JPS63276871A - Zinc alkali cell - Google Patents

Zinc alkali cell

Info

Publication number
JPS63276871A
JPS63276871A JP7473387A JP7473387A JPS63276871A JP S63276871 A JPS63276871 A JP S63276871A JP 7473387 A JP7473387 A JP 7473387A JP 7473387 A JP7473387 A JP 7473387A JP S63276871 A JPS63276871 A JP S63276871A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
electrode active
alkaline battery
anticorrosive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7473387A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7473387A priority Critical patent/JPS63276871A/en
Publication of JPS63276871A publication Critical patent/JPS63276871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To secure anti-corrosiveness with the amalgamation ratio held low by selecting the negative electrode anti-corrosive agent from a group containing polyoxyethylene-slkyphenylether, derivatives formed by substitution of its end functional group with a certain acid radical, and salts obtained through neutralization of these derivatives. CONSTITUTION:As anti-corrosive agent for a negative electrode active substance is used at least one of the following: polyoxyethylene-alkyphenylether Eq. I, derivatives Eq. II-IV obtained by substituting its end functional group with phosphonic acid radical, sulfonic acid radical, or methylenecarboxylic acid radical, and salts obtained by neutralizing these derivatives with alkali metal, for ex., Eq. V. Application of any of these anti-corrosive agents is made by means of addition to electrolyte liquid, impregnation in either or both of the separator and liquid retaining material, and affixation to the surface of negative electrode active substance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンカ1ン、酸化銀
、酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アル
カリ電池の亜鉛負極の水化に用いる水銀量の低減に有効
な手段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and mankaline dioxide, silver oxide, mercury oxide, oxygen, nickel hydroxide, etc. as a positive electrode active material. The present invention provides an effective means for reducing the amount of mercury used in the hydration of the zinc negative electrode of the zinc alkaline battery used.

従来の技術 亜鉛負極の電解液の腐食を抑制するため、従来から、T
〜10重fl−チ程度の水銀を亜鉛に添加する方法が工
業的に採られて来た◎しかし、近年、低公害化のため、
水銀含有量の低減化の社会的ニーズが高まシ、少量の水
銀の使用で十分な耐食性を確保するため、種々の耐食性
亜鉛合金が開発、又は提案されている。例えば、亜鉛中
にインジウム、鉛、ガリウム、アルミニウム、などを添
加した耐食性亜鉛合金粉末が有力なものとされ、インジ
ウムと鉛を添加し之亜鉛合金がすでに実用化され、さら
に耐食性を向上させるため、インジウム。
Conventional technology In order to suppress corrosion of the electrolyte of the zinc negative electrode, T
A method of adding mercury of about 10 to 10 weight fl-h to zinc has been adopted industrially.However, in recent years, in order to reduce pollution,
As social needs for reducing mercury content increase, various corrosion-resistant zinc alloys have been developed or proposed in order to ensure sufficient corrosion resistance with the use of small amounts of mercury. For example, corrosion-resistant zinc alloy powder, which is made by adding indium, lead, gallium, aluminum, etc. to zinc, is considered to be effective. Zinc alloys containing indium and lead have already been put into practical use, and in order to further improve corrosion resistance, indium.

鉛に加えて、アルミニウム、必要に応じてガリウムを添
加した亜鉛合金が代表的なものとして検討されている・
これらの耐食性亜鉛合金を用いた場合、水化率(負極亜
鉛中の水銀の′11量百分率)を減少させても耐食性が
確保でき、インジウムと鉛を添加した亜鉛合金の場合で
汞化率3%、さらにこれを改良した上記のインジウム、
鉛に加えてアルミニウム、必要に応じてガリウムを添加
した亜鉛合金では汞化率1.6チ程度でも純亜鉛の場合
の汞化率T〜10%に相当する耐食性が得られる。
In addition to lead, a zinc alloy containing aluminum and, if necessary, gallium is being considered as a typical alloy.
When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even if the hydration rate ('11 amount percentage of mercury in negative electrode zinc) is reduced, and in the case of zinc alloys with indium and lead added, the hydration rate is 3. %, the above indium which is further improved,
In the case of a zinc alloy in which aluminum and, if necessary, gallium are added in addition to lead, a corrosion resistance equivalent to that of pure zinc can be obtained even when the corrosion ratio is about 1.6 cm.

汞化率を低減させる方法として耐食性亜鉛合金を用いる
ことが有効なことは上述の例に見られる通りであるが、
他の有効な方法として、防食剤の添加が考えられ、電池
内の水銀含有量を極限にまで減少させる技術として耐食
性亜鉛合金と防食剤の併用は不可欠と考えられる。
As seen in the above example, it is effective to use a corrosion-resistant zinc alloy as a method of reducing the corrosion rate.
Another effective method is to add an anticorrosive agent, and the combination of a corrosion-resistant zinc alloy and an anticorrosive agent is considered essential as a technique for reducing the mercury content in batteries to the utmost limit.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防食
のため、エチレングリコール等のグリコール類、メルカ
プトカルボン酸、アミノナフタリンスルホン酸、アゾナ
フタリン類、カルバゾール。
Conventionally, glycols such as ethylene glycol, mercaptocarboxylic acid, aminonaphthalene sulfonic acid, azonaphthalenes, and carbazole have been used to prevent corrosion of zinc negative electrodes in alkaline aqueous electrolytes.

枚挙にいとまのない種々の防食剤の適用が提案されてい
る。これらの防食剤は電解液中に少量を添加するのが一
般的な適用法である・然し、何れの防食剤も顕著な防食
効果が認められず、水化率を低減させるための有効な手
段になっていないのが現状である。
A wide variety of anticorrosive agents have been proposed to be used. The general method of application of these anticorrosive agents is to add a small amount to the electrolyte.However, none of the anticorrosive agents have been found to have a significant anticorrosion effect, and it is not an effective means to reduce the hydration rate. The current situation is that this is not the case.

発明が解決しようとする問題点 亜鉛負極の防食が不十分な場合は電池の貯蔵中に亜鉛の
消耗とともに水素ガスが発生し、電池内圧が上昇して電
解液の漏出、電池の変形の原因となシ、著しい場合は電
池の破裂の原因となる。しかも、亜鉛の腐食は電池の容
量低下など貯蔵後の電池性能の劣化をもたらす原因とも
なる。本発明は上記の諸問題の発生を防止するに十分な
亜鉛負極の耐食性を水化率を極力低減化した状態で確保
することを目的とする0その方法として、従来から提案
されている前述の各種防食剤以上に防食効果が大きく、
耐アルカリ性で、しかも放電性能にも悪影響のない防食
剤を新たに探索して低水化率の亜鉛負極を備えた電池に
適用し、実用的な電池の緒特性を損うことなく、水銀含
有率の小さい低公害の亜鉛アルカリ電池を提供するもの
である。
Problems to be Solved by the Invention If the corrosion protection of the zinc negative electrode is insufficient, hydrogen gas will be generated as the zinc is consumed during storage of the battery, and the internal pressure of the battery will increase, causing leakage of electrolyte and deformation of the battery. In severe cases, it may cause the battery to explode. Furthermore, corrosion of zinc also causes deterioration in battery performance after storage, such as a decrease in battery capacity. The purpose of the present invention is to ensure corrosion resistance of a zinc negative electrode sufficient to prevent the occurrence of the above-mentioned problems while minimizing the hydration rate. It has a greater anti-corrosion effect than various anti-corrosive agents.
We have searched for a new anticorrosive agent that is resistant to alkali and has no negative impact on discharge performance, and applied it to batteries with zinc negative electrodes with low hydration rates. The present invention provides a low-pollution zinc-alkaline battery with low energy consumption.

問題点を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウムな
どを主成分とするアルカリ水溶液、負極活物質に亜軟y
は亜鉛合金、正極活物質に二酸化マンガン、酸化銀、酸
素、オキシ水酸化ニッケル。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, etc. as the main components as an electrolyte, and a semi-soft yellow as a negative electrode active material.
is a zinc alloy, and the positive electrode active materials include manganese dioxide, silver oxide, oxygen, and nickel oxyhydroxide.

酸化水銀などを用いるいわゆる亜鉛アルカリ電池の負極
の腐食を抑制する防食剤としてポリオキシエチレンアル
キルフェニルエーテル 端官能基をホスホン酸基、スルホン酸基又はメチレンカ
ルボン酸基で置換した鰐導体 の群より選ばれた少くとも一種を用いるものである。こ
れらの防食剤の適用方法は%電解液中への添加、セパレ
ータ、保液材の双方又は一方への含浸、負極活物質表面
への付着などの方法を採ることができる。また、上記防
食剤はアルキル基(6)中の炭素数が1〜3o、オキシ
エチレン(CH2−CH2−o−)の重合度(ロ))が
1〜40 、 R++C% −CJ −0すの化学式量
が263〜1979のものが好ましい。
Selected from the group of crocodile conductors in which polyoxyethylene alkylphenyl ether terminal functional groups are substituted with phosphonic acid groups, sulfonic acid groups, or methylene carboxylic acid groups as an anticorrosive agent to suppress corrosion of the negative electrode of so-called zinc alkaline batteries using mercury oxide etc. At least one of the following methods shall be used. These anticorrosive agents can be applied by adding them to an electrolytic solution, impregnating them into both or one of a separator and a liquid retaining material, and attaching them to the surface of a negative electrode active material. In addition, the above-mentioned anticorrosive agent has a carbon number of 1 to 3 o in the alkyl group (6), a polymerization degree (b) of oxyethylene (CH2-CH2-o-) of 1 to 40, and R++C% -CJ-0. Those having a chemical formula weight of 263 to 1979 are preferred.

また、負極活物質には純亜鉛、又は亜鉛合金を用いるが
、特に大幅な汞化率の低減を実現するには耐食性亜鉛合
金と上記防食剤を併用するのが効果的である◎例えば、
インジウム、鉛を添加した亜鉛合金、或いはこれにガリ
ウムを添加した亜鉛合金と併用すると0,2チの水化率
でも負極の耐食性が十分な電池が得られ、さらに上記の
亜鉛合金の添加元素に加え、アルミニウム、ストロ7f
’)Jh。
In addition, although pure zinc or a zinc alloy is used as the negative electrode active material, it is effective to use a corrosion-resistant zinc alloy and the above-mentioned anticorrosive agent in combination with the above-mentioned anticorrosive agent, especially in order to achieve a significant reduction in the corrosion rate.
When used in combination with a zinc alloy to which indium and lead are added, or a zinc alloy to which gallium is added, a battery with sufficient corrosion resistance of the negative electrode can be obtained even at a hydration rate of 0.2 cm. In addition, aluminum, Stro 7F
') Jh.

カルシウム、マグネシウム、バリウム、ニッケルのうち
少くとも一覆を含有する亜鉛合金を併用するとo、os
 1の水化率でも負極の耐食性が確保できる◎ 作  用 本発明で用いる防食剤の作用機構は不明確であるが、下
記のように推察される。
When combined with a zinc alloy containing at least one of calcium, magnesium, barium, and nickel, o, os
Corrosion resistance of the negative electrode can be ensured even at a hydration rate of 1. Function The mechanism of action of the anticorrosive agent used in the present invention is unclear, but it is inferred as follows.

本発明の防食剤はほぼ直線形の分子構造で、一方の端に
極性基として水酸基あるいはホスホン酸基、スルホン酸
基、メチレンカルボン酸基のいずれかを、逆の端に疎水
性のアルキル基を有しておシ、電解液中に添加すると溶
解又は分散して極性基が負極の亜鉛又は亜鉛合金表面に
吸着するものと考えられる0亜鉛のアルカリ電解液中で
の腐食反応は次式で示されるが、防食剤が負極表面に吸
着し被膜を形成すると、 アノード反応 Zn+40H’″−+Zn(OH)4 
+2@力ソード反応2H2042・−→201(−+H
2アノ一ド反応の原因となる水酸イオンの亜鉛負極への
接近が訪客され、またカソード反応に必要な水分子が亜
鉛負極表面近傍に存在できなくなシ亜鉛の腐食が抑えら
れる・防食剤が少量で亜鉛負極表面を完全に覆っていな
い状態でも、添加した防食剤の亜鉛負極表面の吸着部分
での亜鉛の腐食反応が抑制され、亜鉛負極の総腐食量が
減少する0また防食剤はセパレータおよび/または保液
欄への含浸、負極活物質表面への付着などの方法で添加
しても、電池構成後に防食剤が電解液中に溶解あるいは
分散し、上記と同様に亜鉛負極表面に吸着し、亜鉛の腐
食が抑制される。以上の如く本発明に用いる防食剤は亜
鉛の腐食反応に関する表面を覆うため防食効果が得られ
たものと考えられる0また、特開昭58−18266で
開示されたインジウムと鉛を含有する亜鉛合金、あるい
は特開昭60−17536!I 、特開昭61−772
67 。
The anticorrosive agent of the present invention has a nearly linear molecular structure, with a polar group such as a hydroxyl group, a phosphonic acid group, a sulfonic acid group, or a methylenecarboxylic acid group at one end, and a hydrophobic alkyl group at the opposite end. The corrosion reaction of zinc in an alkaline electrolyte is shown by the following equation: However, when the anticorrosive agent is adsorbed to the negative electrode surface and forms a film, an anode reaction Zn+40H'''-+Zn(OH)4
+2@force sword reaction 2H2042・-→201(-+H
The hydroxide ions that cause the 2-anode reaction approach the zinc negative electrode, and the water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode, suppressing corrosion of the zinc.・Anti-corrosion agent Even if the added corrosion inhibitor is small and does not completely cover the surface of the zinc negative electrode, the corrosion reaction of zinc at the adsorbed part of the zinc negative electrode surface is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced. Even if it is added by impregnating the separator and/or liquid holding column, or adhering to the surface of the negative electrode active material, the anticorrosive agent will dissolve or disperse in the electrolyte after battery construction and will be applied to the surface of the zinc negative electrode in the same way as above. It is adsorbed and corrosion of zinc is suppressed. As described above, it is believed that the anticorrosive agent used in the present invention has an anticorrosion effect because it covers the surface related to the corrosion reaction of zinc. , or JP-A-60-17536! I, JP-A-61-772
67.

特開昭61−181068 、特開昭61−20356
3゜特願昭61−150307等で発明者等が開示した
インジウムと鉛を含有し、さらにガリウム、アルミニウ
ム、ストロンチウム、カルシウム、マクネシウム、バリ
ウム、ニッケルの群より選ばれた一種以上を含有する亜
鉛合金はいずれも耐食性が優れているが汞化率を0.2
−程度まで低下させると充分な耐食性が確保できない。
JP-A-61-181068, JP-A-61-20356
3゜Zinc alloy containing indium and lead, and further containing one or more selected from the group of gallium, aluminum, strontium, calcium, manesium, barium, and nickel, as disclosed by the inventors in Japanese Patent Application No. 150307/1983. Both have excellent corrosion resistance, but when the corrosion rate is 0.2
If the corrosion resistance is reduced to -, sufficient corrosion resistance cannot be ensured.

しかしながら上記防食剤を併用すると両者の防食作用が
併合され、場合によっては0.05%の汞化率でも負極
の耐食性が確保される。
However, when the above-mentioned anticorrosive agents are used in combination, the anticorrosion effects of both are combined, and in some cases, the corrosion resistance of the negative electrode can be ensured even at a 0.05% corrosion rate.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防食
剤とその分子構造による相違、さらに耐食性亜鉛合金と
の併用を実験的に検討し、低水化率で実用性の高い亜鉛
アルカリ電池を完成したものである。
As mentioned above, the present invention has developed a highly practical zinc-alkaline battery with a low water conversion rate by experimentally examining the corrosion inhibitor that is effective in improving the corrosion resistance of zinc negative electrodes, the differences in their molecular structures, and the use of them in combination with corrosion-resistant zinc alloys. It is completed.

以下実施例により詳細に説明する0 実施例 実施例1 まず1本発明の防食剤のアルカリ溶液中での亜鉛に対す
る腐食抑制効果を調べた。実験方法は40重量−の水酸
化カリウム水溶液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来例の防食剤をほぼ飽和tまで溶解さ
せてB−を採り、その液中に氷化亜鉛粉を102投入し
、46℃の温度下で20日間で発生した水素ガス量を測
定した◎氷化亜鉛粉の汞化率は1.0 %で、粒径は3
6〜160メツシユとした。得られた測定結果を第1表
に示した。
EXAMPLES Example 1 First, the corrosion inhibiting effect of the anticorrosive agent of the present invention on zinc in an alkaline solution was investigated. The experimental method was to dissolve the anticorrosive agent of the present invention or the conventional anticorrosive agent in an electrolytic solution containing zinc oxide in a 40% potassium hydroxide aqueous solution to almost saturation point B-, and then add ice to the solution. The amount of hydrogen gas generated in 20 days at a temperature of 46°C was measured by adding 102% of zinc chloride powder.
It was set to 6 to 160 meshes. The measurement results obtained are shown in Table 1.

第1表 第1表のうち、本発明の防食剤を用いた慮1〜29の群
は、従来から提案されている防食剤を用いた430〜3
20群や、防食剤を添加していない433より水素ガス
の発生量が少く、本発明の防食剤の腐食抑制効果が大き
いことが判る・/fL1〜29の群のうち、墓1〜9は
防食剤のアルキル基の炭素数を9.オキシエチレンの重
合度を10に統一し、末端官能基の種類やアルカリ金属
での中和による防食効果の差異を検討したものである。
Table 1 In Table 1, groups 1 to 29 using the anticorrosive agent of the present invention are group 430 to 3 using the anticorrosive agent proposed conventionally.
It can be seen that the amount of hydrogen gas generated is smaller than Group 20 and 433 to which no anticorrosive agent is added, indicating that the corrosion inhibiting effect of the anticorrosive agent of the present invention is large. Among the groups of /fL1 to 29, Graves 1 to 9 are The number of carbon atoms in the alkyl group of the anticorrosive agent is 9. The degree of polymerization of oxyethylene was standardized to 10, and the difference in anticorrosion effect due to the type of terminal functional group and neutralization with alkali metal was investigated.

何れも防食効果は大きく、なかでも、末端基が−PO3
)12であるム2が最も良好と判定した。A10〜17
は−PO3H2を末端基とするものについて、アルキル
基の炭素数、及びオキシエチレンの重合度を変化させた
場合の防食効果を検討したものである0 42及び410〜17を比較して判るようにアルキル基
の炭素数が1〜3oでオキシエチレンの重合度が1〜4
0のもののうち、RO(0M2−CH2−0)n’″の
分子式量が263〜197Gのもの(A2及び4611
〜16)が433の無添加の場合のH以下の水素ガス発
生量を示し、特に良好である@本発明の他の防食剤につ
いても同様な炭素数1重合度。
All have a great anticorrosion effect, especially when the terminal group is -PO3
)12, which was determined to be the best. A10-17
As can be seen by comparing 042 and 410-17, which is a study of the anticorrosion effect when changing the number of carbon atoms in the alkyl group and the degree of polymerization of oxyethylene for those with -PO3H2 as the terminal group. The number of carbon atoms in the alkyl group is 1 to 3o, and the degree of polymerization of oxyethylene is 1 to 4.
Among those with a molecular formula weight of 263 to 197G (A2 and 4611
~16) shows a hydrogen gas generation amount of H or less in the case of no addition of 433, which is particularly good.@The same carbon number 1 polymerization degree is also found for other anticorrosive agents of the present invention.

分子式量の範囲で防食効果があることは、A18〜29
の実施例と、&30〜33の従来例及び無添加の場合と
の比較によシ明白である◎実施例2 次に、実施例1で得られた結果に基づき1代表的な防食
剤を遣び、負極活物質である亜鉛又は亜鉛合金の汞化率
低減に対する効果を第1図に示すボタン形酸化銀電池を
試作して比較検討した。第1図において、1はステンレ
ス鋼製の封口板で、その内面に銅メッキが施されている
。2は水酸化カリウムの40重量%水溶液に酸化亜鉛を
飽和させた電解液(防食剤を添加する場合は第2表に示
した防食剤を飽和量溶解させた電解液)をカルボキシメ
チルセルロースによりゲル化し、このゲル中に水化亜鉛
又は氷化亜鉛合金の60〜160メツシユの粉末を分散
させた亜鉛負極である。3はセルロース系の保液材、4
は多孔性ポリプロピレン族のセパレータ、6は酸化銀に
黒鉛を混合して加圧成形した正極、6は鉄にニッケルメ
ッキを施した正極リング、7はニッケルメッキを施した
ステンレス鋼製の正極缶である。8はポリプロピレン族
のガスケットで、正極缶アの折り曲げにより正極缶Tと
封口板1との間に圧縮されている。試作し九電池は直径
11.6w、i%!高5*4+wである@試作した電池
の60℃で1力月間貯蔵した後の放電性能と電池総高の
変化、及び目視判定で漏液が観察された電池の個数を第
2表に示す。放電性能は、201:においてs1oΩで
0.9vを終止電圧として放電した時の放電持続時間で
表わした。
The anticorrosion effect within the molecular formula weight range is A18-29.
This is clear from the comparison between the examples of &30 to 33 and the conventional examples and cases without additives.Example 2 Next, based on the results obtained in Example 1, one typical anticorrosive agent was used. In addition, a button-shaped silver oxide battery as shown in FIG. 1 was prototyped to compare and examine the effect of zinc or zinc alloy, which is the negative electrode active material, on reducing the oxidation rate. In FIG. 1, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper. 2 is an electrolytic solution in which a 40% by weight aqueous solution of potassium hydroxide is saturated with zinc oxide (if an anticorrosive agent is added, an electrolytic solution in which a saturation amount of the anticorrosive agent shown in Table 2 is dissolved) is gelled with carboxymethyl cellulose. This is a zinc negative electrode in which 60 to 160 meshes of powder of zinc hydrate or zinc oxide alloy are dispersed in this gel. 3 is cellulose-based liquid retaining material, 4
6 is a porous polypropylene group separator, 6 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is a nickel-plated stainless steel positive electrode can. be. Reference numeral 8 denotes a polypropylene gasket, which is compressed between the positive electrode can T and the sealing plate 1 by bending the positive electrode can. The prototype nine batteries have a diameter of 11.6w and an i%! Table 2 shows the changes in discharge performance and total battery height of prototype batteries with high 5*4+w after being stored at 60°C for one month, as well as the number of batteries in which leakage was observed by visual inspection. The discharge performance was expressed as the discharge duration when discharging at 201: s1oΩ with a final voltage of 0.9V.

第2表 正常なボタン電池では通常、電池を封口後、各電池構成
要素間の応力の関係が安定化するまでは経時的に電池総
高が若干減少するが、負極亜鉛の腐食に伴う水素ガスの
発生が多い電池では電池内圧の上昇により電池総高が増
大する傾向が強くなる。従って、貯蔵期間中の電池総高
の増減により負極亜鉛の耐食性が評価できる。耐食性が
不十分な電池では電池総高が増大するほか、電池内圧の
上昇によ抄漏液し易く、また、腐食【よる負極亜鉛の消
耗2表面の酸化により放電性能も劣化する。
Table 2 In a normal button battery, after sealing the battery, the total height of the battery will decrease slightly over time until the stress relationship between each battery component stabilizes, but hydrogen gas due to corrosion of the negative electrode zinc In batteries where a large amount of oxidation occurs, there is a strong tendency for the total battery height to increase due to an increase in battery internal pressure. Therefore, the corrosion resistance of the negative electrode zinc can be evaluated by the increase or decrease in the total height of the battery during the storage period. Batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also be susceptible to liquid leakage due to an increase in battery internal pressure, and discharge performance will also deteriorate due to depletion of negative electrode zinc due to corrosion (2) and oxidation of the surface.

このような観点で、第2表の試作実験結果は次のように
評価される。先ず、41〜10は負極活物質として耐食
性が極めてすぐれ、通常、汞化率1.6%以上なら、防
食剤の助けなして実用電池の負極として使用することが
有望視されている亜鉛合金(Pb、In、Anを含有す
る亜鉛合金)をo、osチという極めて低汞化率で電池
を構成して防食剤の効果を比較したものである。これら
の結果は、本発明の防食剤を添加したI&1〜7の場合
がI&8〜1oの従来例の防食剤を添加、又は無添加の
場合よシ極めて良好であることを示し、上記の耐食性亜
鉛合金と本発明の防食剤を併用することにより0.05
%以上の汞化率で負極の耐食性を十分に確保でき、極め
て低汞化率の亜鉛アルカリ電池が構成できることを示し
ている。また、/に11〜18は現在、普及材料として
すでに3チの汞化率で実用化されている亜鉛合金(Pb
、Inを含有する亜鉛合金)の汞化率を0.2チまで減
少させて、本発明の防食剤の効果を検討したものである
。この場合にも、/1611〜16の実施例は416〜
18の従来例2は無添加の場合とで、明白に電池性能に
差異が見られ、上記亜鉛合金と本発明の防食剤を併用す
れば0.2チ以上の汞化率で負極の耐食性が十分で実用
性能にすぐれた低汞化率の亜鉛アルカリ電池が構成でき
ることを示している。さらに、A19〜26は通常7〜
10−程度の汞化率を必要とする紳亜鉛粉を負極活物質
に用いた場合に本発明を適用して3チまで汞化率を低減
しても十分な実用性のある電池を構成できることを示し
ている。
From this point of view, the prototype experiment results shown in Table 2 are evaluated as follows. First, 41 to 10 are zinc alloys that have extremely good corrosion resistance as negative electrode active materials, and are considered promising for use as negative electrodes in practical batteries without the aid of anticorrosive agents, if the corrosion rate is 1.6% or higher. The effectiveness of the anticorrosive agent was compared by constructing a battery using a zinc alloy (containing Pb, In, and An) with an extremely low reduction rate of o and osti. These results show that the cases of I&1 to 7 to which the anticorrosive agent of the present invention was added are much better than the cases of I&8 to 1o with or without the conventional anticorrosive agent. 0.05 by using the alloy and the anticorrosive agent of the present invention together.
% or more, it is possible to ensure sufficient corrosion resistance of the negative electrode, indicating that a zinc-alkaline battery with an extremely low corrosion rate can be constructed. In addition, / 11 to 18 are zinc alloys (Pb
The effect of the anticorrosive agent of the present invention was investigated by reducing the corrosion rate of a zinc alloy containing In to 0.2 inches. In this case as well, the examples of /1611-16 are 416-
In conventional example 2 of No. 18, there is a clear difference in battery performance between the case without additives and the corrosion resistance of the negative electrode when the above zinc alloy and the anticorrosive agent of the present invention are used together at a corrosion rate of 0.2 inches or more. This shows that it is possible to construct a zinc-alkaline battery with sufficient practical performance and a low rate of depletion. Furthermore, A19-26 is usually 7-
When using zinc powder as a negative electrode active material, which requires a filtration rate of about 10, by applying the present invention, it is possible to construct a battery with sufficient practicality even if the filtration rate is reduced to 3. It shows.

ま九、A2T〜36は防食剤の助けなしでもほぼ負極の
耐食性が認保てきる1、5〜3%の汞化率の亜鉛合金を
負極に用いた場合に本発明の効果を念のため確認したも
のであり、427〜29及び滅33〜36の実施例の場
合は、l630〜32.及び扁36〜38の従来例又は
無添加の場合よりさらに特性が向上しており、高度の耐
食性が確保されたことにより品質が安定化したことを示
している。
9. For A2T~36, the corrosion resistance of the negative electrode can be almost achieved without the help of anticorrosion agent. Just to be sure, the effect of the present invention is confirmed when a zinc alloy with a filtration rate of 1,5 to 3% is used for the negative electrode. This has been confirmed, and in the case of Examples 427-29 and 33-36, 1630-32. The properties were further improved compared to the conventional examples of flats 36 to 38 or the cases without additives, indicating that the quality was stabilized by ensuring a high degree of corrosion resistance.

439.40はpbとInを含有する亜鉛合金とほぼ同
等の腐食性を有する。Pb、In、Gaを含有する亜鉛
合金を水化率0.2チとして本発明の効果を調べたもの
で、l639の実施例の場合はI&11〜18のPb、
Inを含有した亜鉛合金での実施例と同様0.2チの汞
化率が実現できることを示している。
439.40 has almost the same corrosivity as a zinc alloy containing PB and In. The effect of the present invention was investigated using a zinc alloy containing Pb, In, and Ga with a hydration rate of 0.2%.
This shows that it is possible to achieve a filtration rate of 0.2 cm, similar to the example using the zinc alloy containing In.

441〜50は、Pb、In、AXを含有する耐食性の
改良された亜鉛合金とほぼ同等の耐食性を有する亜鉛合
金として、期待されるものについて、汞化率0.05%
で本発明の効果を調べたもので、いずれの実施例(44
1、43、48、47,49)もo、oses という
低水化率でも、Pb、In、AJ、を含有する亜鉛合金
でのA1−アの実施例と同様に、すぐれた電池性能を示
している。以上の場合はいずれも電解液中に防食剤を溶
解させて本発明の効果を検討した結果であるが、451
.52.53は防食剤を電解液中に添加する方法以外の
本発明の実施例を示したもので、予め、氷化亜鉛合金に
防食剤を付着させたA61、予めセパレータもしくは保
液材に防食剤を含浸させた452.53の何れもが電解
液に防食剤を溶解させた場合とほぼ等しい効果が認めら
れた。これらの場合、いずれも電池構成後に序々に防食
剤が電解液中に溶解して防食効果を発揮するもので、特
に、セパレータもしくは保液材に防食剤を含浸させた場
合には、電解液の浸透が速くなるので電池構成が容易に
なシ、生産性を高める効果もある。
441-50 is expected to be a zinc alloy having almost the same corrosion resistance as a corrosion-resistant zinc alloy containing Pb, In, and AX, and has a corrosion rate of 0.05%.
The effects of the present invention were investigated in Examples 44 and 44.
1, 43, 48, 47, 49) also showed excellent battery performance even at a low hydration rate of o, ose, similar to the A1-A example using a zinc alloy containing Pb, In, and AJ. ing. All of the above cases are the results of examining the effects of the present invention by dissolving an anticorrosive agent in the electrolyte, but 451
.. 52 and 53 show an example of the present invention other than the method of adding an anticorrosive agent to the electrolytic solution. 452.53 impregnated with the anticorrosive agent had almost the same effect as when the anticorrosive agent was dissolved in the electrolytic solution. In all of these cases, the anticorrosive agent gradually dissolves into the electrolyte after the battery is constructed, exerting its anticorrosive effect. In particular, when the separator or liquid retaining material is impregnated with the anticorrosive agent, the anticorrosion agent gradually dissolves into the electrolyte after the battery is constructed. Since penetration becomes faster, battery construction becomes easier and productivity is increased.

実施例3 次に、代表的な防食剤として び電解液中の溶解濃度と氷化亜鉛合金粉の腐食量の関係
を調べた。
Example 3 Next, the relationship between the concentration of a typical anticorrosive agent dissolved in an electrolytic solution and the amount of corrosion of icy zinc alloy powder was investigated.

氷化亜鉛合金粉は、Pb、In、A1を各々o、osl
含有する亜鉛合金の36〜180メツシエの粉末にアル
カリ溶液中で水銀滴下方式で0.05%の汞化率で汞化
したものを使用し、その105F秤取し、水酸化カリウ
ムの40wt*の水溶液に酸化亜鉛を飽和させ防食剤を
溶解させた電解液の6CL中に浸 。
The frozen zinc alloy powder contains Pb, In, and A1 in o and osl respectively.
A 36 to 180 mesh powder of a zinc alloy containing 36 to 180 tons of powder was made into a mercury in an alkaline solution using a mercury dropping method at a filtration rate of 0.05%, the 105F was weighed, and 40 wt* of potassium hydroxide was Immerse in 6CL electrolyte solution, which is an aqueous solution saturated with zinc oxide and dissolved in anticorrosion agent.

清し46℃で10日間放置して、その間に発生した水素
ガス量を測定した。
The sample was left to stand at 46°C for 10 days, and the amount of hydrogen gas generated during that time was measured.

電解液中の防食剤の濃度の調整は、防食剤を飽和させた
電解液と防食剤を含まない電解液を適宜の割合で混合し
て行った。その晴果を第2図に示す。
The concentration of the anticorrosive agent in the electrolytic solution was adjusted by mixing an electrolytic solution saturated with the anticorrosive agent and an electrolytic solution containing no anticorrosive agent at an appropriate ratio. The results are shown in Figure 2.

第2図に見られるように、 09H19()0+CHfH2−0−)、。PO3H2
Ow1度が、約s o o ppm 以上で顕著な効果
が見られ、約11000pp以上では飽和濃度の約42
oOppm までほぼ一定した効果が得られる。この防
食剤以外にも、実施例1のI&1〜7で用いた防食剤に
ついても、はぼ同様の効果が見られ、本発明の防食剤の
適正!I変は約11000pp以上から飽和#変以下と
するのが好ましいことが判った。
As seen in FIG. 2, 09H19()0+CHfH2-0-). PO3H2
A remarkable effect is seen when Ow1 degree is about s o o ppm or more, and at about 11,000 ppm or more, the saturation concentration of about 42
A substantially constant effect can be obtained up to oOppm. In addition to this anticorrosive agent, the anticorrosive agents used in I&1 to 7 of Example 1 had similar effects, indicating that the anticorrosive agent of the present invention is appropriate! It has been found that it is preferable for the I change to be from about 11,000 pp or more to less than the saturated # change.

発明の効果 本発明は新規に探索した防食剤の効果によ沙亜鉛アルカ
リ電池の負極の水化率を大幅に低減することを可能にし
たものである。
Effects of the Invention The present invention makes it possible to significantly reduce the hydration rate of the negative electrode of a sand-zinc alkaline battery through the effect of a newly discovered anticorrosive agent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いたボタン形酸化銀電池の
一部を断面にした側面図、第2図は電解液中の防食剤溶
解量と水素ガス発生量との関係を示した図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。
Figure 1 is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention, and Figure 2 shows the relationship between the amount of anticorrosion agent dissolved in the electrolyte and the amount of hydrogen gas generated. It is a diagram. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode.

Claims (7)

【特許請求の範囲】[Claims] (1)負極活物質の防食剤として、ポリオキシエチレン
アルキルフェニルエーテル▲数式、化学式、表等があり
ます▼、 及びその末端官能基をホスホン酸基、スルホン酸基又は
メチレンカルボン酸基で置換した誘導体▲数式、化学式
、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、及びこれらの誘導
体をアルカリ金属で中和した塩類の群より選ばれた少く
とも一種を用いた亜鉛アルカリ電池。
(1) As anticorrosive agents for negative electrode active materials, there are polyoxyethylene alkylphenyl ethers▲mathematical formulas, chemical formulas, tables, etc.▼, and derivatives whose terminal functional groups are substituted with phosphonic acid groups, sulfonic acid groups, or methylenecarboxylic acid groups ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and selected from the group of salts made by neutralizing these derivatives with alkali metals. At least one type of zinc-alkaline battery.
(2)防食剤のアルキル基(R)の炭素数が1〜30、
オキシエチレンの重合度(n)が1〜40で、▲数式、
化学式、表等があります▼の化学式量が263 〜1979である特許請求の範囲第1項記載の亜鉛アル
カリ電池。
(2) the alkyl group (R) of the anticorrosion agent has 1 to 30 carbon atoms;
The degree of polymerization (n) of oxyethylene is 1 to 40, ▲ formula,
There are chemical formulas, tables, etc. The zinc-alkaline battery according to claim 1, wherein the chemical formula weight of ▼ is 263 to 1979.
(3)防食剤を電解液中に溶解させた特許請求の範囲第
1項又は第2項記載の亜鉛アルカリ電池。
(3) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is dissolved in the electrolyte.
(4)防食剤を予めセパレータ、電解液保持材の双方又
は一方に含浸させた特許請求の範囲第1項又は第2項記
載の亜鉛アルカリ電池。
(4) The zinc-alkaline battery according to claim 1 or 2, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive agent in advance.
(5)防食剤を予め負極活物質の表面に付着させた特許
請求の範囲第1項又は第2項記載の亜鉛アルカリ電池。
(5) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is previously attached to the surface of the negative electrode active material.
(6)必須添加元素としてインジウム、鉛を、任意の添
加元素としてガリウムを含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が3〜0.2%である特許
請求の範囲第1項から第5項のいずれかに記載の亜鉛ア
ルカリ電池。
(6) A claim in which a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element is used as the negative electrode active material, and the filtration rate of the negative electrode active material is 3 to 0.2%. The zinc-alkaline battery according to any one of items 1 to 5.
(7)必須添加元素としてインジウム、鉛を含有し、さ
らにアルミニウム、ストロンチウム、カルシウム、マグ
ネシウム、バリウム、ニッケル、ガリウムの群より選ば
れた一種以上を含有する亜鉛合金を負極活物質に用い、
負極活物質の汞化率が1.5〜0.05%である特許請
求の範囲第1項から第5項のいずれかに記載の亜鉛アル
カリ電池。
(7) Using a zinc alloy as a negative electrode active material, which contains indium and lead as essential additive elements, and further contains one or more selected from the group of aluminum, strontium, calcium, magnesium, barium, nickel, and gallium;
The zinc-alkaline battery according to any one of claims 1 to 5, wherein the negative electrode active material has a hydrogenation rate of 1.5 to 0.05%.
JP7473387A 1987-03-27 1987-03-27 Zinc alkali cell Pending JPS63276871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7473387A JPS63276871A (en) 1987-03-27 1987-03-27 Zinc alkali cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7473387A JPS63276871A (en) 1987-03-27 1987-03-27 Zinc alkali cell

Publications (1)

Publication Number Publication Date
JPS63276871A true JPS63276871A (en) 1988-11-15

Family

ID=13555728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7473387A Pending JPS63276871A (en) 1987-03-27 1987-03-27 Zinc alkali cell

Country Status (1)

Country Link
JP (1) JPS63276871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588257A1 (en) * 1992-09-11 1994-03-23 Sumitomo Chemical Company, Limited Reactive dye composition and method for dyeing or printing fiber materials using the same
JP2020081905A (en) * 2018-11-15 2020-06-04 日本乳化剤株式会社 Action improver of anti-rust agent, and composition for emulsion polymerization and anti-rust agent-containing emulsion using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927995A (en) * 1973-10-23 1975-12-23 Farmland Ind Additive composition for compression-ignition engine fuels
JPS523116A (en) * 1975-06-24 1977-01-11 Varta Batterie Primary battery having zinc anode and alkali electrolyte
DE3436821A1 (en) * 1984-10-06 1986-04-17 Basf Ag, 6700 Ludwigshafen Ethoxylated aromatic nitrocarboxylic acids, their preparation and use as corrosion inhibitors and anti-corrosive agents containing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927995A (en) * 1973-10-23 1975-12-23 Farmland Ind Additive composition for compression-ignition engine fuels
JPS523116A (en) * 1975-06-24 1977-01-11 Varta Batterie Primary battery having zinc anode and alkali electrolyte
DE3436821A1 (en) * 1984-10-06 1986-04-17 Basf Ag, 6700 Ludwigshafen Ethoxylated aromatic nitrocarboxylic acids, their preparation and use as corrosion inhibitors and anti-corrosive agents containing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588257A1 (en) * 1992-09-11 1994-03-23 Sumitomo Chemical Company, Limited Reactive dye composition and method for dyeing or printing fiber materials using the same
JP2020081905A (en) * 2018-11-15 2020-06-04 日本乳化剤株式会社 Action improver of anti-rust agent, and composition for emulsion polymerization and anti-rust agent-containing emulsion using the same

Similar Documents

Publication Publication Date Title
JP2770396B2 (en) Zinc alkaline battery
JP2525719B2 (en) Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode
JPS63276871A (en) Zinc alkali cell
JPH0371559A (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPS63248063A (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JPS63248064A (en) Zinc alkaline battery
JPS63248062A (en) Zinc alkaline battery
JPS63248061A (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JPS63248066A (en) Zinc alkaline battery
JPS63250061A (en) Zinc-alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPS63239770A (en) Zinc alkaline cell
JPS63248068A (en) Zinc alkaline battery
JPS63248070A (en) Zinc alkaline battery
JPS63244559A (en) Zinc alkaline battery
JPS63250064A (en) Zinc-alkaline battery
JPS63239769A (en) Zinc alkaline cell
JPH0513070A (en) Alkaline battery
JPS63248069A (en) Zinc alkaline battery