JPS63239769A - Zinc alkaline cell - Google Patents

Zinc alkaline cell

Info

Publication number
JPS63239769A
JPS63239769A JP7473487A JP7473487A JPS63239769A JP S63239769 A JPS63239769 A JP S63239769A JP 7473487 A JP7473487 A JP 7473487A JP 7473487 A JP7473487 A JP 7473487A JP S63239769 A JPS63239769 A JP S63239769A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
anticorrosive
electrode active
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7473487A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7473487A priority Critical patent/JPS63239769A/en
Publication of JPS63239769A publication Critical patent/JPS63239769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make it possible to decrease the gelatinization rate of a negative electrode of a zinc alkaline cell by using a specific anticorrosive as an anticorrosive to suppress the corrosion of the negative electrode. CONSTITUTION:As an anticorrosive for a negative electrode active material, polyoxyethylene phenylether and a derivative shown in the formula (I), in which the functional end group of the polyoxyethylene phenylether is replaced with a phosphoric acid radical, sulfuric acid radical, or methylenecalboxylic acid, and at least one selected from salt group the above derivatives are neutralized with an alkaline metal are used. The polymerization rate of the oxyethylene in the anticorrosive is preferable to be 1 to 70. By using such an anticorrosive, a remarkable anticorrosive effect is observed and the gelatinization of the negative electrode can be decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカ
リ電池の亜鉛負極の水化に用いる水銀量の低減に有効な
手段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
The present invention provides an effective means for reducing the amount of mercury used in hydration of the zinc negative electrode of zinc alkaline batteries using mercury oxide, oxygen, nickel hydroxide, etc.

従来の技術 亜鉛負極の電解液の腐食を抑制するため、従来から、7
〜10重量%重量%水銀を亜鉛に添加する方法が工業的
に採られて来た。しかし、近年、低公害化のため、水銀
含有量の低減化の社会的ニーズが高まり、少量の水銀の
使用で十分な耐食性を確保するため、種々の耐食性亜鉛
合金が開発、又は提案されている。例へば、亜鉛中にイ
ンジウム、鉛、ガリウム、アルミニウム、などを添加し
た耐食性亜鉛合金粉末が有力なものとされ、インジウム
と鉛を添加し九亜鉛合金がすでに実用化され、さらに耐
食性を向上させるため、インジウム。
Conventional technology In order to suppress the corrosion of the electrolyte of the zinc negative electrode, 7
A method of adding ~10% by weight of mercury to zinc has been adopted industrially. However, in recent years, there has been an increasing social need to reduce mercury content in order to reduce pollution, and various corrosion-resistant zinc alloys have been developed or proposed to ensure sufficient corrosion resistance with the use of small amounts of mercury. . For example, a corrosion-resistant zinc alloy powder made by adding indium, lead, gallium, aluminum, etc. to zinc is considered to be effective, and a nine-zinc alloy with the addition of indium and lead has already been put into practical use.In order to further improve corrosion resistance, indium.

鉛に加えて、アルミニウム、必要に応じてガリウムを添
加した亜鉛合金が代表的なものとして検討されている。
A zinc alloy to which aluminum and, if necessary, gallium are added in addition to lead is being considered as a typical example.

これらの耐食性亜鉛合金を用いた場合、水化率(負極亜
鉛中の水銀の重量百分率)を減少させても耐食性が確保
でき、インジウムと鉛を添加した亜鉛合金の場合で汞化
率a俤、さらにこれを改良した上記のインジウム、鉛に
加えてアルミニウム、必要に応じてガリウムを添加した
亜鉛合金では水化率1.5%程度でも純亜鉛の場合の水
化率7〜10%に相当する耐食性が得られる。
When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even if the hydration rate (the weight percentage of mercury in negative electrode zinc) is reduced, and in the case of zinc alloys containing indium and lead, the hydration rate is a Furthermore, in the improved zinc alloy mentioned above, in which aluminum is added in addition to indium and lead, and gallium is added as necessary, even a hydration rate of about 1.5% is equivalent to the hydration rate of 7 to 10% in the case of pure zinc. Provides corrosion resistance.

汞化率を低減させる方法として耐食性亜鉛合金を用いる
ことが有効なことは上述の例に見られる通シであるが、
他の有効な方法として、防食剤の添加が考えられ、電池
内の水銀含有量を極限にまで減少させる技術として耐食
性亜鉛合金と防食剤の併用は不可欠と考えられる。
As can be seen in the above examples, it is clear that using a corrosion-resistant zinc alloy is effective as a method of reducing the corrosion rate.
Another effective method is to add an anticorrosive agent, and the combination of a corrosion-resistant zinc alloy and an anticorrosive agent is considered essential as a technique for reducing the mercury content in batteries to the utmost limit.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防食
のため、エチレングリコール等のグリコール類、メルカ
プトカルボン酸、アミンナフタリンスルホン酸、アゾナ
フタリン類、カルバゾール。
Conventionally, glycols such as ethylene glycol, mercaptocarboxylic acids, amine naphthalene sulfonic acids, azonaphthalenes, and carbazole have been used to prevent corrosion of zinc negative electrodes in alkaline aqueous electrolytes.

シアンヒドリン、2−メルトカプトベンゾチアゾール等
のチアゾール誘導体、ベンゾトリアゾールはその誘導体
など枚挙にいとまのない種々の防食剤の適用が提案され
ている。これらの防食剤は電解液中に少量を添加するの
が一般的な適用法である。然し、何れの防食剤も顕著な
防食効果が認められず、水化率を低減させるための有効
な手段になっていないのが現状である。
Application of various anticorrosive agents has been proposed, including cyanohydrin, thiazole derivatives such as 2-meltocaptobenzothiazole, and derivatives of benzotriazole. The general application method is to add a small amount of these anticorrosive agents to the electrolyte. However, none of the anticorrosive agents has been found to have a significant anticorrosive effect, and currently they are not effective means for reducing the hydration rate.

発明が解決しようとする問題点 亜鉛負極の防食が不十分な場合は′W1池の貯蔵中に亜
鉛の消耗とともに水素ガスが発生し、電池内圧が上昇し
て電解液の漏出、電池の変形の原因となり、著しい場合
は電池の破裂の原因となる。しかも、亜鉛の腐食はIE
池の容量低下など貯蔵後の電池性能の劣化をもたらす原
因ともなる。本発明は上記の諸問題の発生を防止するに
十分な亜鉛負極の耐食性を汞化率を極力低減化した状態
で確保することを目的とする。その方法として、従来か
ら提案されている前述の各種防食剤以上に防食効果が大
きく、耐アルカリ性で、しかも放電性能にも悪影響のな
い防食剤を新たに探索して低水化率の亜鉛負極を備へた
電池に適用し、実用的な電池の緒特性を損うことなく、
水銀含有率の小さい低公害の亜鉛アルカリ電池を提供す
るものである。
Problems to be Solved by the Invention If the corrosion protection of the zinc negative electrode is insufficient, hydrogen gas will be generated as zinc is consumed during storage in the W1 pond, and the internal pressure of the battery will rise, leading to leakage of electrolyte and deformation of the battery. In severe cases, it may cause the battery to explode. Moreover, corrosion of zinc is IE
It can also cause deterioration of battery performance after storage, such as a decrease in the capacity of the pond. The object of the present invention is to ensure sufficient corrosion resistance of a zinc negative electrode to prevent the occurrence of the above-mentioned problems while minimizing the corrosion rate. As a way to do this, we will search for a new anticorrosive agent that has a greater anticorrosive effect than the various anticorrosive agents previously proposed, is alkali resistant, and has no negative impact on discharge performance, and will create a zinc anode with a low water reduction rate. Applicable to ready-made batteries, without impairing the battery characteristics of practical batteries.
The present invention provides a low-pollution zinc-alkaline battery with a low mercury content.

問題点を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウムな
どを主成分とするアルカリ水溶液、負極活物質に亜鉛、
又は亜鉛合金、正極活物質に二酸化マンガン、酸化銀、
酸素、オキシ水酸化ニッケル、酸化水銀などを用いるい
わゆる亜鉛アルカリ電池の負極の腐食を抑制する防食剤
として、ポリオキシエチレンフェニールエール (@−0(−CH2−OH2→÷ユH〕、及びその末端
官能基をホスホン酸基、スルホン酸基、又はメチレンカ
ルボン酸基で置換した誘導体 (GトモCH2−CH2→九PO3H2゜■−〇 +c
H2−CH2−C8−nCH2COOH”J、及びこれ
らの誘導体をアルカリ金属で中和した塩類、例工ば、 
(■ヒo+aH2−CH2−01,p o 3L、 。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, etc. as the main components as an electrolyte, and zinc and zinc as the negative electrode active material.
Or zinc alloy, manganese dioxide, silver oxide as positive electrode active material,
Polyoxyethylene phenyl ale (@-0(-CH2-OH2→÷YH)) and its terminal Derivatives whose functional groups are substituted with phosphonic acid groups, sulfonic acid groups, or methylenecarboxylic acid groups (G tomo CH2-CH2→9PO3H2゜■-〇 +c
H2-CH2-C8-nCH2COOH"J, and salts of these derivatives neutralized with alkali metals, for example,
(■Hio+aH2-CH2-01, p o 3L, .

C→−1−CH2−CH2−0チnSO3Na 。C→-1-CH2-CH2-0chinSO3Na.

(Σト0(−CH2−CH2−0−)−nCH2COO
Liの群より選ばれた少なくとも一種を用いるものであ
る。
(Σto0(-CH2-CH2-0-)-nCH2COO
At least one selected from the group of Li is used.

これらの防食剤の適用方法は、電解液中への添加。The method of applying these anticorrosive agents is to add them to the electrolyte.

セパレータ、保液材の双方又は一方への含浸、負極活物
質表面への付着などの方法を採ることができる。また、
上記の防食剤のオキシエチレン(CH2−CH2−0−
)の重合度(n)は1−70のものが好ましい。
Methods such as impregnation into both or one of the separator and the liquid retaining material, and attachment to the surface of the negative electrode active material can be adopted. Also,
Oxyethylene (CH2-CH2-0-
) preferably has a degree of polymerization (n) of 1-70.

また、負極活物質には純亜鉛、又は亜鉛合金を用いるが
、特に大幅な水化率の低減を実現するには耐食性亜鉛合
金と上記防食剤を併用するのが効果的である。例えば、
イ/ジクム、鉛を添加した亜鉛合金、或いはこれにガリ
ウムを添加した亜鉛合金を併用すると0.2%の水化率
でも負極の耐食性が十分な電池が得られ、さらに上記の
亜鉛合金の添加元素に加え、アルミニウム、ストロンチ
ウム。
Furthermore, although pure zinc or a zinc alloy is used as the negative electrode active material, it is particularly effective to use a corrosion-resistant zinc alloy and the above-mentioned anticorrosive agent in combination to achieve a significant reduction in the hydration rate. for example,
A battery with sufficient corrosion resistance of the negative electrode can be obtained even at a hydration rate of 0.2% by using a zinc alloy with the addition of lead, or a zinc alloy with the addition of gallium. Elements plus aluminum, strontium.

カルシウム、マグネシウム、バリウム、ニッケルのうち
少なくとも一種を含有する亜鉛合金を併用すると0.0
5 %の水化率でも負極の耐食性が確保できる。
0.0 when used in combination with a zinc alloy containing at least one of calcium, magnesium, barium, and nickel
Corrosion resistance of the negative electrode can be ensured even at a hydration rate of 5%.

作  用 本発明で用いる防食剤の作用機構は不明確であるが、下
記のように推察される。
Effect The mechanism of action of the anticorrosive agent used in the present invention is unclear, but is presumed to be as follows.

本発明の防食剤はほぼ直線形の分子構造で、−酸水性の
アルキル基を有しており、電解液中に添加すると溶解又
は分散して極性基が負極の亜鉛又は亜鉛合金表面に吸着
するものと考えられる。亜鉛のアルカリ!屏液中での腐
食反応は次式で示されるが、防食剤が負極表面に吸着し
被膜を形成すると、 アノード反応 Zn+40H−−h Zn(OH)  
 +2e−カソード反応 2J(20+2e″″ −+
20H’″+H2アノ一ド反応の原因となる水酸イオン
の亜鉛負極への接近が防害され、またカソード反応に必
要な水分子が亜鉛合金表面に近傍に存在できなくなシ亜
鉛の腐食が抑えられる。防食剤が少量で亜鉛負極表面を
完全に覆っていない状態でも、添加した防食剤の亜鉛負
極表面の吸着部分での亜鉛の腐食反応が抑制され、亜鉛
負極の総腐食量が減少する。゛また防食剤はセパレータ
および/または保液剤への含浸、負極活物質表面への付
着などの方法で添加しても、電池構成後に防食剤が電解
液中に溶解あるいは分散し、上記と同様に亜鉛負極表面
に吸着し、亜鉛の腐食が抑制される。以上の如く本発明
に用いる防食剤は亜鉛の腐食反応に関わる表面を覆うた
め防食効果が得られたものと考えられもまた、特開昭5
8−18266で開示されたインジウムと鉛を含有する
亜鉛合金、あるいは特開昭60−175368 、特開
昭61−77267゜特開昭61−181058 、特
開昭61−203563゜特願昭61−150307等
で発明者等が開示したインジウムと鉛を含有し、さらに
ガリウム、アルミニウム、ストロンチウム、カルシウム
、マグネシウム、バリウム、ニッケルの群より選ばれた
一種以上を含有する亜鉛合金はいずれも耐食性が優れて
いるが汞化率を0.2%程度まで低下させると充分な耐
食性が確保できない。しかしながら上記防食剤を併用す
ると、両者の防食作用が併合され、場合によっては0.
05%の汞化率でも負極の耐食性が確保される。
The anticorrosive agent of the present invention has a nearly linear molecular structure and has an acidic aqueous alkyl group, and when added to an electrolyte, it dissolves or disperses and the polar group adsorbs to the surface of zinc or zinc alloy of the negative electrode. considered to be a thing. Zinc alkaline! The corrosion reaction in the liquid is shown by the following formula, and when the anticorrosive agent is adsorbed to the negative electrode surface and forms a film, the anode reaction Zn+40H--h Zn(OH)
+2e-cathode reaction 2J(20+2e″″ −+
This prevents hydroxide ions, which cause the 20H'''+H2 anode reaction, from approaching the zinc negative electrode, and also prevents the water molecules necessary for the cathode reaction from existing near the zinc alloy surface, preventing corrosion of the zinc alloy. Even if the amount of corrosion inhibitor is small and does not completely cover the surface of the zinc negative electrode, the corrosion reaction of zinc at the adsorption part of the added corrosion inhibitor on the surface of the zinc negative electrode is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced.゛Also, even if the anticorrosive agent is added by impregnating it into the separator and/or liquid retaining agent, or attaching it to the surface of the negative electrode active material, the anticorrosive agent will be dissolved or dispersed in the electrolyte after battery construction, and the same problem as above will occur. is adsorbed onto the surface of the zinc negative electrode, suppressing zinc corrosion.As described above, it is thought that the anticorrosive agent used in the present invention has a corrosion-preventing effect because it covers the surface involved in the corrosion reaction of zinc. Kaisho 5
8-18266, or JP-A-60-175368, JP-A-61-77267, JP-A-61-181058, JP-A-61-203563, JP-A-61- The zinc alloys disclosed by the inventors in No. 150307 etc. that contain indium and lead and further contain one or more selected from the group of gallium, aluminum, strontium, calcium, magnesium, barium, and nickel have excellent corrosion resistance. However, if the corrosion rate is reduced to about 0.2%, sufficient corrosion resistance cannot be ensured. However, when the above-mentioned anticorrosive agents are used together, the anticorrosion effects of both are combined, and in some cases, the anticorrosion effect is 0.
Corrosion resistance of the negative electrode is ensured even at a filtration rate of 0.05%.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防食
剤とその分子構造による相違、さらに耐食性亜鉛合金と
の併用を実験的に検討し、低水化率で実用性の高い亜鉛
アルカリ電池を完成したものである。
As mentioned above, the present invention has developed a highly practical zinc-alkaline battery with a low water conversion rate by experimentally examining the corrosion inhibitor that is effective in improving the corrosion resistance of zinc negative electrodes, the differences in their molecular structures, and the use of them in combination with corrosion-resistant zinc alloys. It is completed.

以下実施例によシ詳細に説明する。This will be explained in detail below using examples.

実施例 実施例1 まず、本発明の防食剤のアルカリ溶液中での亜鉛に対す
る腐食抑制効果を調べた。実験方法は40重量係の水酸
化カリウム水溶液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来除の防食剤をほぼ飽和量まで溶解さ
せて5dを採シ、その液中に氷化亜鉛粉を101投入し
、45℃の温度下で20日間で発生した水素ガス量を測
定した。水化亜鉛粉の水化率は1.0係で、粒径は35
〜150メツシユとした。得られた測定結果を第1表に
示した。
Examples Example 1 First, the corrosion inhibiting effect of the anticorrosive agent of the present invention on zinc in an alkaline solution was investigated. The experimental method was to dissolve the anticorrosive agent of the present invention or a conventional anticorrosive agent in an electrolytic solution containing zinc oxide dissolved in an aqueous solution of potassium hydroxide weighing 40% by weight to almost saturation level, collect 5d, and add ice to the solution. 101 ml of zinc chloride powder was charged, and the amount of hydrogen gas generated over 20 days at a temperature of 45° C. was measured. The hydration rate of hydrated zinc powder is 1.0, and the particle size is 35
~150 meshes. The measurement results obtained are shown in Table 1.

第    1    裟 第1表のうち、本発明の防食剤を用いた&1〜24の群
は、従来から提案されている防食剤を用いた厖25〜2
70群や、防食剤を添加していない五28よシ水素ガス
の発生量が少なく、本発明の防食剤の腐食抑制効果が大
きいことが判る。&1〜240群のうち、/&1〜9は
防食剤のオキシエチレンの重合度を10に統一し、末端
官能基の種類やアルカリ金属での中和による防食効果の
差異を検討したものである。何れも防食効果は大きく、
なかでも、末端基が−Po3H2であるA2が最も良好
と判定される。& 10〜13は−Po3H2を末端基
とするものについて、オキシエチレンの重合度を変化さ
せた場合の防食効果を検討したものである。
In Table 1, the groups 1 to 24 using the anticorrosive agent of the present invention are the groups 25 to 2 using the anticorrosive agents proposed in the past.
It can be seen that the amount of hydrogen gas generated in Group 70 and Group 528 to which no anticorrosive agent was added was small, indicating that the corrosion inhibiting effect of the anticorrosive agent of the present invention is large. Among the &1 to 240 groups, /&1 to 9 are those in which the degree of polymerization of oxyethylene as an anticorrosive agent is unified to 10, and differences in anticorrosive effect due to the type of terminal functional group and neutralization with an alkali metal are investigated. Both have great anti-corrosion effects,
Among them, A2 whose terminal group is -Po3H2 is judged to be the best. & 10 to 13 are results in which the anticorrosion effect was investigated when the degree of polymerization of oxyethylene was changed for those having -Po3H2 as a terminal group.

/Pa2及び洗10〜13を比較して判るように、オキ
シエチレンの重合度が1〜100のもののうち1情7o
のもの(罵2、及び五10〜12)が無添加の場合(7
628)のに以下の水素ガス発生量を示し、特に良好で
ある。本発明の他の防食剤についても同様な重合度の範
囲で防食効果があることはA14〜24の実施例と逃2
5〜2Tの従来例及び7f128の無添加の場合との比
較により明白である。
As can be seen by comparing /Pa2 and Washing 10 to 13, among those with an oxyethylene polymerization degree of 1 to 100, one case 7o
If the items (Cursed 2 and 5 10 to 12) are additive-free (7
628) shows the following hydrogen gas generation amount, which is particularly good. Examples A14 to A24 and E2 show that other anticorrosives of the present invention also have anticorrosive effects within the same range of polymerization degree.
This is clear from a comparison with the conventional example of 5-2T and the case of no additive of 7f128.

実施例2 次に、実施例1で得られた結果に基づき、代表的な防食
剤を選び、負極活物質である亜鉛又は亜鉛合金の汞化率
低減に対する効果を第1図に示すボタン形酸化銀電池を
試作して比較検討した。第1図において、1はステンレ
スの鋼製の封口板で、その内面に銅メッキが施されてい
る。2は水酸化カリウムの40重量係水溶液に酸化亜鉛
を飽和させた電解液(防食剤を添加する場合は第2表に
示した防食剤を飽和量溶解させた電解液)全カルボキシ
メチルセルロースによりゲル化し、このゲル中に氷化亜
鉛又は水化亜鉛合金の50〜150メツシユの粉末を分
散させた亜鉛負極である。3はセルロース系の保液材、
4は多孔性ポリプロピレン環のセパレータ、5は酸化銀
に黒鉛を混合して加圧成形した正極、6は鉄にニッケル
メッキを施した正極リング、7はニッケルメッキを施し
たステ/レス鋼羨の正極缶である。8はポリプロピレン
環のガスケットで、正極缶7の折り曲げによシ正極缶7
と封口板1との間に圧縮されている。試作した電池は直
径11.6am+総高6.4市である。
Example 2 Next, based on the results obtained in Example 1, a typical anticorrosive agent was selected, and the button-shaped oxidation agent shown in Fig. 1 was evaluated for its effect on reducing the corrosion rate of zinc or zinc alloy, which is the negative electrode active material. We made a prototype silver battery and conducted a comparative study. In FIG. 1, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper. 2 is an electrolytic solution in which zinc oxide is saturated in a 40 weight aqueous solution of potassium hydroxide (if an anticorrosive agent is added, an electrolytic solution in which a saturation amount of the anticorrosive agent shown in Table 2 is dissolved) is gelled with all carboxymethyl cellulose. This is a zinc negative electrode in which 50 to 150 meshes of powder of frozen zinc or hydrated zinc alloy are dispersed in this gel. 3 is a cellulose-based liquid retaining material,
4 is a porous polypropylene ring separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is a nickel-plated stainless steel envy. It is a positive electrode can. 8 is a polypropylene ring gasket that prevents the positive electrode can 7 from being bent.
and the sealing plate 1. The prototype battery has a diameter of 11.6 am and a total height of 6.4 cm.

試作した!池の60’Cで1力月間貯蔵した後の放電性
能と電池総高の変化、及び目視販定で漏液が観察された
電池の個数を第2表に示す。放電性能は、20°Cにお
いて610Ωでo、sVを終止電圧として放電した時の
放電持続時間で表わした。
I made a prototype! Table 2 shows the changes in discharge performance and total battery height after storage at 60'C in a pond for one month, and the number of batteries in which leakage was observed by visual inspection. The discharge performance was expressed as the discharge duration when discharging at 610Ω at 20°C with a final voltage of o, sV.

磐フ弄 正常なボタン電池では通常、電池を封口後、各電池構成
要素間の応力の関係が安定化するまでは経時的に電池総
高が若干減少するが、負極、亜鉛の腐食に伴う水素ガス
の発生が多い電池では電池内圧の上昇により電池総高が
増大する傾向が強くなる。従って、貯蔵期間中の電池総
高の増減により負極亜鉛の耐食性が評価できる。耐食性
が不十分々電池では電池総高が増大するほか、電池内圧
の上昇により漏液し易く、また、腐食による負極亜鉛の
消耗1表面の酸化によ)放電性能も劣化する。このよう
な観点で、第2表の試作実験結果は次のように評価され
る。先づ、洗1〜10は負極活物質として耐食性が極め
てすぐれ、通常、汞化率1.5優以上なら、防食剤の助
けなしで実用電池の負極として使用することが有望視さ
れている亜鉛合金(Pb、In、AIを含有する亜鉛合
金)を0.05wt%という極めて低水化率で電池を構
成して防食剤の効果を比較したものである。これらの結
果は、本発明の防食剤を添加した洗1〜7の場合がA8
〜10の従来例の防食剤を添加、又は無添加の場合より
極めて良好であることを示し、上記の耐食性亜鉛合金と
本発明の防食剤を併用することによりO,OS%以上の
汞化率で負極の耐食性を十分に確保でき、極めて低汞化
率の亜鉛アルカリ電池が構成できることを示している。
Normally, in a normal button battery, after the battery is sealed, the total height of the battery will decrease slightly over time until the stress relationship between each battery component stabilizes. In a battery that generates a large amount of gas, the total height of the battery tends to increase due to an increase in the internal pressure of the battery. Therefore, the corrosion resistance of the negative electrode zinc can be evaluated by the increase or decrease in the total height of the battery during the storage period. Batteries with insufficient corrosion resistance not only increase the total height of the battery, but also tend to leak due to an increase in battery internal pressure, and also deteriorate discharge performance (due to consumption of negative electrode zinc due to corrosion (1) surface oxidation. From this point of view, the prototype experiment results shown in Table 2 are evaluated as follows. First, Zinc has extremely good corrosion resistance as a negative electrode active material, and if it has a corrosion rate of 1.5 or more, it is considered promising to be used as a negative electrode in practical batteries without the aid of anticorrosive agents. A battery was constructed using an alloy (a zinc alloy containing Pb, In, and AI) with an extremely low water content of 0.05 wt%, and the effects of the anticorrosive agent were compared. These results show that in the case of washes 1 to 7 to which the anticorrosive agent of the present invention was added, A8
It was shown that the corrosion resistance of the conventional examples of ~10 to 10 was significantly better than that of the case without addition or no addition, and by using the above corrosion-resistant zinc alloy and the corrosion inhibitor of the present invention in combination, the corrosion rate of O,OS% or more was achieved. This shows that it is possible to ensure sufficient corrosion resistance of the negative electrode and to construct a zinc-alkaline battery with an extremely low rate of deterioration.

また、洗11〜18は現在、普及材料としてすでに3%
の水化率で実用化されている亜鉛合金(Pb、Inを含
有する亜鉛合金)の水化率を0.2%まで減少させて、
本発明の防食剤の効果を検討したものである。この場合
にも、A11〜16の実施例は轟16情18の従来例又
は無添加の場合とで、明白に電池性能に差異が見られ、
上記亜鉛合金と本発明の防食剤を併用すれば、0.2w
t%以上の汞化率で負極の耐食性が十分で実用性能にす
ぐれた低水化率の亜鉛アルカリ電池が構成できることを
示している。さらに、黒19〜26は、通常7〜10%
程度の水化率を必要とする純亜鉛粉を負極活物質に用い
た場合に本発明を適用してa優まで水化率を低減しても
十分な実用性のある電池を構成できることを示している
。また、五27〜38は防食剤の助けなしでも、はぼ負
極の耐食性が確保できる1、5〜3チの水化率の亜鉛合
金?負極に用いた場合に本発明の効果金倉のため確認し
たものであり、黒2了〜29及びA33〜36の実施例
の場合は、l630〜32及び、435〜38の従来例
又は無添加の場合よりさらに特性が向上しており、高度
の耐食性が確保されたことによシ品質が安定化したこと
を示している。
In addition, Washi 11 to 18 are currently popular materials with a rate of 3%.
By reducing the hydration rate of zinc alloy (zinc alloy containing Pb and In), which has been put into practical use with a hydration rate of 0.2%,
The effect of the anticorrosive agent of the present invention was investigated. In this case as well, there is a clear difference in battery performance between Examples A11-16 and the conventional example of Todoroki 16-18 or the case without additives.
If the above zinc alloy and the anticorrosion agent of the present invention are used together, 0.2w
This shows that it is possible to construct a zinc-alkaline battery with a low water conversion rate that has sufficient corrosion resistance of the negative electrode and excellent practical performance when the water conversion rate is t% or more. Furthermore, black 19-26 is usually 7-10%
It was shown that when pure zinc powder, which requires a hydration rate of about 100%, is used as a negative electrode active material, it is possible to construct a battery with sufficient practicality even if the hydration rate is reduced to a very low level by applying the present invention. ing. In addition, 527-38 are zinc alloys with a hydration rate of 1,5-3, which can ensure the corrosion resistance of the negative electrode without the aid of anticorrosive agents. The effect of the present invention was confirmed by Kanakura when used as a negative electrode. The properties were further improved compared to the previous case, indicating that the quality was stabilized by ensuring a high degree of corrosion resistance.

ム39.40はPbとInl含有する亜鉛合金とほぼ同
等の耐食性を有する、Pb、In、Gaを含有する亜鉛
合金を水化率0.2%として本発明の効果を調べたもの
で、439の実施例の場合はl611〜16のPb、I
nを含有した亜鉛合金での実施例と同様、0.2チの水
化率が実現できることを示している。
Figure 39.40 is a test of the effect of the present invention using a zinc alloy containing Pb, In, and Ga with a hydration rate of 0.2%, which has almost the same corrosion resistance as a zinc alloy containing Pb and Inl. In the example of 1611-16 Pb, I
This shows that a hydration rate of 0.2 h can be achieved, similar to the example with the zinc alloy containing n.

441〜50は、Pb、In、Al’e含有する耐食性
の改良された亜鉛合金とほぼ同等の耐食性全盲する亜鉛
合金として、期待されるものについて、水化率0.05
wt%で本発明の効果音調べたもので、いづれの実施例
(A41,43.45,47,49)も0.05%とい
う低水化率でも、Pbjrx、A11f含有する亜鉛合
金での41〜了の実施例と同様に、すぐれた電流性能金
示している。以上の場合はいづれも電解液中に防食剤を
溶解させて本発明の効果全検討した結果であるが、45
1,52.53は防食剤を電解液中に添加する方法以外
の本発明の実施例を示したもので、予め、氷化亜鉛合金
に防食剤全付層させたムロ1.予めセパレータもしくは
保液材に防食剤全含浸させたA52,53の何れもが電
解液に防食剤ti解させた場合とほぼ等しい効果が認め
られた。これらの場合、いづれも電池構成説に序々に防
食剤が電解液中に溶解して防食効果を発揮するもので、
特に、セパレータもしくは保液材に防食剤を含浸させた
場合には、電解液の浸透が速くなるので電池構成が容易
になり、生産性を高める効果もある。
441-50 is expected to be a completely blind zinc alloy with almost the same corrosion resistance as a zinc alloy with improved corrosion resistance containing Pb, In, and Al'e, and has a hydration rate of 0.05.
The sound effects of the present invention were investigated in terms of wt%, and in all Examples (A41, 43.45, 47, 49), even with a low water content of 0.05%, 41 Similar to the previous examples, it shows excellent current performance. In all of the above cases, the effects of the present invention were fully investigated by dissolving the anticorrosive agent in the electrolytic solution.
No. 1, 52.53 shows an example of the present invention other than the method of adding an anticorrosive agent to the electrolytic solution. Both A52 and A53, in which the separator or liquid retaining material was completely impregnated with the anticorrosive agent, had almost the same effect as when the anticorrosive agent was dissolved in the electrolyte. In all of these cases, according to the battery composition theory, the anticorrosive agent gradually dissolves in the electrolyte and exerts an anticorrosive effect.
In particular, when the separator or liquid-retaining material is impregnated with an anticorrosive agent, the electrolyte penetrates quickly, which facilitates battery construction and increases productivity.

実施例3 次に、代表的な防食剤として Go(−CH2−CH2−0÷1゜PO3H2’r選i
、J:、電解液中の溶解濃度と氷化」経陰粉の腐食計の
関係を調べた。
Example 3 Next, Go(-CH2-CH2-0÷1°PO3H2'r selection i) was used as a typical anticorrosive agent.
, J.: , ``The relationship between dissolved concentration in electrolyte and ice formation'' was investigated using a corrosive meter for powder.

氷化亜鉛合金粉は、Pb、In、Ale各々0.05w
t%含有する亜鉛合金の35〜150メツシユの粉末に
アルカリ溶液中で水銀滴下方式で0.05wt%の汞化
率で氷化したものを使用し、その10)秤取し、水酸化
カリウム40 wt%の水溶液に酸化亜鉛を飽和させ防
食剤を溶解させた電解液のS aa中に浸漬し、46°
Cで10日間放置して、その間に発生した水素ガス量を
測定した。
The frozen zinc alloy powder contains 0.05w each of Pb, In, and Ale.
10) Weighed 35 to 150 meshes of zinc alloy powder containing 35 to 150 meshes of potassium hydroxide, which was frozen by dropping mercury in an alkaline solution at a viscosity rate of 0.05 wt%. It was immersed in an electrolytic solution S aa in which zinc oxide was saturated in a wt% aqueous solution and an anticorrosion agent was dissolved, and the temperature was 46°.
C. for 10 days, and the amount of hydrogen gas generated during that time was measured.

電解液中の防食剤の濃度の調整は、防食剤を飽和させた
電解液と防食剤を含まない電解液を適宜の割合で混合し
て行った。その結果を第2図に示す。
The concentration of the anticorrosive agent in the electrolytic solution was adjusted by mixing an electrolytic solution saturated with the anticorrosive agent and an electrolytic solution containing no anticorrosive agent at an appropriate ratio. The results are shown in FIG.

第2図に見られるように、 (ダトo(−0M2−CH2−041゜PO3H2の濃
度が、約500ppm  以上で顕著な効果が見られ、
約1000p pm 以上では地利濃度の約3800p
pmまでほぼ一定した効果が得られる。この防食剤以外
にも、実施例1のA1〜7で用いた防食剤についても、
はぼ同様の効果が見られ1本発明の防食剤の適正濃度は
約1oooppm  以上から飽和濃度以下とするのが
好ましめことが判った。
As seen in Figure 2, a remarkable effect is seen when the concentration of (Dato(-0M2-CH2-041°PO3H2) is about 500 ppm or more,
Above about 1000p pm, the soil concentration is about 3800p.
A nearly constant effect can be obtained up to pm. In addition to this anticorrosive, the anticorrosives used in A1 to A7 of Example 1 were also
A similar effect was observed, and it was found that the appropriate concentration of the anticorrosive agent of the present invention is preferably from about 100 ppm or more to less than the saturation concentration.

発明の効果 本発明は新規に探索した防食剤の効果により亜鉛アルカ
リ電池の負極の汞化率全大幅に低減すること金可能にし
たものである。
Effects of the Invention The present invention has made it possible to significantly reduce the overall filtration rate of the negative electrode of a zinc-alkaline battery through the effect of a newly discovered anticorrosive agent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたボタン形酸化銀電池の
一部を断面にし醸面図、第2図は電解液中の防食剤溶解
量と水素ガス発生量との関係金示した図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
一一亜鈷負協 =>−−−1パレータ
Figure 1 shows a cross section of a button-shaped silver oxide battery used in an example of the present invention, and Figure 2 shows the relationship between the amount of anticorrosive dissolved in the electrolyte and the amount of hydrogen gas generated. It is a diagram. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
11 Ako Neikyo =>----1 Paleta

Claims (7)

【特許請求の範囲】[Claims] (1)負極活物質の防食剤として、ポリオキシエチレン
フェニールエーテル▲数式、化学式、表等があります▼
、 及びその末端官能基をホスホン酸基、スルホン酸基、又
はメチレンカルボン酸基で置換した誘導体▲数式、化学
式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、及び これら誘導体をアルカリ金属で中和した塩類の群より選
ばれた少なくとも一種を用いた亜鉛アルカリ電池。
(1) Polyoxyethylene phenyl ether is used as an anti-corrosion agent for negative electrode active materials ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, and derivatives whose terminal functional groups are substituted with phosphonic acid groups, sulfonic acid groups, or methylenecarboxylic acid groups A zinc-alkaline battery using at least one selected from the group of salts prepared by neutralizing these derivatives with an alkali metal.
(2)防食剤のオキシエチレンの重合度が1〜70であ
る特許請求の範囲第1項記載の亜鉛アルカリ電池。
(2) The zinc alkaline battery according to claim 1, wherein the degree of polymerization of oxyethylene as the anticorrosive agent is 1 to 70.
(3)防食剤を電解液中に溶解させた特許請求の範囲第
1項又は第2項記載の亜鉛アルカル電池。
(3) The zinc alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is dissolved in the electrolyte.
(4)防食剤を予めセパレータ、電解液保持材の双方又
は一方に含浸させた特許請求の範囲第1項又は第2項記
載の亜鉛アルカル電池。
(4) The zinc alkaline battery according to claim 1 or 2, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive agent in advance.
(5)防食剤を予め負極活物質の表面に付着させた特許
請求の範囲第1項又は第2項記載の亜鉛アルカリ電池。
(5) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is previously attached to the surface of the negative electrode active material.
(6)必須添加元素としてインジウム、鉛を、任意の添
加元素としてガリウムを含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が3〜0.2%である特許
請求の範囲第1項から第5項のいずれかに記載の亜鉛ア
ルカリ電池。
(6) A claim in which a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element is used as the negative electrode active material, and the filtration rate of the negative electrode active material is 3 to 0.2%. The zinc-alkaline battery according to any one of items 1 to 5.
(7)必須添加元素としてインジウム、鉛を含有し、さ
らにアルミニウム、ストロンチウム、カルシウム、マグ
ネシウム、バリウム、ニッケル、ガリウムの群より選ば
れた一種以上を含有する亜鉛合金を負極活物質に用い、
負極活物質の汞化率が1.5〜0.05%である特許請
求の範囲第1項から第5項のいずれかに記載の亜鉛アル
カリ電池。
(7) Using a zinc alloy as a negative electrode active material, which contains indium and lead as essential additive elements, and further contains one or more selected from the group of aluminum, strontium, calcium, magnesium, barium, nickel, and gallium;
The zinc-alkaline battery according to any one of claims 1 to 5, wherein the negative electrode active material has a hydrogenation rate of 1.5 to 0.05%.
JP7473487A 1987-03-27 1987-03-27 Zinc alkaline cell Pending JPS63239769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7473487A JPS63239769A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7473487A JPS63239769A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Publications (1)

Publication Number Publication Date
JPS63239769A true JPS63239769A (en) 1988-10-05

Family

ID=13555759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7473487A Pending JPS63239769A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS63239769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268081B1 (en) * 1996-07-02 2001-07-31 Ensci Inc Battery element containing efficiency improving additives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523116A (en) * 1975-06-24 1977-01-11 Varta Batterie Primary battery having zinc anode and alkali electrolyte
DE3436821A1 (en) * 1984-10-06 1986-04-17 Basf Ag, 6700 Ludwigshafen Ethoxylated aromatic nitrocarboxylic acids, their preparation and use as corrosion inhibitors and anti-corrosive agents containing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523116A (en) * 1975-06-24 1977-01-11 Varta Batterie Primary battery having zinc anode and alkali electrolyte
DE3436821A1 (en) * 1984-10-06 1986-04-17 Basf Ag, 6700 Ludwigshafen Ethoxylated aromatic nitrocarboxylic acids, their preparation and use as corrosion inhibitors and anti-corrosive agents containing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268081B1 (en) * 1996-07-02 2001-07-31 Ensci Inc Battery element containing efficiency improving additives

Similar Documents

Publication Publication Date Title
JP2770396B2 (en) Zinc alkaline battery
JP2525719B2 (en) Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode
JPH0371559A (en) Zinc alkaline battery
JPS63239769A (en) Zinc alkaline cell
JPS63248062A (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JPS63254671A (en) Zinc alkaline cell
JPS63248061A (en) Zinc alkaline battery
JPS63250061A (en) Zinc-alkaline battery
JPS63248064A (en) Zinc alkaline battery
JPS63248066A (en) Zinc alkaline battery
JPS63248063A (en) Zinc alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JPS63248065A (en) Zinc alkaline battery
JPS63250064A (en) Zinc-alkaline battery
JPH031456A (en) Zinc alkaline battery
JPS63248068A (en) Zinc alkaline battery
JPS63239770A (en) Zinc alkaline cell
JPH02270262A (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPS63244559A (en) Zinc alkaline battery
JPH05174826A (en) Zinc alkaline battery
JP3031037B2 (en) Manufacturing method of zinc alkaline battery
JPH02270264A (en) Zinc alkaline battery