JPH05174826A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH05174826A
JPH05174826A JP3343183A JP34318391A JPH05174826A JP H05174826 A JPH05174826 A JP H05174826A JP 3343183 A JP3343183 A JP 3343183A JP 34318391 A JP34318391 A JP 34318391A JP H05174826 A JPH05174826 A JP H05174826A
Authority
JP
Japan
Prior art keywords
zinc
battery
negative electrode
active material
anticorrosive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343183A
Other languages
Japanese (ja)
Inventor
Kinya Tada
欣也 多田
Masaaki Kurimura
正明 栗村
Mutsumi Yano
睦 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Sanyo Electric Co Ltd
Original Assignee
Sanyo Excell Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Excell Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Excell Co Ltd
Priority to JP3343183A priority Critical patent/JPH05174826A/en
Publication of JPH05174826A publication Critical patent/JPH05174826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To remarkably improve the corrosion resistance of a zinc electrode to improve its reliability and battery characteristics even if it is reactivated. CONSTITUTION:In a zinc alkali battery which uses zinc as a negative electrode active material and an alkali solution as an electrolyte, monopolyoxyethylene fatty acid alkyl amide, which is expressed by the following chamical formula, is used as antiseptics for the negative electrode active material; RCON (CH2CH2 O) nHo, where R is an alkyl group and n is a polymerization degree of polyoxyethylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極活物質として亜
鉛、電解液としてアルカリ水溶液、正極活物質として二
酸化マンガン,酸化銀,酸化水銀,水酸化ニッケル或い
は酸素等を用いた亜鉛アルカリ電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolytic solution, and manganese dioxide, silver oxide, mercury oxide, nickel hydroxide or oxygen as a positive electrode active material.

【0002】[0002]

【従来の技術】この種の電池においては、電解液の反応
性が高いため、電解液と亜鉛とが反応して腐食する。こ
れを防止すべく従来は、7〜10重量%程度の水銀を亜
鉛に添加して、反応を抑制していた。しかし、近年水銀
の人体への影響を鑑みて、水銀含有量を低減化するとい
う社会的ニーズが高まってきた。そこで、水銀を少量使
用するだけで充分な耐食性を確保すべく、種々の耐食性
亜鉛合金が開発、提案されている。例えば、亜鉛中にイ
ンジウム,鉛,ガリウム,アルミニウム,ビスマスなど
を添加した耐食性亜鉛合金が既に実用化されている。
2. Description of the Related Art In this type of battery, the electrolytic solution has a high reactivity, so that the electrolytic solution reacts with zinc to corrode. In order to prevent this, conventionally, about 7 to 10% by weight of mercury was added to zinc to suppress the reaction. However, in recent years, in view of the influence of mercury on the human body, social needs for reducing the mercury content have increased. Therefore, various corrosion resistant zinc alloys have been developed and proposed in order to secure sufficient corrosion resistance by using a small amount of mercury. For example, a corrosion resistant zinc alloy in which indium, lead, gallium, aluminum, bismuth, etc. are added to zinc has already been put into practical use.

【0003】ところで、これらの耐食性亜鉛合金を用い
た場合には、汞化率(負極亜鉛中の水銀の重量百分率)
が0.15%程度であっても、純亜鉛の場合の汞化率7
〜10%に相当する耐食性が得られる。しかしながら、
無汞化とした場合には上記耐食性亜鉛合金を用いた場合
であっても耐食性は十分とは言えず、この結果防食剤を
用いざるを得なかった。
By the way, in the case of using these corrosion-resistant zinc alloys, the conversion ratio (weight percentage of mercury in the negative electrode zinc).
Is about 0.15%, the conversion rate is 7 in the case of pure zinc
Corrosion resistance equivalent to 10% is obtained. However,
In the case where the corrosion-resistant zinc alloy is used, the corrosion resistance cannot be said to be sufficient even when the above-mentioned corrosion-resistant zinc alloy is used, and as a result, the anticorrosive agent had to be used.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来、上記
防食剤としては、エチレングリコールやそのアルキルエ
ーテルなどが提案されており、これらの防食剤を電解液
中に少量添加して亜鉛負極の防食を図っていた。しかし
ながら、いずれの防食剤を用いた場合であっても顕著な
防食効果は認められず、汞化率を低減させるための有効
な手段になっていないのが現状である。
By the way, conventionally, ethylene glycol and its alkyl ethers have been proposed as the above-mentioned anticorrosive agents, and a small amount of these anticorrosive agents is added to the electrolytic solution to prevent corrosion of the zinc negative electrode. I was trying. However, no remarkable anticorrosive effect is observed regardless of which anticorrosive agent is used, and the present situation is that it is not an effective means for reducing the tarnishing rate.

【0005】このため、電池の貯蔵中に亜鉛が電解液と
反応して水素ガスが発生し、電池内圧が上昇する結果、
電解液が漏出したり、電池が変形し、著しい場合には電
池が破裂することがある等の問題を有していた。しか
も、亜鉛が腐食すれば電池容量が低下するため、長期間
貯蔵後に電池性能が著しく劣化する等の課題を有してい
た。
Therefore, during storage of the battery, zinc reacts with the electrolytic solution to generate hydrogen gas, and the internal pressure of the battery rises.
There are problems that the electrolyte may leak, the battery may be deformed, and in extreme cases, the battery may burst. Moreover, if zinc corrodes, the battery capacity decreases, and there is a problem that the battery performance is significantly deteriorated after long-term storage.

【0006】本発明は上記従来の課題を考慮して、無汞
化とした場合であっても亜鉛負極の耐食性を向上させ
て、信頼性と電池特性とを飛躍的に向上させることがで
きる亜鉛アルカリ電池の提供を目的とするものである。
In consideration of the above-mentioned conventional problems, the present invention can improve the corrosion resistance of the zinc negative electrode even when it is made unconstrained, and can dramatically improve the reliability and the battery characteristics. The purpose is to provide an alkaline battery.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、負極活物質として亜鉛を用い、電解液とし
てアルカリ水溶液を用いる亜鉛アルカリ電池において、
上記負極活物質の防食剤として、下記化2に示すモノポ
リオキシエチレン脂肪酸アルキルアミドが用いられるこ
とを特徴とする。
In order to achieve the above object, the present invention provides a zinc-alkaline battery using zinc as a negative electrode active material and an alkaline aqueous solution as an electrolytic solution.
A monopolyoxyethylene fatty acid alkylamide represented by the following chemical formula 2 is used as an anticorrosive agent for the negative electrode active material.

【0008】[0008]

【化2】 [Chemical 2]

【0009】[0009]

【作用】本発明で用いる防食剤の作用は定かではない
が、以下のように推察される。アルカリ電解液中におけ
る亜鉛の腐食反応は下記化3及び化4で示される。
The action of the anticorrosive agent used in the present invention is not clear, but it is presumed as follows. The corrosion reaction of zinc in the alkaline electrolyte is represented by the following chemical formulas 3 and 4.

【0010】[0010]

【化3】 [Chemical 3]

【0011】[0011]

【化4】 [Chemical 4]

【0012】ところで、本発明の防食剤が電解液中に存
在すると、本発明の防食剤は活物質表面に吸着されて被
膜を形成する。このため、アノード反応の原因となる水
酸イオンの亜鉛負極への接近が妨害されると共に、カソ
ード反応に必要な水分子が亜鉛負極表面近傍に存在でき
なくなる。したがって、上記化3及び化4に示すアノー
ド反応とカソード反応とが起こり難くなるため、亜鉛の
腐食が抑制されることになる。即ち、本発明の防食剤を
添加することにより、腐蝕反応に寄与する亜鉛表面が防
食剤で被われるので、腐食が抑制できることになる。
When the anticorrosive agent of the present invention is present in the electrolytic solution, the anticorrosive agent of the present invention is adsorbed on the surface of the active material to form a film. Therefore, the access of hydroxide ions, which causes the anode reaction, to the zinc negative electrode is hindered, and water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode. Therefore, the anodic reaction and the cathodic reaction shown in the above Chemical Formulas 3 and 4 are less likely to occur, so that the corrosion of zinc is suppressed. That is, by adding the anticorrosive agent of the present invention, the zinc surface that contributes to the corrosion reaction is covered with the anticorrosive agent, so that the corrosion can be suppressed.

【0013】[0013]

【実施例】【Example】

(予備実験)本発明及び従来例の亜鉛アルカリ電池に用
いられる防食剤を用い、これら防食剤がアルカリ溶液中
でどれほどの腐食抑制効果を有するかを調べたので、そ
の結果を下記表1に示す。尚、本発明の防食剤は電解液
に対する溶解度が小さいため、アセトンなどの有機溶媒
に所定量だけ溶解させ、この溶液に亜鉛粉を投入した後
攪拌し、亜鉛表面に防食剤を塗布するという方法を用い
た。
(Preliminary Experiment) Using the anticorrosion agents used in the zinc alkaline batteries of the present invention and the conventional examples, it was investigated how much these anticorrosion agents had in the alkaline solution, and the results are shown in Table 1 below. .. Since the anticorrosive agent of the present invention has a low solubility in an electrolytic solution, it is dissolved in a predetermined amount in an organic solvent such as acetone, zinc powder is added to this solution, and the mixture is stirred to apply the anticorrosive agent to the zinc surface. Was used.

【0014】実験条件は、40重量%の水酸化カリウム
水溶液(ZnOが飽和されている)5mlに、下記表1
に示す防食剤を亜鉛活物質に対して0.01重量%塗布
した亜鉛粉を10g投入し、しかる後60℃の温度下に
おいて15日間放置して発生した水素ガス量を測定する
という条件である。尚、比較として、ポリエチレングリ
コール(n=5)、ポリオキシアルキルエーテル、或い
はジポリオキシエチレン脂肪酸アルキルアミドを亜鉛活
物質に対して0.01重量%塗布したものや、防食剤を
添加しないもの、及び防食剤を添加せず且つ汞化率を
0.15%としたものについても併せて水素ガス発生量
を測定した。
The experimental conditions were as follows: 5 ml of 40 wt% potassium hydroxide aqueous solution (saturated with ZnO) was added to Table 1 below.
The condition is that 10 g of zinc powder in which 0.01% by weight of the anticorrosive agent is applied to the zinc active material is added, and the mixture is left at 60 ° C. for 15 days to measure the amount of hydrogen gas generated. .. For comparison, polyethylene glycol (n = 5), polyoxyalkyl ether, or dipolyoxyethylene fatty acid alkylamide applied to the zinc active material in an amount of 0.01% by weight, or one containing no anticorrosive agent, Also, the hydrogen gas generation amount was also measured for the case where the corrosion rate was 0.15% and no corrosion inhibitor was added.

【0015】[0015]

【表1】 [Table 1]

【0016】上記表1から明らかなように、防食剤とし
てモノポリオキシエチレン脂肪酸アルキルアミド(実験
No.1〜10)を用いると、水素ガス発生量が55〜
100μl/g・日であるのに対して、防食剤を添加し
ないものでは(実験No.15)では水素ガス発生量が
600μl/g・日であることが認められる。特に、ア
ルキル基の炭素数が1〜30で、ポリオキシエチレンの
重合度(n)が2〜15のもの(実験No.2〜5、7
〜9)では水素ガス発生量が55〜70μl/g・日で
あり、その他の防食剤〔実験No.11のジポリオキシ
エチレン脂肪酸アルキルアミド(水素ガス発生量:10
0μl/g・日)、実験No.12のポリエチレングリ
コール(水素ガス発生量:250μl/g・日)、実験
No.13のポリオキシエチレンアルキルエーテル(水
素ガス発生量:250μl/g・日)〕よりもガス発生
量が極めて少なく、汞化率0.15%のもの(実験N
o.15,水素ガス発生量:60μl/g・日)と同等
であるあることが認められる。したがって、アルキル基
の炭素数は1〜30であることが望ましく、またポリオ
キシエチレンの重合度(n)は2〜15であることが望
ましい。
As is clear from Table 1 above, when monopolyoxyethylene fatty acid alkylamide (Experiment No. 1 to 10) is used as the anticorrosive agent, the hydrogen gas generation amount is 55 to 55.
It is recognized that the amount of hydrogen gas generated is 600 μl / g · day when the anticorrosive agent is not added (Experiment No. 15), whereas the amount is 100 μl / g · day. In particular, the alkyl group having 1 to 30 carbon atoms and the polyoxyethylene having a polymerization degree (n) of 2 to 15 (Experiment Nos. 2 to 5, 7
9 to 9), the hydrogen gas generation amount was 55 to 70 μl / g · day, and other anticorrosive agents [Experiment No. 11 dipolyoxyethylene fatty acid alkylamide (hydrogen gas generation rate: 10
0 μl / g · day), Experiment No. No. 12 polyethylene glycol (hydrogen gas generation amount: 250 μl / g · day), Experiment No. 13 polyoxyethylene alkyl ether (hydrogen gas generation rate: 250 μl / g · day)], the gas generation rate is extremely smaller and the conversion rate is 0.15% (Experiment N
o. 15, hydrogen gas generation rate: 60 μl / g · day). Therefore, the carbon number of the alkyl group is preferably 1 to 30, and the polymerization degree (n) of polyoxyethylene is preferably 2 to 15.

【0017】(実施例)次に、上記予備実験で得られた
結果に基づいて代表的な防食剤を選び、これを図1に示
すLR6形電池に適用した。 〔実施例〕図1において1は正極缶であり、この正極缶
1内には二酸化マンガンを主体とする正極合剤5と、セ
パレータ6と、亜鉛負極7とが配設されている。また、
上記正極缶1の開口部には封口ガスケット3を介して負
極端子板2が取り付けられており、この負極端子板2は
集電棒4を介して上記亜鉛負極7と電気的に接続されて
いる。
(Example) Next, a representative anticorrosive agent was selected based on the results obtained in the preliminary experiments and applied to the LR6 type battery shown in FIG. EXAMPLE 1 In FIG. 1, reference numeral 1 denotes a positive electrode can, and in the positive electrode can 1, a positive electrode mixture 5 mainly composed of manganese dioxide, a separator 6 and a zinc negative electrode 7 are arranged. Also,
A negative electrode terminal plate 2 is attached to the opening of the positive electrode can 1 via a sealing gasket 3, and the negative electrode terminal plate 2 is electrically connected to the zinc negative electrode 7 via a collector rod 4.

【0018】ここで、上記亜鉛負極7は、20〜200
メッシュの無汞化亜鉛合金粉を40重量%の水酸化カリ
ウム水溶液(ZnOが飽和されている)中において、ポ
リアクリル酸でゲル化することにより作製した。また、
防食剤としては下記化5で表されるモノポリオキシエチ
レン脂肪酸アルキルアミドを用い、この塩を亜鉛重量に
対して0.01重量%相当だけ添加している。
Here, the zinc negative electrode 7 is 20 to 200.
The mesh-free powdered zinc alloy powder was prepared by gelling with polyacrylic acid in a 40 wt% potassium hydroxide aqueous solution (ZnO is saturated). Also,
As the anticorrosive, a monopolyoxyethylene fatty acid alkylamide represented by the following chemical formula 5 is used, and this salt is added in an amount corresponding to 0.01% by weight based on the weight of zinc.

【0019】[0019]

【化5】 [Chemical 5]

【0020】このようにして作製した電池を、以下
(A)電池と称する。 〔比較例1〕防食剤としてジポリオキシエチレン脂肪酸
アルキルアミドを用いる他は、上記実施例と同様にして
電池を作製した。このようにして作製した電池を、以下
(X1 )電池と称する。 〔比較例2〕防食剤としてポリエチレングリコールを用
いる他は、上記実施例と同様にして電池を作製した。
The battery thus manufactured is hereinafter referred to as (A) battery. [Comparative Example 1] A battery was produced in the same manner as in the above-described example except that dipolyoxyethylene fatty acid alkylamide was used as the anticorrosive agent. The battery thus manufactured is hereinafter referred to as a (X 1 ) battery. [Comparative Example 2] A battery was produced in the same manner as in the above-mentioned example except that polyethylene glycol was used as the anticorrosive agent.

【0021】このようにして作製した電池を、以下(X
2 )電池と称する。 〔比較例3〕防食剤としてポリオキシエチレンアルキル
エーテルを用いる他は、上記実施例と同様にして電池を
作製した。このようにして作製した電池を、以下
(X3 )電池と称する。 〔比較例4〕防食剤を添加しない他は、上記実施例と同
様にして電池を作製した。
The battery thus prepared is
2 ) Called battery. [Comparative Example 3] A battery was produced in the same manner as in the above-described example except that polyoxyethylene alkyl ether was used as the anticorrosive agent. The battery thus manufactured is hereinafter referred to as (X 3 ) battery. [Comparative Example 4] A battery was produced in the same manner as in the above-mentioned example except that the anticorrosive agent was not added.

【0022】このようにして作製した電池を、以下(X
4 )電池と称する。 〔比較例5〕防食剤を添加せず、且つ汞化率を0.15
%とする他は、上記実施例と同様にして電池を作製し
た。このようにして作製した電池を、以下(X5 )電池
と称する。 〔実験1〕本発明の(A)電池及び比較例の(X1 )電
池〜(X5 )電池を60℃で30日間貯蔵した後に、放
電性能(サンプル数:n=5)と、電池内ガス量(サン
プル数:n=20)と、漏液個数(サンプル数:n=3
0であって目視判定)とを調べたので、その結果を下記
表2に示す。尚、放電性能は、20℃の雰囲気下におい
て、電池電圧が0.9V(抵抗:3.9Ω)に低下する
までの放電持続時間である。
The battery thus prepared is
4 ) Called battery. [Comparative Example 5] A corrosion inhibitor was not added, and the conversion rate was 0.15.
A battery was produced in the same manner as in the above example except that the percentage was changed to%. The battery thus manufactured is hereinafter referred to as a (X 5 ) battery. [Experiment 1] The battery (A) of the present invention and the batteries (X 1 ) to (X 5 ) of Comparative Examples were stored at 60 ° C. for 30 days, and then discharged (sample number: n = 5) and Gas amount (sample number: n = 20) and number of leaked liquids (sample number: n = 3)
It was 0 and visually determined). The results are shown in Table 2 below. The discharge performance is the discharge duration until the battery voltage drops to 0.9 V (resistance: 3.9Ω) in an atmosphere of 20 ° C.

【0023】[0023]

【表2】 [Table 2]

【0024】上記表2より、防食剤としてモノポリオキ
シエチレン脂肪酸アルキルアミドを用いた本発明の
(A)電池では、放電持続時間が5.20時間、電池内
ガス量が1.20cc、漏液個数が0個であって、汞化
率0.15%の(X5 )電池(放電持続時間:5.20
時間、電池内ガス量:1.20、漏液個数:0個)と同
等の電池性能を有していることが認められる。これに対
して、防食剤としてジポリオキシエチレン脂肪酸アルキ
ルアミド、ポリエチレングリコール、或いはポリオキシ
エチレンアルキルエーテルをそれぞれ用いた比較例の
(X1 )電池〜(X3 )電池、及び防食剤を添加しない
(X4 )電池では、本発明の(A)電池より放電持続時
間がより短く、且つ電池内ガス量が多くなっていること
が認められる。また、(X1 )電池を除き、漏液個数も
極めて多くなっていることが認められる。 〔実験2〕防食剤として、下記化6に示すモノポリオキ
シエチレン脂肪酸アルキルアミドを用い、添加量と60
℃で30日間保存した後の電池内ガス量との関係を調べ
たので、その結果を図2に示す。
From Table 2 above, in the battery (A) of the present invention using a monopolyoxyethylene fatty acid alkylamide as an anticorrosive agent, the discharge duration was 5.20 hours, the amount of gas in the battery was 1.20 cc, and the number of leaked liquids. (X 5 ) battery with a discharge rate of 0.15% (discharge duration: 5.20)
It is recognized that the battery performance is equivalent to the time, the amount of gas in the battery: 1.20, the number of leaked liquids: 0). On the other hand, Comparative Examples (X 1 ) to (X 3 ) batteries using dipolyoxyethylene fatty acid alkylamide, polyethylene glycol, or polyoxyethylene alkyl ether as anticorrosive agents, and no anticorrosive agents are added. It is recognized that the (X 4 ) battery has a shorter discharge duration and a larger amount of gas in the battery than the (A) battery of the present invention. In addition, it is recognized that the number of leaked liquids is extremely large except for the (X 1 ) battery. [Experiment 2] A monopolyoxyethylene fatty acid alkylamide represented by the following chemical formula 6 was used as an anticorrosive,
The relationship with the amount of gas in the battery after storage at 30 ° C. for 30 days was investigated, and the results are shown in FIG.

【0025】[0025]

【化6】 [Chemical 6]

【0026】図2から明らかなように、防食剤の添加量
が10ppm以上で顕著にガス量が減少し、100pp
m以上では略一定の値となっていることが認められる。
したがって、本発明の防食剤の濃度は10ppm〜10
0ppm程度であることが望ましい。
As is clear from FIG. 2, when the amount of the anticorrosive agent added is 10 ppm or more, the gas amount is remarkably reduced to 100 pp.
It is recognized that the value is substantially constant above m.
Therefore, the concentration of the anticorrosive agent of the present invention is 10 ppm to 10 ppm.
It is preferably about 0 ppm.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、無
汞化による低公害化を図りつつ、亜鉛負極の耐食性を向
上させることができるという効果を奏する。この結果、
亜鉛アルカリ電池の信頼性と電池特性とを飛躍的に向上
させることができるといった優れた効果を奏する。
As described above, according to the present invention, it is possible to improve the corrosion resistance of the zinc negative electrode while achieving the pollution reduction due to the smoothness. As a result,
It has an excellent effect that the reliability and battery characteristics of the zinc-alkaline battery can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例に係るLR6型電池の断面図であ
る。
FIG. 1 is a cross-sectional view of an LR6 type battery according to an example of the present invention.

【図2】モノポリオキシエチレン脂肪酸アルキルアミド
の添加量と電池内ガス量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of monopolyoxyethylene fatty acid alkylamide added and the amount of gas in the battery.

【符号の説明】[Explanation of symbols]

5 正極合剤 6 セパレータ 7 亜鉛負極 5 Positive electrode mixture 6 Separator 7 Zinc negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 睦 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsumi Yano 2-18 Keihan Hondori, Moriguchi-shi Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質として亜鉛を用い、電解液と
してアルカリ水溶液を用いる亜鉛アルカリ電池におい
て、 上記負極活物質の防食剤として、下記化1に示すモノポ
リオキシエチレン脂肪酸アルキルアミドが用いられるこ
とを特徴とする亜鉛アルカリ電池。 【化1】
1. In a zinc-alkaline battery using zinc as a negative electrode active material and an alkaline aqueous solution as an electrolyte, a monopolyoxyethylene fatty acid alkylamide represented by the following chemical formula 1 is used as a corrosion inhibitor for the negative electrode active material. Characteristic zinc alkaline battery. [Chemical 1]
JP3343183A 1991-12-25 1991-12-25 Zinc alkaline battery Pending JPH05174826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343183A JPH05174826A (en) 1991-12-25 1991-12-25 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343183A JPH05174826A (en) 1991-12-25 1991-12-25 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPH05174826A true JPH05174826A (en) 1993-07-13

Family

ID=18359556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343183A Pending JPH05174826A (en) 1991-12-25 1991-12-25 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH05174826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1390995A1 (en) * 2001-03-15 2004-02-25 Massey University Rechargeable zinc electrode
US6872489B2 (en) 2002-02-27 2005-03-29 Rovcal, Inc. Alkaline cell with gassing inhibitors
US7226696B2 (en) 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1390995A1 (en) * 2001-03-15 2004-02-25 Massey University Rechargeable zinc electrode
EP1390995A4 (en) * 2001-03-15 2009-03-25 Univ Massey Rechargeable zinc electrode
US7811704B2 (en) 2001-03-15 2010-10-12 Massey University Method of making zinc electrode including a fatty acid
EP2434566A1 (en) * 2001-03-15 2012-03-28 Massey University Rechargeable zinc electrode
US8361655B2 (en) 2001-03-15 2013-01-29 Anzode, Inc. Battery zinc electrode composition
US6872489B2 (en) 2002-02-27 2005-03-29 Rovcal, Inc. Alkaline cell with gassing inhibitors
US7169504B2 (en) 2002-02-27 2007-01-30 Rovcal, Inc. Alkaline cell with performance enhancing additives
US7226696B2 (en) 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives
US7749654B2 (en) 2002-02-27 2010-07-06 Rovcal, Inc. Alkaline cell with performance enhancing additives
US8691439B2 (en) 2002-02-27 2014-04-08 Spectrum Brands, Inc. Alkaline cell with performance enhancing additives

Similar Documents

Publication Publication Date Title
US5128222A (en) Zinc-alkaline batteries
JP2770396B2 (en) Zinc alkaline battery
JP2525719B2 (en) Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode
JPS61203564A (en) Alkaline battery
JPH05174826A (en) Zinc alkaline battery
JPH0371559A (en) Zinc alkaline battery
JPH08222194A (en) Button type alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JPH05151975A (en) Alkaline zinc battery
JPH0760685B2 (en) Zinc alkaline battery
JPH0574460A (en) Zinc alkaline battery
JP2935855B2 (en) Alkaline battery
JPH0513070A (en) Alkaline battery
JPH031456A (en) Zinc alkaline battery
JPS6180758A (en) Alkali battery
JPH08190901A (en) Button type alkaline battery
JP3031037B2 (en) Manufacturing method of zinc alkaline battery
JPH0777131B2 (en) Zinc alkaline battery
JPS63248064A (en) Zinc alkaline battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JPS63250063A (en) Zinc-alkaline battery
JPH0513071A (en) Alkaline battery
JPS63276871A (en) Zinc alkali cell
JPH0384861A (en) Zinc alkaline battery
JPS63244559A (en) Zinc alkaline battery