JPS63239770A - Zinc alkaline cell - Google Patents

Zinc alkaline cell

Info

Publication number
JPS63239770A
JPS63239770A JP7473587A JP7473587A JPS63239770A JP S63239770 A JPS63239770 A JP S63239770A JP 7473587 A JP7473587 A JP 7473587A JP 7473587 A JP7473587 A JP 7473587A JP S63239770 A JPS63239770 A JP S63239770A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
corrosion
anticorrosive agent
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7473587A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7473587A priority Critical patent/JPS63239770A/en
Publication of JPS63239770A publication Critical patent/JPS63239770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the amount of mercury which is used for gelatinization of a negative electrode by using alkylbenzenesulfonate and at least one selected from a salt group which are made by neutralizing the alkylbenzenesulfonate with an alkaline metal as the anticorrosive of a negative electrode active material. CONSTITUTION:As an anticorrosive to suppress the corrosion of a negative electrode, alkylbenzenesulfonate and at least one selected from a salt group which are made by neutralizing the alkylbenzenesulfonate with an alkaline metal are used. When the anticorrosive is absorbed to the surface of the negative electrode and formed into a membrane, hydroxide ions to be a cause of the anode reaction are disturbed from approaching the zinc negative electrode, while water molecules necessary for the cathode reaction can not exist near the surface of the zinc negative electrode, and the corrosion of the zinc is suppressed. The gelatinization rate of the negative electrode can be reduced accordingly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀酸
化水銀、酸素、水酸化ニッケル等を用いる亜鉛アルカリ
電池の亜鉛負極の本化に用いる水銀量の低減に有効な手
段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a zinc alkali solution using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide mercury oxide, oxygen, nickel hydroxide, etc. as a positive electrode active material. This provides an effective means for reducing the amount of mercury used in zinc negative electrodes for batteries.

従来の技術 従来、この種の亜鉛負極の電解液の腐食を抑制するため
、従来から7〜IO重量%程度の水銀を亜鉛に添加する
方法が工業的に採られて来た。しがし、近年、低公害化
のため、水銀含有量の低減化の社会的ニーズが高まり、
少量の水銀の使用で十分な耐食性を確保するため、種々
の耐食性亜鉛合金が開発、又は提案されている。例えば
、亜鉛中にインジウム、鉛、ガリウム、アルミニウム、
などを添加した耐食性亜鉛合金粉末が有力なものとされ
、インジウムと鉛を添加した亜鉛合金がすでに実用化さ
れ、さらに耐食性を向上させるため、インジウム、鉛に
加えて、アルミニウムを、必要に応じてさらにガリウム
を添加した亜鉛合金が代表的なものとして検討されてい
る。これらの耐食性亜鉛合金を用いた場合、水化率(負
極亜鉛中の水銀の重量百分率)を減少させても耐食性が
確保でき、インジウムと鉛を添加した亜鉛合金の場合で
汞化率3重量%(以下%という)さらにこれを改良した
上記のインジウ、ム、鉛に加えてアルミニウム、必要に
応じてガリウムを添加した亜鉛合金では汞化率1.5%
程度でも純亜鉛の場合の水化率7〜lO%に相当する耐
食性が得られる。水化率を低減させる方法として耐食性
亜鉛合金を用いることが有効な之とは上述の例に見られ
る通りであるが、他の有効な方法として、防食剤の添加
が考えられ、電池内の水銀含有量を極限にまで減少させ
る技術として耐食性亜鉛合金と防食剤の併用は不可欠と
考えられる。
BACKGROUND OF THE INVENTION Conventionally, in order to suppress corrosion of the electrolyte of this type of zinc negative electrode, a method of adding about 7 to IO weight % of mercury to zinc has been used industrially. However, in recent years, there has been an increasing social need to reduce mercury content in order to reduce pollution.
Various corrosion-resistant zinc alloys have been developed or proposed in order to ensure sufficient corrosion resistance with the use of a small amount of mercury. For example, indium, lead, gallium, aluminum,
Corrosion-resistant zinc alloy powder with the addition of indium and lead is considered to be effective, and zinc alloy with the addition of indium and lead has already been put into practical use.In order to further improve corrosion resistance, in addition to indium and lead, aluminum can be added as needed. Furthermore, zinc alloys to which gallium is added are being considered as a representative example. When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even if the hydration rate (weight percentage of mercury in negative electrode zinc) is reduced, and in the case of zinc alloys containing indium and lead, the hydration rate is 3% by weight. (hereinafter referred to as %) This is further improved in a zinc alloy in which in addition to the above-mentioned indium, aluminum, and lead, aluminum and gallium are added as necessary, the oxidation rate is 1.5%.
Corrosion resistance equivalent to a hydration rate of 7 to 10% in the case of pure zinc can be obtained. As seen in the above example, the use of a corrosion-resistant zinc alloy is an effective method for reducing the hydration rate, but another effective method is to add an anticorrosion agent, which reduces mercury in the battery. The combined use of corrosion-resistant zinc alloys and anticorrosive agents is considered essential as a technique to reduce the content to the absolute minimum.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防食
のため、エチレングリコール等のグリコール類、メルカ
プトカルボン酸、アミノナフタリンスルホン酸、アゾナ
フタリン類、カルバゾール、シアンヒドリン、2−メル
トカプトベンゾチアゾール等のチアゾール誘導体ベンゾ
トリアゾール又はその誘導体など枚挙にいとまのない種
々の防食剤の適用が提案されている。これらの防食剤は
電解液中に少量を添加するのが一般的な適用法である。
Conventionally, in order to prevent corrosion of a zinc negative electrode in an alkaline aqueous electrolyte, glycols such as ethylene glycol, mercaptocarboxylic acid, aminonaphthalene sulfonic acid, azonaphthalenes, carbazole, cyanohydrin, and thiazoles such as 2-meltocaptobenzothiazole have been used. Application of various anticorrosive agents, including benzotriazole derivatives and derivatives thereof, has been proposed. The general application method is to add a small amount of these anticorrosive agents to the electrolyte.

しかし、何れの防食剤も顕著な防食効果が認められず、
氷化率を低減させるための有効な手段になっていないの
が現状である。
However, no significant anticorrosion effect was observed with any of the anticorrosive agents.
Currently, there is no effective means to reduce the rate of ice formation.

発明が解決しようとする問題点 亜鉛負極の防食が不十分な場合は、電池の貯蔵中に亜鉛
の消耗とともに水素ガスが発生し、電池内圧が上昇して
電解液の漏出、電池の変形の原因となり、著しい場合は
電池の破裂の原因となる。
Problems to be Solved by the Invention If the corrosion protection of the zinc negative electrode is insufficient, hydrogen gas will be generated as the zinc is consumed during storage of the battery, and the internal pressure of the battery will increase, causing leakage of electrolyte and deformation of the battery. In severe cases, this may cause the battery to explode.

しかも、亜鉛の腐食は電池の容量低下など貯蔵後の電池
性能の劣化をもたらす原因ともなる。
Furthermore, corrosion of zinc also causes deterioration in battery performance after storage, such as a decrease in battery capacity.

本発明は上記の諸問題の発生を防止するに十分な亜鉛負
極の耐食性を汞化率を極力低減化した状態で確保するこ
とを目的とする。その方法として、従来から提案されて
いる前述の各種防食剤以上に防食効果が太き(、耐アル
カリ性で、しかも放電性能にも悪影響のない防腐剤を新
たに探索して低汞化率の亜鉛負極を備えた電池に適用し
、実用的な電池の緒特性を損うことな(、水銀含有率の
小さい低公害の亜鉛アルカリ電池を提供するものである
The object of the present invention is to ensure sufficient corrosion resistance of a zinc negative electrode to prevent the occurrence of the above-mentioned problems while minimizing the corrosion rate. As a method to do this, we will search for a new preservative that has a greater anticorrosion effect than the various anticorrosive agents previously proposed (i.e., is alkaline resistant and does not have a negative effect on discharge performance). The present invention is applied to batteries equipped with a negative electrode, and provides a low-pollution zinc-alkaline battery with a low mercury content without impairing the performance characteristics of a practical battery.

問題点を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウムな
どを主成分とするアルカリ水溶液、負極活物質に亜鉛、
又は亜鉛合金、正極活物質に二酸化マンガン、酸化銀、
酸素、オキシ水酸化ニッケル、酸化水銀などを用いる、
いわゆる亜鉛アルカリ電池の負極の腐食を抑制する防食
剤として、アルキルベンゼンスルホネート 1種を用いるものである。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, etc. as the main components as an electrolyte, and zinc and zinc as the negative electrode active material.
Or zinc alloy, manganese dioxide, silver oxide as positive electrode active material,
Using oxygen, nickel oxyhydroxide, mercury oxide, etc.
One type of alkylbenzene sulfonate is used as an anticorrosive agent to suppress corrosion of the negative electrode of a so-called zinc-alkaline battery.

これらの防食剤の適用方法は、電解液中への添加、セパ
レータ、保液材の双方又は一方への含浸、負極活物質表
面への付着などの方法を採ることができる。また、上記
防食剤はアルキル基(R)中の炭素数が5〜35のもの
が好ましい。
These anticorrosives can be applied by adding them into an electrolytic solution, impregnating them into both or one of a separator and a liquid retaining material, and attaching them to the surface of a negative electrode active material. Moreover, the above-mentioned anticorrosive agent preferably has 5 to 35 carbon atoms in the alkyl group (R).

また、負極活物質には純粋亜鉛、又は亜鉛合金を用いる
が、特に大幅な水化率の低減を実現するには耐食性亜鉛
合金と′上記防食剤を併用するのが効果的である。例え
ば、インジウム、鉛を添加した亜鉛合金、あるいはこれ
にガリウムを添加した亜鉛合金と併用すると0.2%の
水化率でも負極の耐食性が十分な電池が得られ、さらに
上記の亜鉛合金の添加元素に加え、アルミニウム、スト
ロンチウム、カルシウム、マグネシウム、カリウム、ニ
ッケルのうち少くとも1種を含有する亜鉛合金を併用す
ると0.05%の氷化率でも負極の耐食性が確保できる
Furthermore, although pure zinc or a zinc alloy is used as the negative electrode active material, it is particularly effective to use a corrosion-resistant zinc alloy and the above-mentioned anticorrosive agent in combination to achieve a significant reduction in the hydration rate. For example, when used in combination with a zinc alloy to which indium and lead are added, or a zinc alloy to which gallium is added, a battery with sufficient corrosion resistance of the negative electrode can be obtained even at a hydration rate of 0.2%; If a zinc alloy containing at least one of aluminum, strontium, calcium, magnesium, potassium, and nickel is used in combination with the zinc alloy, the corrosion resistance of the negative electrode can be ensured even at a freezing rate of 0.05%.

作  用 本発明で用いる防食剤の作用機構は不明確であるが、下
記のように推察される。
Effect The mechanism of action of the anticorrosive agent used in the present invention is unclear, but is presumed to be as follows.

本発明の防食剤はほぼ直線形の分子構造で、一方の端に
極性基としてスルホン酸基を、逆の端に疎水性のアルキ
ル基を有しており、電解液中に添加すると溶解又は分散
して極性基が負極の亜鉛又は亜鉛合金表面に吸着するも
のと考えられる。亜鉛のアルカリ電解液中での腐食反応
は次式で示される。
The anticorrosive agent of the present invention has a nearly linear molecular structure with a sulfonic acid group as a polar group at one end and a hydrophobic alkyl group at the opposite end, and dissolves or disperses when added to an electrolyte. It is thought that the polar groups are adsorbed on the surface of the zinc or zinc alloy of the negative electrode. The corrosion reaction of zinc in an alkaline electrolyte is shown by the following equation.

アノード反応 Zn+40H−→Zn (OH)4+2e−カソード反
応 2H20+2e−−’−208−+  H。
Anodic reaction Zn+40H-→Zn(OH)4+2e-Cathode reaction 2H20+2e--'-208-+H.

防食剤が負極表面に吸着し被膜を形成すると、アノード
反応の原因となる水酸イオンの亜鉛負極への接近が妨害
され、またカソード反応に必要な水分子が亜鉛負極表面
近傍に存在できなくなり、亜鉛の腐食が抑えられる。防
食剤が少量で亜鉛負極表面を完全に覆っていない状態で
も、添加した防食剤の亜鉛負極表面の吸着部分での亜鉛
の腐食反応が抑制され、亜鉛負極の総腐食量が減少する
When the anticorrosive agent adsorbs to the surface of the negative electrode and forms a film, it prevents the hydroxide ions that cause the anode reaction from approaching the zinc negative electrode, and the water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode. Zinc corrosion is suppressed. Even if the amount of anticorrosive agent is small and does not completely cover the surface of the zinc negative electrode, the corrosion reaction of zinc at the adsorbed portion of the surface of the zinc negative electrode where the added anticorrosive agent is adsorbed is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced.

また防食剤はセパレータおよび/または保液材への含浸
、負極活物質表面への付着などの方法で添加しても、電
池構成後に防食剤が電解液中に溶解あるいは分散し、上
記と同様に亜鉛負極表面に吸着し、亜鉛の腐食が抑制さ
れる。以上の如く本発明に吸着し、亜鉛の腐食が抑制さ
れる。以上の如く本発明に用いる防食剤は亜鉛の腐食反
応に関わる表面を覆うため防食効果が得られたものと考
えられ、また、特開昭58−18266号で開示された
インジウムと鉛を含有する亜鉛合金、あるいは特開昭6
0−175368号、特開昭61−77267号、特開
昭61−181068号、特開昭61−203563号
等で発明者等が開示したインジウムと鉛を含有し、さら
にガリウム、アルミニウム、ストロンチウム、カルシウ
ム、マグネシウム、バリウム、ニッケルの群より選ばれ
た1種以上を含有する亜鉛合金はいずれも耐食性が優れ
ているが、氷化率を0.2%程度まで低下させると充分
な耐食性が確保できない。しかしながら上記防食剤を併
用すると両者の防食作用が併合され、場合によっては0
.05%の氷化率でも負極の耐食性が確保される。
Furthermore, even if the anticorrosive agent is added by impregnating the separator and/or liquid retaining material, or attaching it to the surface of the negative electrode active material, the anticorrosive agent will dissolve or disperse in the electrolyte after battery construction, and the same problem as above will occur. Adsorbs to the surface of the zinc negative electrode, suppressing zinc corrosion. As described above, zinc is adsorbed to the present invention and corrosion of zinc is suppressed. As described above, the anticorrosive agent used in the present invention is thought to have an anticorrosion effect because it covers the surface involved in the corrosion reaction of zinc. Zinc alloy or JP-A-6
0-175368, JP-A-61-77267, JP-A-61-181068, JP-A-61-203563, etc., which contain indium and lead, and further include gallium, aluminum, strontium, All zinc alloys containing one or more selected from the group of calcium, magnesium, barium, and nickel have excellent corrosion resistance, but sufficient corrosion resistance cannot be ensured if the icing rate is reduced to about 0.2%. . However, when the above anticorrosives are used together, the anticorrosion effects of both are combined, and in some cases, the
.. Corrosion resistance of the negative electrode is ensured even at a freezing rate of 0.05%.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防食
剤とその分子構造による相違、さらに耐食性亜鉛合金と
の併用を実験的に検討し、低木化率で実用性の高い亜鉛
アルカリ電池を完成したち。
As mentioned above, the present invention has experimentally investigated the corrosion inhibitor that is effective in improving the corrosion resistance of zinc negative electrodes, the differences in their molecular structures, and the use of them in combination with corrosion-resistant zinc alloys, and has completed a highly practical zinc-alkaline battery with a low bushing rate. Shitachi.

のである。It is.

以下実施例により詳細に説明する。This will be explained in detail below using examples.

実施例 (実施例1) まず、本発明の防食剤のアルカリ溶液中での亜鉛に対す
る腐食抑制効果を調べた。実験方法は40重量%の水酸
化カリウム水溶液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来例の防食剤をほぼ飽和量まで溶解さ
せて5meを採り、その液中に氷化亜鉛粉を10g投入
し、45℃の温度下で20日間で発生した水素ガス量を
測定した。氷化亜鉛粉の氷化率は1.0%で、粒径は3
5〜150メツシユとした。得られた測定結果を第1表
に示した。
Examples (Example 1) First, the corrosion inhibiting effect of the anticorrosive agent of the present invention on zinc in an alkaline solution was investigated. The experimental method was to dissolve the anticorrosive agent of the present invention or the conventional anticorrosive agent in an electrolytic solution containing zinc oxide in a 40% by weight aqueous potassium hydroxide solution to almost saturation level, take 5me, and then freeze in the solution. 10g of zinc powder was added, and the amount of hydrogen gas generated over 20 days at a temperature of 45°C was measured. The freezing rate of frozen zinc powder is 1.0%, and the particle size is 3.
The number was 5 to 150 meshes. The measurement results obtained are shown in Table 1.

第1表のうち、本発明の防食剤を用いたNnl−11の
群は、従来から提案されている防食剤を用いたNQ12
〜14の群や、防食剤を添加していないff115より
水素ガスの発生量が少(、本発明の防食剤の腐食抑制効
果が大きいことが判る。NQI〜NQ11の群のうち、
N11−43は防食剤のアルキル基の炭素数を12に統
一し、アルカリ金属での中和による防のアルキル基の炭
素数を変化させた場合の防食効果を検討したものである
。嵐1〜及び隔4〜7を比較して判るようにアルキル基
の炭素数が5〜35のもの(気1及びFk5.Th6)
が嵐15の無添加の場合の172以下の水素ガス発生量
を示し、特に良好である。本発明の他の防食剤について
も、同様な炭素数の範囲で防食効果があることは隘8〜
11の水素ガス発生量の結果から明白である。
In Table 1, the group of Nnl-11 using the anticorrosive agent of the present invention is different from the group of NQ11 using the anticorrosive agent proposed conventionally.
The amount of hydrogen gas generated was smaller than that of the groups NQI to NQ14 and FF115 to which no anticorrosive agent was added (it can be seen that the corrosion inhibiting effect of the anticorrosive agent of the present invention is large. Among the groups NQI to NQ11,
In N11-43, the number of carbon atoms in the alkyl group of the anticorrosive agent was unified to 12, and the anticorrosive effect was investigated when the number of carbon atoms in the alkyl group of the anticorrosive agent was varied by neutralization with an alkali metal. As you can see by comparing Arashi 1 to 4 to 7, the alkyl group has 5 to 35 carbon atoms (Ki 1 and Fk5.Th6)
shows a hydrogen gas generation amount of 172 or less in the case of Arashi 15 without additives, which is particularly good. Other anticorrosive agents of the present invention also have anticorrosion effects in the same carbon number range.
This is clear from the results of the amount of hydrogen gas generated in No. 11.

(実施例2) 次に、実施例1で得られた結果に基づき、代表的な防食
剤を選び、負極活物質である亜鉛又は亜鉛合金の汞化率
低減に対する効果を第1図に示すボタン形酸化銀電池を
試作して比較検討した。第1図において、1はステンレ
ス鋼製の封目板で、その内面に鋼メッキが施されている
。2は水酸化カリウムの40重量%水溶液に酸化亜鉛を
飽和させた電解液(防食剤を添加する場合は第2表に示
した防食剤を飽和量溶解させた電解液)をカルボキシメ
チルセルロースによりゲル化し、このゲル中に水化亜鉛
又は水化亜鉛合金の50〜150メツシユの粉末を分散
させた亜鉛負極である。3はセルロース系の保液材、4
は多孔性ポリプロピレン製のセパレータ、5は酸化銀に
黒鉛を混合して加圧成形した正極、6は鉄にニッケルメ
ッキを施した正極リング、7はニッケルメッキを施した
ステンレス鋼製の正極缶である。8はポリプロピレン製
のガスケットで、正極缶(7)の折り曲げにより正極缶
(7)と封口(1)の間に圧縮されている。試作した電
池は直径11.6m、総高5.4mである。
(Example 2) Next, based on the results obtained in Example 1, a typical anticorrosive agent was selected, and its effect on reducing the corrosion rate of zinc or zinc alloy, which is a negative electrode active material, was evaluated using the buttons shown in Figure 1. A prototype silver oxide battery was manufactured and compared. In FIG. 1, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with steel. 2 is an electrolytic solution in which a 40% by weight aqueous solution of potassium hydroxide is saturated with zinc oxide (if an anticorrosive agent is added, an electrolytic solution in which a saturation amount of the anticorrosive agent shown in Table 2 is dissolved) is gelled with carboxymethyl cellulose. This is a zinc negative electrode in which 50 to 150 meshes of powder of zinc hydrate or zinc hydrate alloy are dispersed in this gel. 3 is cellulose-based liquid retaining material, 4
5 is a porous polypropylene separator, 5 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of nickel-plated iron, and 7 is a nickel-plated stainless steel positive electrode can. be. A polypropylene gasket 8 is compressed between the positive electrode can (7) and the sealing port (1) by bending the positive electrode can (7). The prototype battery has a diameter of 11.6 m and a total height of 5.4 m.

試作した電池の60゛で1力月間貯蔵した後の放電性能
と電池総高の変化、及び目視判定で漏液が観察された電
池の個数を第2表に示す。放電性能は、20℃において
510Ω負荷で0.9vを終止電圧として放電した時の
放電接続時間で表わした。
Table 2 shows the changes in discharge performance and total battery height of the prototype batteries after storage at 60° for one month, and the number of batteries in which leakage was observed by visual inspection. The discharge performance was expressed as the discharge connection time when discharging at 20° C. with a 510Ω load and a final voltage of 0.9V.

第2表 第2表(#fE) 第2表(続々) 正常なボタン電池では通常、電池を封口後、各電池構成
要素間の応力の関係が安定化するまでは経時的に電池総
高が若干減少するが、負極亜鉛の腐食に判う水素ガスの
発生が多い電池では電池内圧の上昇により電池総高が増
大する傾向が強(なる。従って、貯蔵期間中の電池総高
の増減により負極亜鉛の耐食性が評価できる。耐食性が
不十分な電池では電池総高が増大するほか、電池内圧の
上昇による漏液し易く、また腐食による負極亜鉛の消耗
、表面の酸化により放電性能も劣化する。
Table 2 Table 2 (#fE) Table 2 (one after another) In normal button batteries, after sealing the battery, the total battery height increases over time until the stress relationship between each battery component becomes stable. However, in batteries where a large amount of hydrogen gas is generated, as evidenced by the corrosion of the negative electrode zinc, there is a strong tendency for the total battery height to increase due to an increase in battery internal pressure. The corrosion resistance of zinc can be evaluated.Batteries with insufficient corrosion resistance will not only increase the total height of the battery, but also be prone to leakage due to increased battery internal pressure, and discharge performance will deteriorate due to consumption of negative electrode zinc due to corrosion and surface oxidation.

このような観点で、第2表の試作実験結果は次のように
評価される。まず、l1hl〜6は負極活物質として耐
食性が極めてすぐれ、通常汞化率1.5%以上なら、防
食剤の助けなしで実用電池の負極として使用することが
有望視されている亜鉛合金(Pb 、In、AIを含有
する亜鉛合金)を0.05%と(ゝう極めて低汞化率で
電池を構成して防食剤の効果を比較したものである。こ
れらの結果は、本発明は防食剤を添加した気1〜3の場
合が石4〜6の従来例の防食剤を添加するが、又は無添
力aの場合より極めて良好であることを示し、上記の耐
食性亜鉛合金と本発明の防食剤を併用することにより0
.05%以上の汞化率で負極の耐食性を十分に確保でき
、極めて低氷化率の亜鉛アルカリ電池が構成できること
を示している。また、NQ7〜12は現在、普及材料と
してすでに3%の汞化率で実用化されている亜鉛合金(
Pb、Inを含有する亜鉛合金)の汞化率を0.2%ま
で減少させて、本発明の防食剤の効果を検討したもので
ある。この場合にはll&17〜9の実施例はNQIO
〜12の従来例又は無添加の場合とで、明白に電池性能
に差異が見られ、上記亜鉛合金と本発明の防食剤を併用
すれば、0.2%以上の汞化率で負極の耐食性が十分で
実用性能にすぐれた低木化率の亜鉛アルカリ電池が構成
できることを示している。さらに、&13〜18は通常
7〜IO%程度の汞化率を必要とする純亜鉛粉を負極活
物質に用いた場合に本発明を適用して3%まで汞化率を
低減しても十分な実用性のある電池を構成できることを
示している。また、嵐19〜26は防食剤の助けなしで
も、はぼ、負極の耐食性が確保できる1、5〜3%の汞
化率の亜鉛合金を負極に用いた場合に本発明の効果を念
のため確認したものであり、 ff119.20及びN
n23.24の実施例の場合は、Nh21,22、及び
ff125.26の従来例又は無添加の場合よりさらに
特性が向上しており、高度の耐食性が確保されたことに
より品質が安定化したことを示している。
From this point of view, the prototype experiment results shown in Table 2 are evaluated as follows. First, l1hl~6 has extremely good corrosion resistance as a negative electrode active material, and if the corrosion rate is usually 1.5% or more, zinc alloy (Pb The effectiveness of the anticorrosive agent was compared by constructing a battery with an extremely low corrosion rate of 0.05% (zinc alloy containing , In, and AI). Cases 1 to 3 in which additives were added were significantly better than cases in stones 4 to 6 in which conventional anticorrosion agents were added or no additives were added, and the above corrosion-resistant zinc alloys and the present invention 0 by using anti-corrosion agent.
.. It is shown that sufficient corrosion resistance of the negative electrode can be ensured with a freezing rate of 0.05% or more, and that a zinc-alkaline battery with an extremely low freezing rate can be constructed. In addition, NQ7 to 12 are zinc alloys (Zinc alloys) that are currently in practical use as popular materials with a 3% filtration rate.
The effect of the anticorrosive agent of the present invention was investigated by reducing the viscosity of a zinc alloy containing Pb and In to 0.2%. In this case, the embodiment of ll & 17-9 is NQIO
A clear difference in battery performance can be seen between the conventional example of ~12 and the case without additives, and when the above zinc alloy and the anticorrosive agent of the present invention are used together, the corrosion resistance of the negative electrode is improved with a corrosion rate of 0.2% or more. This shows that it is possible to construct a zinc-alkaline battery with a low wood reduction rate that is sufficient and has excellent practical performance. Furthermore, in &13 to 18, when pure zinc powder, which normally requires a filtration rate of about 7 to IO%, is used as the negative electrode active material, it is sufficient to reduce the filtration rate to 3% by applying the present invention. This shows that it is possible to construct a practical battery. In addition, Arashi 19-26 showed that the effect of the present invention can be achieved when a zinc alloy with a corrosion rate of 1.5 to 3% is used for the negative electrode, which can ensure the corrosion resistance of the negative electrode without the aid of anticorrosive agents. It was confirmed that ff119.20 and N
In the case of the example of n23.24, the properties are further improved than the conventional example of Nh21, 22, and ff125.26 or the case of no additives, and the quality is stabilized by ensuring a high degree of corrosion resistance. It shows.

Nn29,30はpbとInを含有する亜鉛合金とほぼ
同等の耐食性を有する、Pb、In、Gaを含有する亜
鉛合金を汞化率0.2%として本発明の効果を調べたも
ので嵐29の実施例の場合は、嵐7〜9のPb、Inを
含有した亜鉛合金での実施例と同様、0.2%の汞化率
が実現できることを示している。
Nn29,30 is the result of investigating the effect of the present invention using a zinc alloy containing Pb, In, and Ga with a corrosion resistance of 0.2%, which has almost the same corrosion resistance as a zinc alloy containing Pb and In. In the case of the example, it is shown that a filtration rate of 0.2% can be achieved, similar to the examples of Arashi 7 to 9 with zinc alloys containing Pb and In.

Nn27〜28は、Pb、In、AIを含有する耐食性
の改良された亜鉛合金とはほぼ同等の耐食性を有する亜
鉛合金として期待されるものについて、汞化率0.05
%で本発明の効果を調べたもので、いずれの実施例(I
Vkt27.29.31.33.35)も0.05%と
いう低水準でも、Pb、In、Alを含有する亜鉛合金
でのNnl−3の実施例と同様に、すぐれた電池性能を
示している。以上の場合はいずれも電解液中に防食剤を
溶解させて本発明の効果を検討した結果であるが、&3
9.40.41は防食剤を電解液中に添加する方法以外
の本発明の実施例を示したもので、予め、汞化亜鉛合金
に防食剤を付着させた嵐39、予めセパレータもしくは
保液材に防食剤を含浸させたNn40.41の何れもが
電解液に防食剤を溶解させた場合上はほぼ等しい効果が
認められた。これらの場合、いずれも電池構成後に徐々
に防食剤が電解液中に溶解して防食効果を発揮するもの
で、特に、セパレータもしくは保液機に防食剤を含浸さ
せた場合には、電解液の浸透が速(なるので電池構成が
容易になり、生産性を高める効果もある。
Nn27-28 is expected to be a zinc alloy with almost the same corrosion resistance as a corrosion-resistant zinc alloy containing Pb, In, and AI, and has a corrosion rate of 0.05.
%, the effect of the present invention was investigated, and any of the examples (I
Vkt27.29.31.33.35) also shows excellent battery performance even at a low level of 0.05%, similar to the example of Nnl-3 in a zinc alloy containing Pb, In, and Al. . All of the above cases are the results of examining the effects of the present invention by dissolving an anticorrosive agent in the electrolytic solution.
9.40.41 shows an embodiment of the present invention other than the method of adding an anticorrosive agent to the electrolytic solution. Almost the same effect was observed when the material was impregnated with an anticorrosive agent and when the anticorrosive agent was dissolved in the electrolytic solution. In all of these cases, the anticorrosive agent gradually dissolves into the electrolyte after the battery is constructed, exerting its anticorrosion effect. In particular, when the separator or liquid retainer is impregnated with the anticorrosive agent, the anticorrosion agent gradually dissolves into the electrolyte after the battery is constructed. Penetration is rapid, which simplifies battery construction and has the effect of increasing productivity.

(実施例3) 次に、代表的な防食剤として 解濃度と水化亜鉛合金粉の腐食量の関係を調べた。(Example 3) Next, as a typical anticorrosive agent, The relationship between the solution concentration and the amount of corrosion of zinc hydrate alloy powder was investigated.

水化亜鉛合金粉は、Pb、In、AIを各々0.05%
含有する亜鉛合金の35〜150メツシユの端末にアル
カリ溶液中で水銀滴下方式で0.05%の汞化率で汞化
率で水化したものを使用し、その10g秤取し、水酸化
カリウムの40%重量%の水溶液の酸化亜鉛を飽和させ
防食剤を溶解させた電解液の5穀中に浸漬し45℃でI
O日間放置して、その間に発生した水素ガス量を測定し
た。電解液中の防食剤の調整は、防食剤を飽和させた電
解液と防食剤を含まない電解液を適宜の割合で混合して
行った。その結果を第2図に示す。
Zinc hydrate alloy powder contains 0.05% each of Pb, In, and AI.
Using a mercury drop method in an alkaline solution on the ends of 35 to 150 meshes of zinc alloy containing zinc, we hydrated it at a filtration rate of 0.05%, weighed 10g of it, and added potassium hydroxide. The grains were immersed in an electrolytic solution containing a 40% by weight aqueous solution of zinc oxide and dissolved in an anticorrosion agent, and then heated at 45°C.
The sample was left to stand for O days, and the amount of hydrogen gas generated during that time was measured. The anticorrosive agent in the electrolytic solution was adjusted by mixing an electrolytic solution saturated with an anticorrosive agent and an electrolytic solution containing no anticorrosive agent in an appropriate ratio. The results are shown in FIG.

第2図に見られるように、 以上で顕著な効果が見られ、約500PPm以上では飽
和濃度の約1.900PPn+までほぼ一定した効果が
得られる。この防食剤以外にも、実施例1の気1〜3で
用いた防食剤についても、はぼ同様の効果が見られ、本
発明の防食剤の適正濃度は約1.0OOPPo+以上か
ら飽和濃度以下とするのが好ましいことが判った。
As seen in Fig. 2, a remarkable effect is seen above, and an almost constant effect is obtained above about 500 PPm up to the saturation concentration of about 1.900 PPn+. In addition to this anticorrosive agent, the anticorrosive agents used in steps 1 to 3 of Example 1 also had similar effects, and the appropriate concentration of the anticorrosive agent of the present invention is from about 1.0 OOPPo+ or more to less than the saturated concentration. It was found that it is preferable to

発明の効果 本発明は新規に探索した防食剤の効果により亜鉛アルカ
リ電池の負極の汞化率を大幅に低減することを可能にし
たものである。
Effects of the Invention The present invention has made it possible to significantly reduce the filtration rate of the negative electrode of a zinc-alkaline battery through the effect of a newly discovered anticorrosive agent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたボタン形酸化銀電池の
一部を断面にした側面図、第2図は電解液中の防食剤溶
解量と水素ガス発生量との関係を示した図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
5・・・・・・酸化銀正極。 代理人の氏名 弁理士 中尾敏男 ほか1名2−−−i
狛負稔 仝−1パレータ
Figure 1 is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention, and Figure 2 shows the relationship between the amount of anticorrosion agent dissolved in the electrolyte and the amount of hydrogen gas generated. It is a diagram. 2...Zinc negative electrode, 4...Separator,
5...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and one other person 2---i
Minoru Komae-1 Paleta

Claims (7)

【特許請求の範囲】[Claims] (1)負極活物質の防食剤として、アルキルベンゼンス
ルホネート及び、これをアルカリ金属で中和した塩類か
らなる群より選ばれた少くとも1種を用いた亜鉛アルカ
リ電池。
(1) A zinc-alkaline battery using at least one selected from the group consisting of alkylbenzene sulfonates and salts obtained by neutralizing these with alkali metals as a corrosion inhibitor for the negative electrode active material.
(2)防食剤のアルキル基の炭素数が、5〜35である
特許請求の範囲第1項記載の亜鉛アルカリ電池。
(2) The zinc-alkaline battery according to claim 1, wherein the alkyl group of the anticorrosive agent has 5 to 35 carbon atoms.
(3)防食剤を電解液中に溶解させた特許請求の範囲第
1項または第2項記載の亜鉛アルカリ電池。
(3) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is dissolved in the electrolyte.
(4)防食剤を予めセパレータ、電解液保持材の双方又
は一方に含浸させた特許請求の範囲第1項または第2項
記載の亜鉛アルカリ電池。
(4) The zinc-alkaline battery according to claim 1 or 2, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive agent in advance.
(5)防食剤を予め負極活物質の表面に付着させた特許
請求の範囲第1項または第2項記載の亜鉛アルカリ電池
(5) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is previously attached to the surface of the negative electrode active material.
(6)必須添加元素としてインジウム、鉛を、任意の添
加元素としてガリウムを含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が3〜0.2重量%である
特許請求の範囲第1項から第5項のいずれかに記載の亜
鉛アルカリ電池。
(6) A patent claim in which a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element is used as the negative electrode active material, and the filtration rate of the negative electrode active material is 3 to 0.2% by weight. The zinc-alkaline battery according to any one of items 1 to 5.
(7)必須添加元素としてインジウム、鉛を含有し、さ
らにアルミニウム、ストロンチウム、カルシウム、マグ
ネシウム、バリウム、ニッケル、ガリウムからなる群よ
り選ばれた1種以上を含有する亜鉛合金を負極活物質に
用い、負極活物質の汞化率が1.5〜0.05重量%で
ある特許請求の範囲第1項から第5項のいずれかに記載
の亜鉛アルカリ電池。
(7) Using a zinc alloy as a negative electrode active material, which contains indium and lead as essential additive elements, and further contains one or more selected from the group consisting of aluminum, strontium, calcium, magnesium, barium, nickel, and gallium; The zinc-alkaline battery according to any one of claims 1 to 5, wherein the negative electrode active material has a hydrogenation rate of 1.5 to 0.05% by weight.
JP7473587A 1987-03-27 1987-03-27 Zinc alkaline cell Pending JPS63239770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7473587A JPS63239770A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7473587A JPS63239770A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Publications (1)

Publication Number Publication Date
JPS63239770A true JPS63239770A (en) 1988-10-05

Family

ID=13555789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7473587A Pending JPS63239770A (en) 1987-03-27 1987-03-27 Zinc alkaline cell

Country Status (1)

Country Link
JP (1) JPS63239770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035348C (en) * 1992-07-11 1997-07-02 吉林大学 Organic composite additive substituted for mercury for zinc-manganese dry cell
WO2020188900A1 (en) * 2019-03-18 2020-09-24 パナソニックIpマネジメント株式会社 Alkali dry cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035348C (en) * 1992-07-11 1997-07-02 吉林大学 Organic composite additive substituted for mercury for zinc-manganese dry cell
WO2020188900A1 (en) * 2019-03-18 2020-09-24 パナソニックIpマネジメント株式会社 Alkali dry cell
CN113439355A (en) * 2019-03-18 2021-09-24 松下知识产权经营株式会社 Alkaline dry cell
JPWO2020188900A1 (en) * 2019-03-18 2021-10-28 パナソニックIpマネジメント株式会社 Alkaline batteries
CN113439355B (en) * 2019-03-18 2024-03-01 松下知识产权经营株式会社 Alkaline dry cell

Similar Documents

Publication Publication Date Title
JPS60175368A (en) Zinc-alkaline primary cell
JPH02273464A (en) Zinc-alkaline battery
JPS63239770A (en) Zinc alkaline cell
JP2737233B2 (en) Zinc alkaline battery
JPS63254671A (en) Zinc alkaline cell
JPH0371559A (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JPS63250061A (en) Zinc-alkaline battery
JPS63248064A (en) Zinc alkaline battery
JPS63248062A (en) Zinc alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPS63248061A (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
US3281280A (en) Corrosion inhibitors
JPS63248063A (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JPS63248066A (en) Zinc alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPS63248068A (en) Zinc alkaline battery
JPS63250064A (en) Zinc-alkaline battery
JPS63244559A (en) Zinc alkaline battery
JPS63248067A (en) Zinc alkaline battery
JPS63239769A (en) Zinc alkaline cell
JPS63250062A (en) Zinc-alkaline battery