
亜鉛負極の耐食性を汞化率を極力低減化した状態で確保
することを目的とする。その方法として、従来から提案
されている前述の各種防食剤以上に防食効果が大きく、
耐アルカリ性で、しかも放電性能にも悪影響のない防食
剤を新たに探索して低水化率の亜鉛負極を備えた電池に
適用し、実用的な電池の緒特性を損うことなく、水銀含
有率の小さい低公害の亜鉛アルカリ電池を提供するもの
である。
Problems to be Solved by the Invention If the corrosion protection of the zinc negative electrode is insufficient, hydrogen gas will be generated as the zinc is consumed during storage of the battery, and the internal pressure of the battery will increase, causing leakage of electrolyte and deformation of the battery. In severe cases, it may cause the battery to explode. Furthermore, corrosion of zinc also causes deterioration in battery performance after storage, such as a decrease in battery capacity. The object of the present invention is to ensure sufficient corrosion resistance of a zinc negative electrode to prevent the occurrence of the above-mentioned problems while minimizing the corrosion rate. As a method of achieving this, the anti-corrosion effect is greater than the various anti-corrosion agents previously proposed.
We have searched for a new anticorrosive agent that is resistant to alkali and has no negative impact on discharge performance, and applied it to batteries with zinc negative electrodes with low hydration rates. The present invention provides a low-pollution zinc-alkaline battery with low energy consumption.

問題点を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウムな
どを主成分とするアルカリ水溶液、負極活物質に亜鉛、
又は亜鉛合金、正極活物質に二酸化マンガン、酸化銀、
酸素、オキシ水酸化ニッケル、酸化水銀などを用いるい
わゆる亜鉛アルカリ和した塩類、例工il’ RCOO
K 、 RCOON a 、 RCOOL iの群より
選ばれた少くとも一種を用いるものである。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, etc. as the main components as an electrolyte, and zinc and zinc as the negative electrode active material.
Or zinc alloy, manganese dioxide, silver oxide as positive electrode active material,
So-called zinc alkaline salts using oxygen, nickel oxyhydroxide, mercury oxide, etc.
At least one selected from the group K, RCOON a, and RCOOL i is used.

これらの防食剤の適用方法は電解液中への添加、セパレ
ータ、保液材の双方又は一方への含浸、負極活物質表面
への付着などの方法を採ることができる。また上記防食
剤はアルキル基(R)中の炭素数が4〜17のものが好
ましい。また、負極活物質には純亜鉛、又は亜鉛合金を
用いるが、特に大幅な水化率の低減を実現するには耐食
性亜鉛合金と上記防食剤を併用するのが効果的である。
These anticorrosive agents can be applied by adding them into an electrolytic solution, impregnating both or one of a separator and a liquid retaining material, and attaching them to the surface of a negative electrode active material. Moreover, the above-mentioned anticorrosive agent preferably has 4 to 17 carbon atoms in the alkyl group (R). Furthermore, although pure zinc or a zinc alloy is used as the negative electrode active material, it is particularly effective to use a corrosion-resistant zinc alloy and the above-mentioned anticorrosive agent in combination to achieve a significant reduction in the hydration rate.

例えば、インジウム、鉛を添加した亜鉛合金、或いはこ
れにガリウムを添加した亜鉛合金と併用すると0.2%
の汞化率でも負極の耐食性が十分な電池が得られ、さら
に上記の亜鉛合金の添加元素に加え、アルミニウム、ス
トロンチウム、カルシウム、マグネシウム、バリウム、
ニッケルのうち少くとも一種を含有する亜鉛合金を併用
すると0.05%の汞化率でも負極の耐食性が確保でき
る。
For example, when used in combination with a zinc alloy containing indium and lead, or a zinc alloy containing gallium, 0.2%
A battery with sufficient corrosion resistance of the negative electrode can be obtained even at a oxidation rate of
If a zinc alloy containing at least one type of nickel is used in combination, the corrosion resistance of the negative electrode can be ensured even at a 0.05% oxidation rate.

作  用 本発明で用いる防食剤の作用機構は不明確であるが、下
記のように推察される。
Effect The mechanism of action of the anticorrosive agent used in the present invention is unclear, but is presumed to be as follows.

本発明の防食剤はほぼ直線形の分子構造で、一方の端に
極性基としてカルボキシル基を、逆の端に疎水性アルキ
ル基を有しており、電解液中に溶解して極性基が負極の
亜鉛又は亜鉛合金表面に吸着するものと考えられる。亜
鉛のアルカリ電解液中での腐食反応は次式で示されるが
、防食剤が負極表面に吸着し被膜を形成すると、 アノード反応 Zn+40H−Zn(o)() ニー+
2e−カッ−)”反応 2H20+2e−−20H−+
H2アノ一ド反応の原因となる水酸化イオンの亜鉛負極
への接近が訪客され、またカソード反応に必要な水分子
が亜鉛負極表面近傍に存在できなくなり亜鉛の腐食が抑
えられる。防食剤が少量で亜鉛負極表面を完全に覆って
いない状態でも、添加した防食剤の亜鉛負極表面の吸着
部分での亜鉛の腐食反応が抑制され、亜鉛負極の総腐食
量が減少する。
The anticorrosive agent of the present invention has a nearly linear molecular structure, and has a carboxyl group as a polar group at one end and a hydrophobic alkyl group at the opposite end, and when dissolved in an electrolyte, the polar group becomes a negative electrode. It is thought that the zinc or zinc alloy surface is adsorbed on the surface of the zinc or zinc alloy. The corrosion reaction of zinc in an alkaline electrolyte is shown by the following equation. When the anticorrosive agent is adsorbed to the negative electrode surface and forms a film, the anodic reaction Zn+40H-Zn(o)() Ni+
2e-ka-)” reaction 2H20+2e--20H-+
Hydroxide ions, which cause the H2 anode reaction, are prevented from approaching the zinc negative electrode, and water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode, thereby suppressing zinc corrosion. Even if the amount of anticorrosive agent is small and does not completely cover the surface of the zinc negative electrode, the corrosion reaction of zinc at the adsorbed portion of the surface of the zinc negative electrode where the added anticorrosive agent is adsorbed is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced.

また防食剤はセパレータおよび/または保液材への含浸
、負極活物質表面への付着などの方法で添加しても、電
池構成後に防食剤か電解液中に溶解あるいは分散し、上
記と同様に亜鉛負極表面に吸着し、亜鉛の腐食が抑制さ
れる。以上の如く本発明に用いる防食剤は亜鉛の腐食反
応に関する表面を覆うため防食効果が得られたものと考
えられる。
Furthermore, even if the anticorrosive agent is added by impregnating the separator and/or liquid retaining material, or attaching it to the surface of the negative electrode active material, the anticorrosive agent will be dissolved or dispersed in the electrolyte after battery construction, and the same effect as above will occur. Adsorbs to the surface of the zinc negative electrode, suppressing zinc corrosion. As described above, it is thought that the anticorrosive agent used in the present invention has an anticorrosive effect because it covers the surface where the corrosion reaction of zinc occurs.

また、特開昭68−18266で開示されたインジウム
と鉛を含有する亜鉛合金、あるいは特開昭60−175
368.特開昭61−77267、@開昭81−181
088.特開昭61−203563.特願昭61−15
0307等で発明者等が開示したインジウムと鉛を含有
し、さらにガリウム、アルミニウム、ストロンチウム、
カルシウム、マグネシウム、バリウム、ニッケルの群よ
り選ばれた一種以上を含有する亜鉛合金はいずれも耐食
性が優れているが水化率を0.2%程度まで低下させる
と充分な耐食性が確保できない。しかしながら上記防食
剤を併用すると両者の防食作用が併合され、場合によっ
てはO,OS%の水化率でも負極の耐食性が確保される
In addition, a zinc alloy containing indium and lead disclosed in JP-A-68-18266, or JP-A-60-175
368. JP 61-77267, @81-181 Sho 81
088. Japanese Patent Publication No. 61-203563. Special application 1986-15
Contains indium and lead disclosed by the inventors in 0307 etc., and further contains gallium, aluminum, strontium,
All zinc alloys containing one or more selected from the group of calcium, magnesium, barium, and nickel have excellent corrosion resistance, but sufficient corrosion resistance cannot be ensured when the hydration rate is reduced to about 0.2%. However, when the above-mentioned anticorrosive agents are used in combination, the anticorrosion effects of both are combined, and in some cases, the corrosion resistance of the negative electrode is ensured even at a hydration rate of O and OS%.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防食
剤とその分子構造による相違、さらに耐食性亜鉛合金と
の併用を実験的に検討し、低木化率で実用性の高い亜鉛
アルカリ電池を完成したものである。
As mentioned above, the present invention has experimentally investigated the corrosion inhibitor that is effective in improving the corrosion resistance of zinc negative electrodes, the differences in their molecular structures, and the use of them in combination with corrosion-resistant zinc alloys, and has completed a highly practical zinc-alkaline battery with a low bushing rate. This is what I did.

以下実施例により詳細に説明する。This will be explained in detail below using examples.

実施例 実施例1 まず、本発明の防食剤のアルカリ溶液中での亜鉛に対す
る腐食抑制効果を調べた。実験方法は40重量%の水酸
化カリウム水溶液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来例の防食剤をほぼ飽和量まで溶解さ
せて5dを採り、その液中に氷化亜鉛粉を1of1投入
し、46℃の温度下で20日間で発生した水素ガス量を
測定した。
Examples Example 1 First, the corrosion inhibiting effect of the anticorrosive agent of the present invention on zinc in an alkaline solution was investigated. The experimental method was to dissolve the anticorrosive agent of the present invention or the conventional anticorrosive agent in an electrolytic solution containing zinc oxide in a 40% by weight aqueous potassium hydroxide solution to almost saturation level, take 5d, and then freeze in the solution. Zinc powder was added 1 of 1, and the amount of hydrogen gas generated over 20 days at a temperature of 46° C. was measured.

水化亜鉛粉の汞化率は1.0チで、粒径は35〜160
メツシユとした。得られた測定結果を第1表に示した。
The hydration rate of zinc hydrate powder is 1.0 cm, and the particle size is 35-160
It was a mess. The measurement results obtained are shown in Table 1.

第1表 第1表のうち、本発明の防食剤を用いたに1〜17の群
は、従来から提案されている防食剤を用いた履18〜2
00群や、防食剤を添加していない惠21よシ水素ガス
の発生量が少く、本発明の防食剤の腐食抑制効果が大き
いことが判る。瓜1〜17のうち、惠1〜4は防食剤の
アルキル基の炭素数を11に統一し、アルカリ金属での
中和による防食効果の差異を検討したものであり、何れ
も防食効果が大きく、相互の間で大差は認められない。
Table 1 In Table 1, groups 1 to 17 using the anticorrosive agent of the present invention are groups 18 to 2 using conventionally proposed anticorrosive agents.
It can be seen that the amount of hydrogen gas generated was smaller than that of the 00 group and Kei 21 to which no anticorrosive agent was added, indicating that the corrosion inhibiting effect of the anticorrosive agent of the present invention is large. Among the melons 1 to 17, Kei 1 to 4 unified the number of carbon atoms in the alkyl groups of the anticorrosive agents to 11, and examined the difference in the anticorrosion effect due to neutralization with an alkali metal. , there is no significant difference between them.

瓜5〜11は、アルキル基中の炭素数を変えた各種の飽
和モノカルボン酸の防食効果を検討したもので、中でも
黒1及び/E、5〜11が遼18〜21の従来例又は無
添加の場合より圧倒的に水素ガス発生量が少く、アルキ
ル基中の炭素数は4〜17が好ましいと判断される。又
、アルカリ金属塩の場合にもアルキル基中の炭素数が4
〜17の場合に効果的であることが、瓜12〜17の群
と、418〜21の群を対比すれば明白である。
Melon Nos. 5 to 11 are results of examining the anticorrosion effects of various saturated monocarboxylic acids with different numbers of carbon atoms in the alkyl group. Among them, Black Nos. 1 and /E, and Nos. 5 to 11 are the conventional examples of Liao Nos. 18 to 21 or none. The amount of hydrogen gas generated is overwhelmingly smaller than in the case of addition, and it is judged that the number of carbon atoms in the alkyl group is preferably 4 to 17. Also, in the case of alkali metal salts, the number of carbon atoms in the alkyl group is 4.
It is clear that the group of melons 12-17 and 418-21 are effective.

実施例2 次に、実施例1で得られた結果に基づき、代表的な防食
剤を選び、負極活物質である亜鉛又は亜鉛合金の汞化率
低減に対する効果を図に示すボタン形酸化銀電池を試作
して比較検討した。
Example 2 Next, based on the results obtained in Example 1, a typical anticorrosive agent was selected, and a button-shaped silver oxide battery was prepared, with the effect of reducing the corrosion rate of zinc or zinc alloy, which is the negative electrode active material, shown in the figure. We made a prototype and compared it.

図において、1はステンレス鋼製の封口板で、その内面
に銅メッキが施されている。2は水酸化カリウムの40
重量%水溶液に酸化亜鉛を飽和させた電解液(防食剤を
添加する場合は第2表に示した防食剤を飽和量溶解させ
た電解液)をカルボキシメチルセルロースによりゲル化
し、このゲル中に汞化亜鉛又は氷化亜鉛合金の60〜1
50メツシユの粉末を分散させた亜鉛負極である。3は
セルロース系の保液材、4は多孔性ポリプロブレン製の
セパレータ、6は酸化銀に黒鉛を混合して加圧成形した
正極、6は鉄にニッケルメッキを施した正極リング、7
はニッケルメッキを施したステンレス鋼製の正極缶であ
る。8はポリプロピレン製のガスケットで、正極缶7の
折シ曲げにより正極缶7と封口板1との間に圧縮されて
いる。試作した電池は直径11.6w、a高5.4閣で
ある。
In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper. 2 is 40 of potassium hydroxide
An electrolytic solution in which zinc oxide is saturated in a wt% aqueous solution (if an anticorrosive agent is added, an electrolytic solution in which a saturation amount of the anticorrosive agent shown in Table 2 is dissolved) is gelled with carboxymethyl cellulose, and a starch is added to the gel. 60-1 of zinc or glazed zinc alloy
This is a zinc negative electrode in which 50 mesh powder is dispersed. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 6 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of iron plated with nickel, 7
is a nickel-plated stainless steel cathode can. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 by bending the positive electrode can 7. The prototype battery has a diameter of 11.6W and a height of 5.4cm.

試作した電池の60℃で1力月間貯蔵した後の放電性能
と電池総高の変化、及び目視判定で漏液が観察された電
池の個数を第2表に示す。放電性能は、20℃において
610Ωで0.9vを終止電圧として放電した時の放電
持続時間で表わした。
Table 2 shows the changes in the discharge performance and total height of the prototype batteries after they were stored at 60° C. for one month, and the number of batteries in which leakage was observed by visual inspection. The discharge performance was expressed as the discharge duration when discharging at 610Ω at 20° C. with a final voltage of 0.9V.

第  21! 正常なボタン電池では通常、電池を封口後、各電池構成
要素間の応力の関係が安定化するまでは経時的に電池総
高が若干減少するが、負極亜鉛の腐食に伴う水素ガスの
発生が多い電池では電池内圧の上昇によシミ池総高か増
大する傾向か強くなる。従って、貯蔵期間中の電池総高
の増減によシ負極亜鉛の耐食性が評価できる。耐食性が
不十分な電池では電池総高が増大するほか、電池内圧の
上昇により漏液し易く、また、腐食による負極亜鉛の消
耗9表面の酸化によシ放電性能も劣化する。
21st! Normally, in normal button batteries, the total height of the battery decreases slightly over time after the battery is sealed until the stress relationship between each battery component stabilizes, but hydrogen gas is generated due to corrosion of the negative electrode zinc. In batteries with a large number of batteries, the total height of the stain pond tends to increase as the internal pressure of the battery increases. Therefore, the corrosion resistance of the zinc negative electrode can be evaluated based on the change in total height of the battery during storage. A battery with insufficient corrosion resistance not only increases the total height of the battery, but also tends to leak due to an increase in battery internal pressure, and also deteriorates discharge performance due to the consumption of negative electrode zinc due to corrosion and oxidation of the surface.

このような観点で、第2表の試作実験結果は次のように
評価される。先ず、/E、1〜7は負極活物質として耐
食性が極めてすぐれ、通常、汞化率1.5チ以上なら、
防食剤の助けなしで実用電池の負極として使用すること
が有望視されている亜鉛合金(Pb、In、Atを含有
する亜鉛合金)を0.05%という極めて低永化率で電
池を構成して防食剤の効果を比較したものである。これ
らの結果は、本発明の防食剤を添加した惠1〜4の場合
が厖5〜7の従来例の防食剤を添加、又は無添加の場合
より極めて良好であることを示し、上記の耐食性亜鉛合
金と本発明の防食剤を併用することによシ0.06%以
上の水化率で負極の耐食性を十分に確保でき、極めて低
永化率の亜鉛アルカリ電池が構成できることを示してい
る。また、黒8〜14は現在、普及材料としてすでに3
チの汞化率で実用化されている亜鉛合金(Pb、Inを
含有する亜鉛合金)の汞化率を0.2チまで減少させて
、本発明の防食剤の効果を検討したものである。この場
合にも、泥8〜11の実施例は/r2.12〜14の従
来例又は無添加の場合とで、明白に電池性能に差異が見
られ、上記亜鉛合金と本発明の防食剤を併用すれば0.
2チ以上の水化率で負極の耐食性が十分で実用性能にす
ぐれた低永化率の亜鉛アルカリ電池が構成できることを
示している。さらに、惠15〜21は通常7〜10チ程
度の汞化率を必要とする純亜鉛粉を負極活物質に用いた
場合に本発明を適用して3%まで汞化率を低減しても十
分な実用性のある!池を構成できることを示している。
From this point of view, the prototype experiment results shown in Table 2 are evaluated as follows. First, /E, 1 to 7 have extremely good corrosion resistance as negative electrode active materials, and usually, if the corrosion rate is 1.5 or more,
The battery is constructed using a zinc alloy (a zinc alloy containing Pb, In, and At), which has an extremely low aging rate of 0.05% and is expected to be used as a negative electrode in practical batteries without the aid of anticorrosive agents. This is a comparison of the effects of anticorrosive agents. These results show that cases 1 to 4 in which the anticorrosive agent of the present invention is added are much better than cases 5 to 7 in which conventional corrosion inhibitors are added or not added, and the above corrosion resistance is improved. By using the zinc alloy and the anticorrosive agent of the present invention in combination, it is possible to ensure sufficient corrosion resistance of the negative electrode at a hydration rate of 0.06% or more, indicating that a zinc-alkaline battery with an extremely low aging rate can be constructed. . In addition, black 8 to 14 are currently popular materials with 3
The effectiveness of the anticorrosive agent of the present invention was investigated by reducing the corrosion rate of a zinc alloy (zinc alloy containing Pb and In) which has been put into practical use to 0.2 degrees. . In this case as well, there is a clear difference in battery performance between the examples of Mud 8 to 11 and the conventional examples of /r2.12 to 14 or cases without additives. 0 if used together.
This shows that a zinc-alkaline battery with a low aging rate and excellent practical performance, with sufficient corrosion resistance of the negative electrode, can be constructed with a hydration rate of 2 or more. Furthermore, Kei 15-21 shows that when pure zinc powder, which normally requires a filtration rate of about 7 to 10 cm, is used as the negative electrode active material, the present invention can be applied to reduce the filtration rate to 3%. Full of practicality! This shows that a pond can be constructed.

また、厖22〜33は防食剤の助けなしでもほぼ負極の
耐食性が確保できる1、5〜3チの汞化率の亜鉛合金を
負極に用いた場合に本発明の効果を念のため確認したも
のであシ、鳳22〜24及び羨28〜3oの実施例の場
合は、&25〜27、及び盃31〜33の従来例又は無
添加の場合よシさらに特性が向上しており、高度の耐食
性が確保されたことにより品質が安定化したことを示し
ている。
In addition, in Figures 22 to 33, the effects of the present invention were confirmed to be sure when a zinc alloy with a corrosion rate of 1, 5 to 3 was used for the negative electrode, which could ensure almost the corrosion resistance of the negative electrode without the aid of anticorrosive agents. In the case of the examples of Monodeashi, Otori 22-24 and Eny 28-3o, the characteristics are further improved compared to the conventional examples of &25-27 and Sakazuki 31-33 or the case of no additives, and a high degree of This indicates that the quality has been stabilized by ensuring corrosion resistance.

//i;34.35はpbとInを含有する亜鉛合金と
ほぼ同等の腐食性を有する、Pb、In、Gaを含有す
る亜鉛合金を汞化率0.2%として本発明の効果を調べ
たもので、惠34の実施例の場合は瓜8〜11のPb、
Inを含有した亜鉛合金での実施例と同様0.2%の汞
化率が実現できることを示している。
//i;34.35 investigated the effect of the present invention using a zinc alloy containing Pb, In, and Ga with a corrosion rate of 0.2%, which has almost the same corrosivity as a zinc alloy containing Pb and In. In the case of Example 34, Pb of Melon 8 to 11,
This shows that it is possible to achieve a filtration rate of 0.2%, similar to the example with the zinc alloy containing In.

泥35〜45は、Pb、In、Atを含有する耐食性の
改良された亜鉛合金とほぼ同等の耐食性を有する亜鉛合
金として期待されるものについて、汞化率o、ots%
で本発明の効果を調べたもので、いずれの実施例(惠3
6,38,40,42.44)もo、os%という低汞
化率でも、Pb、In、Atを含有する亜鉛合金での惠
1〜4の実施例と同様に、すぐれた電池性能を示してい
る。以上の場合はいずれも電解液中に防食剤を溶解させ
て本発明の効果を検討した結果であるが、g46.47
.48は防食剤を電解液中に添加する方法以外の本発明
の実施例を示したもので、予め、水化亜鉛合金に防食剤
を付着させた厖46、予め七ノ(レータもしくは保液材
に防食剤を含浸させた!47.48の何れもが電解液に
防食剤を溶解させた場合とほぼ等しい効果が認められた
。これらの場合、いずれも電池構成後に序々に防食剤が
電解液中に溶解して防食効果を発揮するもので、特に、
七)くレータもしくは保液材に防食剤を含浸させた場合
には、電解液の浸透が速くなるので電池構成が容易にな
り、生産性を高める効果もある。
Mud 35 to 45 are expected to be zinc alloys with corrosion resistance that is almost equivalent to zinc alloys containing Pb, In, and At with improved corrosion resistance, and have a corrosion rate of o, ots%.
The effects of the present invention were investigated in the following examples.
6, 38, 40, 42. 44) also showed excellent battery performance even at low flux rates of o and os%, similar to Examples 1 to 4 using zinc alloys containing Pb, In, and At. It shows. All of the above cases are the results of examining the effects of the present invention by dissolving an anticorrosive agent in the electrolyte, but g46.47
.. 48 shows an embodiment of the present invention other than the method of adding an anticorrosive agent to the electrolytic solution. 47 and 48 in which the anticorrosion agent was impregnated into the electrolyte solution were found to have almost the same effect as when the anticorrosion agent was dissolved in the electrolyte solution. It has an anti-corrosion effect when dissolved in
7) When the filter or liquid-retaining material is impregnated with an anticorrosive agent, the electrolyte penetrates faster, making the battery structure easier and increasing productivity.

発明の効果 本発明は新規に探索した防食剤の効果により亜鉛アルカ
リ電池の負極の汞化率を大幅に低減することを可能にし
たものである。
Effects of the Invention The present invention has made it possible to significantly reduce the filtration rate of the negative electrode of a zinc-alkaline battery through the effect of a newly discovered anticorrosive agent.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
−一温伯負也 4−−一−’e)マレータ 5−−一酸化級正極
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
- Itsu Hakusuya 4--1-'e) Mareta 5--Monoxide class positive electrode

Claims (7)

【特許請求の範囲】[Claims] (1)負極活物質の防食剤として、飽和モノカルボ酸(
RCOOH)、及びこれをアルカリ金属で中和した塩類
の群より選ばれた少くとも一種を用いた亜鉛アルカリ電
池。
(1) Saturated monocarboxylic acid (
A zinc-alkaline battery using at least one selected from the group of RCOOH) and salts thereof neutralized with an alkali metal.
(2)防食剤のアルキル基(R)の炭素数が4〜17で
ある特許請求の範囲第1項記載の亜鉛アルカリ電池。
(2) The zinc-alkaline battery according to claim 1, wherein the alkyl group (R) of the anticorrosive agent has 4 to 17 carbon atoms.
(3)防食剤を電解液中に溶解させた特許請求の範囲第
1項又は第2項記載の亜鉛アルカリ電池。
(3) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is dissolved in the electrolyte.
(4)防食剤を予めセパレータ、電解液保持材の双方又
は一方に含浸させた特許請求の範囲第1項又は第2項記
載の亜鉛アルカリ電池。
(4) The zinc-alkaline battery according to claim 1 or 2, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive agent in advance.
(5)防食剤を予め負極活物質の表面に付着させた特許
請求の範囲第1項又は第2項記載の亜鉛アルカリ電池。
(5) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is previously attached to the surface of the negative electrode active material.
(6)必須添加元素としてインジウム、鉛を、任意の添
加元素としてガリウムを含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が3〜0.2%である特許
請求の範囲第1項から第5項のいずれかに記載の亜鉛ア
ルカリ電池。
(6) A claim in which a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element is used as the negative electrode active material, and the filtration rate of the negative electrode active material is 3 to 0.2%. The zinc-alkaline battery according to any one of items 1 to 5.
(7)必須添加元素としてインジウム、鉛を含有し、さ
らにアルミニウム、ストロンチウム、カルシウム、マグ
ネシウム、バリウム、ニッケル、ガリウムの群より選ば
れた一種以上を含有する亜鉛合金を負極活物質に用い、
負極活物質の汞化率が1.5〜0.05%である特許請
求の範囲第1項から第5項のいずれかに記載の亜鉛アル
カリ電池。
(7) Using a zinc alloy as a negative electrode active material, which contains indium and lead as essential additive elements, and further contains one or more selected from the group of aluminum, strontium, calcium, magnesium, barium, nickel, and gallium;
The zinc-alkaline battery according to any one of claims 1 to 5, wherein the negative electrode active material has a hydrogenation rate of 1.5 to 0.05%.
JP8147087A 1987-04-02 1987-04-02 Zinc alkaline battery Pending JPS63248068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147087A JPS63248068A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147087A JPS63248068A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS63248068A true JPS63248068A (en) 1988-10-14

Family

ID=13747290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147087A Pending JPS63248068A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS63248068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029193A (en) * 2001-03-15 2011-02-10 Massey Univ Zinc electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029193A (en) * 2001-03-15 2011-02-10 Massey Univ Zinc electrode

Similar Documents

Publication Publication Date Title
JP2770396B2 (en) Zinc alkaline battery
JPS63248068A (en) Zinc alkaline battery
JPS63248064A (en) Zinc alkaline battery
JPH0371559A (en) Zinc alkaline battery
JPS63250061A (en) Zinc-alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JPS63248062A (en) Zinc alkaline battery
JPS63248061A (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JPS63248063A (en) Zinc alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPS63248066A (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JPS63248067A (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JPS63248069A (en) Zinc alkaline battery
JPS63239770A (en) Zinc alkaline cell
JPS63248070A (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JPS63244559A (en) Zinc alkaline battery
JPS63250062A (en) Zinc-alkaline battery
JPH0513070A (en) Alkaline battery
JPS63239769A (en) Zinc alkaline cell