US3281280A - Corrosion inhibitors - Google Patents

Corrosion inhibitors Download PDF

Info

Publication number
US3281280A
US3281280A US319576A US31957663A US3281280A US 3281280 A US3281280 A US 3281280A US 319576 A US319576 A US 319576A US 31957663 A US31957663 A US 31957663A US 3281280 A US3281280 A US 3281280A
Authority
US
United States
Prior art keywords
zinc
corrosion
cells
inhibitor
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US319576A
Inventor
Hugh F Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US319576A priority Critical patent/US3281280A/en
Application granted granted Critical
Publication of US3281280A publication Critical patent/US3281280A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Definitions

  • This invention relates to the inhibition of corrosion of zinc and it more particularly refers to the inhibition of corrosion of zinc in alkaline environment and to the prevention of the formation of excessive amounts of gas in an alkaline galvanic cell.
  • Zinc has been the most common anode material for galvanic cells for many years. In the past few years galvanic cells which utilize an alkaline electrolyte have gained prominence for many applications. It has been found that there is a certain amount of corrosion of the zinc anode in these cells which is not productive of useful electric power. Very often this corrosion occurs when the cell is in storage, and this, of course, tends to reduce the efiective life of the cell when it is finally put in service.
  • This invention is based upon the discovery that there are certain organic compounds which prevent the corrosion of zinc in an alkaline environment without relying on the establishment of equilibrium conditions between zinc, alkali, and zinc corrosion products.
  • the inhibition of the corrosion of zinc is accomplished by the presence of an inhibiting amount of 4-biphenylcarbonitrile.
  • This compound is characterized by the fact that it is: substantially passive to the electrochemical reaction between Zinc and an alkaline environment, chemically inert to both Zinc and the alkaline environment and resistant to oxidation.
  • this compound inhibits the corrosion of zinc in both the solid form and in the powdered form. This inhibitor does not interfere with the normal operation of the zinc as an electrode and yet is effective in inhibiting non-productive corrosion of the zinc and in reducing gassing associated therewith.
  • corrosion refers to non-productive corrosion of the zinc anode which does not produce a usable galvanic current, unless otherwise indicated.
  • the above described corrosion inhibitor is efiective when used with both amalgamated zinc and non-amalgamated zinc.
  • the corrosion of amalgamated zinc which is normally less subject to corrosion than non-amalgamated zinc, is inhibited to a greater degree by the presence of the herein described inhibitor.
  • the corrosion inhibiting character of 4-biphenylcarbonitrile has been ice found to be substantially stable and does not diminish appreciably with the passage of time under normal storage and operating conditions.
  • the inhibitor compound can be incorporated in the cell in several ways.
  • the selected inhibitor can be added directly to the electrolyte prior to gelling the electrolyte.
  • the inhibitor can be added directly to the anode material.
  • the inhibitor can be dissolved in a suitable solvent, e.g., acetone and the powdered zinc anode material then soaked in the solution. The solvent is then evaporated and the treated zinc incorporated in the cell.
  • the inhibitor solution can be sprayed into the anode material.
  • the compound described is employed in an inhibiting amount, that is, an amount which is sufiicient to inhibit or substantially prevent the occurrence of non-productive corrosion and the formation of gas.
  • an inhibiting amount that is, an amount which is sufiicient to inhibit or substantially prevent the occurrence of non-productive corrosion and the formation of gas.
  • amounts of about 0.01 to about 1.0 weight percent based on the weight of anode material to be protected, i.e., on the weight of Zinc provide satisfactory corrosion inhibition.
  • the actual amount of inhibitor necessary to provide adequate inhibition in any particular situation can easily be determined by methods well known in the art.
  • Table III shows the voltage characteristics of cells containing the treated anodes. Both open circuit potentials and those on a one-ampere load (by the interrupter technique) were observed. Substantially no effect on cell performance was noted.
  • a method of inhibiting corrosion of zinc exposed to an alkaline environment which comprises effecting said exposure in the presence of a corrosion inhibitor cemprising 4-biphenylcarbonitrile.
  • said alkaline environment comprises .01 to 1.0 weight percent, based on the weight of said zinc, of said 4-biphenylcarbonitrile.
  • a galvanic cell comprising a zinc anode, a cathode depolarizer, an alkaline electrolyte and 4-biphenylcarbonitrile in an inhibiting amount.
  • the galvanic cell described in claim 5 wherein the corrosion inhibiting amount is from about 0.01 to about 1.0 weight percent based on the weight of the Zinc anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)

Description

United States Patent This invention relates to the inhibition of corrosion of zinc and it more particularly refers to the inhibition of corrosion of zinc in alkaline environment and to the prevention of the formation of excessive amounts of gas in an alkaline galvanic cell.
Zinc has been the most common anode material for galvanic cells for many years. In the past few years galvanic cells which utilize an alkaline electrolyte have gained prominence for many applications. It has been found that there is a certain amount of corrosion of the zinc anode in these cells which is not productive of useful electric power. Very often this corrosion occurs when the cell is in storage, and this, of course, tends to reduce the efiective life of the cell when it is finally put in service.
A solution has been proposed for this problem which is based upon the saturation or near saturation of the electrolyte with products of zinc corrosion thus putting the system in equilibrium with respect to zinc corrosion. This has been accomplished by adding zinc oxide or zincate ions to the electrolyte. It has been found that the amalgamation of the zinc anode very often aids in the inhibition of nonproductive corrosion by electrolyte. These proposals have worked well; however, it is desirable to have alternate materials which are effective by themselves to inhibit zinc corrosion.
It is a primary object of this invention to provide materials which inhibit the corrosion of zinc in alkaline environment.
It is another primary object to prevent the formation of large volumes of gas within a zinc cell and thus preserve the structural integrity of the cell.
It is a more particular object to inhibit the non-productive corrosion of Zinc anodes in alkaline galvanic cells.
It is another object to improve the characteristics of alkaline galvanic cells having zinc anodes.
This invention is based upon the discovery that there are certain organic compounds which prevent the corrosion of zinc in an alkaline environment without relying on the establishment of equilibrium conditions between zinc, alkali, and zinc corrosion products.
In accordance with this invention and the above stated objects, the inhibition of the corrosion of zinc is accomplished by the presence of an inhibiting amount of 4-biphenylcarbonitrile. This compound is characterized by the fact that it is: substantially passive to the electrochemical reaction between Zinc and an alkaline environment, chemically inert to both Zinc and the alkaline environment and resistant to oxidation.
It has been found that this compound inhibits the corrosion of zinc in both the solid form and in the powdered form. This inhibitor does not interfere with the normal operation of the zinc as an electrode and yet is effective in inhibiting non-productive corrosion of the zinc and in reducing gassing associated therewith.
The term corrosion, refers to non-productive corrosion of the zinc anode which does not produce a usable galvanic current, unless otherwise indicated.
The above described corrosion inhibitor is efiective when used with both amalgamated zinc and non-amalgamated zinc. The corrosion of amalgamated zinc, which is normally less subject to corrosion than non-amalgamated zinc, is inhibited to a greater degree by the presence of the herein described inhibitor. The corrosion inhibiting character of 4-biphenylcarbonitrile has been ice found to be substantially stable and does not diminish appreciably with the passage of time under normal storage and operating conditions.
The inhibitor compound can be incorporated in the cell in several ways. For example, the selected inhibitor can be added directly to the electrolyte prior to gelling the electrolyte. Alternatively, the inhibitor can be added directly to the anode material. For example, the inhibitor can be dissolved in a suitable solvent, e.g., acetone and the powdered zinc anode material then soaked in the solution. The solvent is then evaporated and the treated zinc incorporated in the cell. As another method the inhibitor solution can be sprayed into the anode material. For use in galvanic cells it is preferred to add the corrosion inhibitor to the anode material. In any event a homogeneous distribution of the inhibitor is desirable to provide uniform protection.
The compound described is employed in an inhibiting amount, that is, an amount which is sufiicient to inhibit or substantially prevent the occurrence of non-productive corrosion and the formation of gas. In general, amounts of about 0.01 to about 1.0 weight percent based on the weight of anode material to be protected, i.e., on the weight of Zinc, provide satisfactory corrosion inhibition. The actual amount of inhibitor necessary to provide adequate inhibition in any particular situation can easily be determined by methods well known in the art.
In order to test the simple corrosion inhibition effects of this compound in alkaline environment with respect to zinc, a mixture of 0.1 to 0.5 weight percent of the compound in a 30 percent aqueous solution of potassium hydroxide was made. A strip of zinc having a surface area of 6.15 square centimeters which weighed about 2 grams was immersed in each mixture. Table I below is a compilation of data taken from these tests showing the weight loss of each strip, given in milligrams, after a specific immersion time, given in days. These tests were run at 21 C. and 45 C. and the results at both temperatures are reported.
TABLE I Inhibitor Wt. loss Time Wt. loss Time a) ay (1 a) a s) None 322 341 397 321 None 689 754 533 677 4-biphenylcarbonitrile 10 227 28 167 45 C. Inhibitor Wt. loss (mg) Time (days) None* None* 4-biphenylcarhonitrile Other than mercury.
A comparison of the data presented in this table with that presented in Table I shows that the amalgamation of Zinc is effective to inhibit the corrosion of Zinc. It also shows that the inclusion of 4-biphenylcarbonitrile as disclosed herein reduces the amount of corrosion over and TA B LE III Voltage of Fresh Cells Voltage of 50 percent Discharged Cells Additive Gassing f 50% Discharged Cells Open Circuit Closed Circuit Open Circuit Closed Circuit (1.0 amp.) (1.0 amp.)
None 1. 48-1. 53 1. 37-1. 46 1. 24-1. 28 0. 94-1. 12 Excessive in majority of cells: cell rupture observed in several cases even after 1 month and particularly after 6 months at ambient room temperature.
4-bipheuylcarbonitrile 1. 46-1. 49 1. 35-1. 39 1. 29 1. 021. 11 Substantial reduction of gassing even after six months at ambient room temperature.
above the reduction effected by the amalgamation of the zinc. Thus, it is seen that 4-biphenylcarbonitrile acts as a corrosion inhibitor for zinc in alkaline environment and actually improves the performance of certain conventional corrosion inhibitors.
To further illustrate the advantageous characteristics of 4-biphenylcarbonitrile, standard D-size alkaline-manganese dioxide cells were prepared. Powdered zinc, which was amalgamated to the extent of about 4 percent by weight was immersed for about 24 hours in a solution containing one percent 4-biphenylcarbonitrile based on the weight of amalgamated Zinc. The solvent, in this instance, acetone, was then thoroughly evaporated in a vacuum oven at between 40 C. and 60 C. The thustreated zinc was then incorporated in standard alkalinemanganese dioxide cells employing potassium hydroxide as the electrolyte.
Table III shows the voltage characteristics of cells containing the treated anodes. Both open circuit potentials and those on a one-ampere load (by the interrupter technique) were observed. Substantially no effect on cell performance was noted.
These cells were then discharged at 0.5 to 1.0 ampere continuous drain to approximately 50 percent of their capacity. Open and closed circuit voltages of the used cells were then recorded. The range of voltages of the treated cells was approximately the same as the ranges observed in control cells, thus again indicating little or no effect of the additives on cell performance. This particular test is believed to be a very severe one in that about 90 percent of control cells, so discharged, showed excessive gassing and, in many cases, actual rupture of the cell containers occurred. After 50 percent discharge, a series of treated and control cells were connected to mercury manometers to measure gas pressure buildup over a period of l to 6 months at ambient room temperature. As Table III shows, the gassing was substantially reduced in the cells containing the inhibitor compound of this invention. Thus, no rupture of sealed cells would be expected with the use of 4-biphenylcarbonitrile.
What is claimed is:
1. A method of inhibiting corrosion of zinc exposed to an alkaline environment which comprises effecting said exposure in the presence of a corrosion inhibitor cemprising 4-biphenylcarbonitrile.
2. The method of claim 1 wherein said alkaline environment comprises .01 to 1.0 weight percent, based on the weight of said zinc, of said 4-biphenylcarbonitrile.
3. The method of claim 1 wherein 'said alkaline environment is an aqueous solution of potassium hydroxide.
4. The method of claim 1 wherein said zinc is amalgamated.
5. A galvanic cell comprising a zinc anode, a cathode depolarizer, an alkaline electrolyte and 4-biphenylcarbonitrile in an inhibiting amount.
6. The galvanic cell described in claim 5 wherein the corrosion inhibiting amount is from about 0.01 to about 1.0 weight percent based on the weight of the Zinc anode.
7. The galvanic cell described in claim 6 wherein said electrolyte is an aqueous solution of potassium hydroxide and said cathode depolarizer is manganese dioxide.
References Cited by the Examiner UNITED STATES PATENTS 2,829,114 4/1958 Hervert 252-387 X 2,897,250 7/1959 Klopp 136-107 2,900,434 8/1959 Zimmerman et al. 136l07 X 3,095,331 6/1963 Davis 136107 OTHER REFERENCES Morehouse et al., Efiect of Inhibitors on the Corrosion of Zinc in Dry-Cell Electrolytes, Journal of Research of the National Bureau of Standards, vol. 40, 1948, pp.
WINSTON A. DOUGLAS, Primary Examiner.
ALLEN B. CURTIS, Examiner.
D. I. WALTON, Assistant Examiner.

Claims (1)

1. A METHOD OF INHIBITING CORROSION OF ZINC EXPOSED TO AN ALKALINE ENVIRONMENT WHICH COMPRISES EFFECTING SAID EXPOSURE IN THE PRESENCE OF A CORROSION INHIBITOR COMPRISING 4-DIPHENYLCARBONITRILE.
US319576A 1963-10-28 1963-10-28 Corrosion inhibitors Expired - Lifetime US3281280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US319576A US3281280A (en) 1963-10-28 1963-10-28 Corrosion inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US319576A US3281280A (en) 1963-10-28 1963-10-28 Corrosion inhibitors

Publications (1)

Publication Number Publication Date
US3281280A true US3281280A (en) 1966-10-25

Family

ID=23242833

Family Applications (1)

Application Number Title Priority Date Filing Date
US319576A Expired - Lifetime US3281280A (en) 1963-10-28 1963-10-28 Corrosion inhibitors

Country Status (1)

Country Link
US (1) US3281280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905833A (en) * 1973-08-08 1975-09-16 Union Carbide Corp Cyanide and mercury corrosion inhibitors for zinc alkaline galvanic cells
US4377625A (en) * 1981-10-30 1983-03-22 Duracell Inc. Corrosion and hydrogen evolution inhibitors for current-producing cells having zinc anodes
US20040006134A1 (en) * 2002-02-15 2004-01-08 Endorecherche, Inc. Antiandrogenic biphenyls
KR101565533B1 (en) 2011-03-15 2015-11-03 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829114A (en) * 1955-05-04 1958-04-01 Universal Oil Prod Co Corrosion inhibitor
US2897150A (en) * 1957-07-11 1959-07-28 Texas Gulf Sulphur Co Purification of water
US2900434A (en) * 1956-01-03 1959-08-18 Union Carbide Corp Corrosion inhibitors
US3095331A (en) * 1959-02-12 1963-06-25 Ever Ready Co Galvanic cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829114A (en) * 1955-05-04 1958-04-01 Universal Oil Prod Co Corrosion inhibitor
US2900434A (en) * 1956-01-03 1959-08-18 Union Carbide Corp Corrosion inhibitors
US2897150A (en) * 1957-07-11 1959-07-28 Texas Gulf Sulphur Co Purification of water
US3095331A (en) * 1959-02-12 1963-06-25 Ever Ready Co Galvanic cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905833A (en) * 1973-08-08 1975-09-16 Union Carbide Corp Cyanide and mercury corrosion inhibitors for zinc alkaline galvanic cells
US4377625A (en) * 1981-10-30 1983-03-22 Duracell Inc. Corrosion and hydrogen evolution inhibitors for current-producing cells having zinc anodes
US20040006134A1 (en) * 2002-02-15 2004-01-08 Endorecherche, Inc. Antiandrogenic biphenyls
US6933321B2 (en) * 2002-02-15 2005-08-23 Endorecherche, Inc. Antiandrogenic biphenyls
KR101565533B1 (en) 2011-03-15 2015-11-03 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
US5401590A (en) Additives for electrochemical cells having zinc anodes
US4777100A (en) Cell corrosion reduction
EP0474382B1 (en) Substantially mercury-free electrochemical cells
EP0172255B1 (en) Zinc alkaline battery
US4994333A (en) Galvanic primary cell
CA2455109A1 (en) Method and product for improving performance of batteries/fuel cells
US4377625A (en) Corrosion and hydrogen evolution inhibitors for current-producing cells having zinc anodes
US5516604A (en) Additives for primary electrochemical cells having manganese dioxide cathodes
Nartey et al. Identification of organic corrosion inhibitors suitable for use in rechargeable alkaline zinc batteries
US5532085A (en) Additives for alkaline electrochemical cells having manganese dioxide cathodes
US3281278A (en) Corrosion inhibitors
Boehnstedt The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions
US3281280A (en) Corrosion inhibitors
US3281281A (en) Corrosion inhibitors
US3281277A (en) Corrosion inhibitors
US3281276A (en) Corrosion inhibitors
US3281279A (en) Corrosion inhibitors
US3905833A (en) Cyanide and mercury corrosion inhibitors for zinc alkaline galvanic cells
JPH0371559A (en) Zinc alkaline battery
JPS61292853A (en) Stabilization of electrochemical primary battery having reactive negative hole comprising zinc, aluminum or magnesium, stabilized negative pole obtained thereby and battery containing said negative pole
US3850693A (en) Corrosion inhibitor for alkaline aluminum cells
US20040191624A1 (en) Electrolyte for alkaline battery and alkaline battery employing electrolyte
JPH0750612B2 (en) Zinc alkaline battery
JP2935855B2 (en) Alkaline battery
JPH05174826A (en) Zinc alkaline battery