JPS63248070A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS63248070A
JPS63248070A JP8147287A JP8147287A JPS63248070A JP S63248070 A JPS63248070 A JP S63248070A JP 8147287 A JP8147287 A JP 8147287A JP 8147287 A JP8147287 A JP 8147287A JP S63248070 A JPS63248070 A JP S63248070A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
alkaline battery
active material
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8147287A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Ryoji Okazaki
良二 岡崎
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8147287A priority Critical patent/JPS63248070A/en
Publication of JPS63248070A publication Critical patent/JPS63248070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To remarkably reduce an amalgamation rate of the negative electrode of a zinc alkaline battery by using at least a kind selected from a group of a specific low-molecular polyacrylic acid and a salt obtained by neutralizing it with alkali metal as the corrosion inhibitor of a negative active material. CONSTITUTION:At least a kind selected from a group of a specific low- molecular polyacrylic acid and a salt obtained by neutralizing it with alkali metal is used as the corrosion inhibitor of the negative electrode of a zinc alkaline battery in which alkaline aqueous solution mainly comprising potassium hydroxide or sodium hydroxide is used as electrolyte, zinc or zinc alloy as negative active material, and manganese dioxide, silver oxide, oxygen, nickel oxyhydroxide, or mercuric oxide as positive active material. Thereby, the corrosion resistance of zinc negative electrode is increased and the zinc alkaline battery in which an amalgamation rate is low and practicality is high can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質として亜鉛、電解液としてアルカ
リ水溶液、正極活物質として二酸化マンガン、酸化銀、
酸化水銀、酸素、オキシ水酸化ニッケル等を用いる亜鉛
アルカリ電池の亜鉛負極の水化に用いる水銀量の低減に
有効な手段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses zinc as a negative electrode active material, an alkaline aqueous solution as an electrolyte, and manganese dioxide, silver oxide, or silver oxide as a positive electrode active material.
The present invention provides an effective means for reducing the amount of mercury used in hydration of the zinc negative electrode of a zinc alkaline battery using mercury oxide, oxygen, nickel oxyhydroxide, or the like.

従来の技術 亜鉛負極の電解液の腐食を抑制するため、従来から、7
〜10重量%程度の水銀を亜鉛に添加する方法が工業的
に採られて来た。しかし、近年、低公害化のため、水銀
含有量の低減化の社会的ニーズが高まり、少量の水銀の
使用で十分な耐食性を確保するため、種々の耐食性亜鉛
合金が開発、又は提案されている。例えば、亜鉛中にイ
ンジウム、鉛、ガリウム、アルミニウム、などを添加し
た耐食性亜鉛合金粉末が有力なものとされ、インジウム
と鉛を添加した亜鉛合金がすでに実用化され、さらに耐
食性を向上させるため、インジウム。
Conventional technology In order to suppress the corrosion of the electrolyte of the zinc negative electrode, 7
A method of adding about 10% by weight of mercury to zinc has been adopted industrially. However, in recent years, there has been an increasing social need to reduce mercury content in order to reduce pollution, and various corrosion-resistant zinc alloys have been developed or proposed to ensure sufficient corrosion resistance with the use of small amounts of mercury. . For example, corrosion-resistant zinc alloy powder made by adding indium, lead, gallium, aluminum, etc. to zinc is considered to be effective. Zinc alloys containing indium and lead are already in practical use, and in order to further improve corrosion resistance, indium .

鉛に加えて、アルミニウム、必要に応じてガリウムを添
加した亜鉛合金が代表的なものとして検討されている。
A zinc alloy to which aluminum and, if necessary, gallium are added in addition to lead is being considered as a typical example.

これらの耐食性亜鉛合金を用いた場合、氷化率(負極亜
鉛中の水銀の重量百分率)を減少させても耐食性が確保
でき、インジウムと鉛を添加した亜鉛合金の場合で汞化
率3%、さらにこれを改良した上記のインジウム、鉛に
加えてアルミニウム、必要に応じてガリウムを添加した
亜鉛合金では汞化率1.6%程度でも純亜鉛の場合の汞
化率7〜10チに相当する耐食性が得られる。
When these corrosion-resistant zinc alloys are used, corrosion resistance can be ensured even if the icing rate (weight percentage of mercury in negative electrode zinc) is reduced; in the case of zinc alloys containing indium and lead, the icing rate is 3%, Furthermore, in the improved zinc alloy mentioned above, in which aluminum is added in addition to indium and lead, and gallium is added as necessary, even a filtration rate of about 1.6% is equivalent to a filtration rate of 7 to 10% in the case of pure zinc. Provides corrosion resistance.

汞化率を低減させる方法として耐食性亜鉛合金を用いる
ことが有効なことは上述の例に見られる通シであるが、
他の有効な方法として、防食剤の添加が考えられ、電池
内の水銀含有量を極限にまで減少させる技術として耐食
性亜鉛合金と防食剤の併用は不可欠と考えられる。
As can be seen in the above examples, it is clear that using a corrosion-resistant zinc alloy is effective as a method of reducing the corrosion rate.
Another effective method is to add an anticorrosive agent, and the combination of a corrosion-resistant zinc alloy and an anticorrosive agent is considered essential as a technique for reducing the mercury content in batteries to the utmost limit.

従来、アルカリ性水溶液の電解液中での亜鉛負極の防食
のため、エチレングリコール等のグリコール類、メルカ
プトカルボン酸、アミツナフタリフ、;t、にホ7dl
、アゾナフタリン類、カルバソール。
Conventionally, glycols such as ethylene glycol, mercaptocarboxylic acid, amitunaphthalif,
, azonaphthalenes, carbazole.

シアンヒドリン、2−メルトカプトベンゾチアゾール等
のチアゾール誘導体、ベンゾトリアゾール又はその誘導
体など枚挙にいとまのない種々の防食剤の適用が提案さ
れている。これらの防食剤は電解液中に少量を添加する
のが一般的な適用法である。然し、何れの防食剤も顕著
な防食効果が認められず、汞化率を低減させるための有
効な手段になっていないのが現状である。
Application of various anticorrosive agents such as cyanohydrin, thiazole derivatives such as 2-meltocaptobenzothiazole, benzotriazole or its derivatives, etc., has been proposed. The general application method is to add a small amount of these anticorrosive agents to the electrolyte. However, none of these anticorrosive agents has been found to have a significant anticorrosive effect, and currently they are not effective means for reducing the rate of corrosion.

発明が解決しようとする問題点 亜鉛負極の防食が不十分な場合は電池の貯蔵中に亜鉛の
消耗とともに水素ガスが発生し、電池内圧が上昇して電
解液の漏出、電池の変形の原因となり、著しい場合は電
池の破裂の原因となる。しかも、亜鉛の腐食は電池の容
量低下など貯蔵後の電池性能の劣化をもたらす原因とも
なる。本発明は上記の諸問題の発生を防止するに十分な
亜鉛負極の耐食性を氷化率を極力低減化した状態で確保
することを目的とする。その方法として、従来から提案
されている前述の各種防食剤以上に防食効果が大きく、
耐アルカリ性で、しかも放電性能にも悪影響のない防食
剤を新たに探索して低汞化率の亜鉛負極を備えた電池に
適用し、実用的な電池の緒特性を損うことなく、水銀含
有率の小さい低公害の亜鉛アルカリ電池を提供するもの
である。
Problems to be Solved by the Invention If the corrosion protection of the zinc negative electrode is insufficient, hydrogen gas will be generated as the zinc is consumed during storage of the battery, and the internal pressure of the battery will increase, causing leakage of electrolyte and deformation of the battery. In severe cases, it may cause the battery to explode. Furthermore, corrosion of zinc also causes deterioration in battery performance after storage, such as a decrease in battery capacity. The object of the present invention is to ensure corrosion resistance of a zinc negative electrode sufficient to prevent the occurrence of the above-mentioned problems while minimizing the freezing rate. As a method of achieving this, the anti-corrosion effect is greater than the various anti-corrosion agents previously proposed.
We have searched for a new anticorrosive agent that is resistant to alkali and does not have a negative impact on discharge performance, and applied it to batteries with zinc negative electrodes with low corrosion rates. The present invention provides a low-pollution zinc-alkaline battery with low energy consumption.

問題点を解決するための手段 本発明は電解液に水酸化カリウム、水酸化ナトリウムな
どを主成分とするアルカリ水溶液、負極活物質に亜鉛又
は亜鉛合金、正極活物質に二酸化マンガン、酸化銀、酸
素、オキシ水酸化ニッケル。
Means for Solving the Problems The present invention uses an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, etc. as the main components as an electrolyte, zinc or zinc alloy as a negative electrode active material, and manganese dioxide, silver oxide, or oxygen as a positive electrode active material. , nickel oxyhydroxide.

酸化水銀など上用いるいわゆる亜鉛アルカリ電池の負極
の腐食を抑制する防食剤として、低分子ポリアクリル酸
、 (E−CH2CH(COOH)うユ 、及びこれを
アルカリ金属で中和した塩類、例えばfCH2CH(C
OOK)−)、、fCH2CH(COONa) 、:)
、。
Low-molecular polyacrylic acid, (E-CH2CH(COOH)), and salts of this neutralized with alkali metals, such as fCH2CH( C
OOK)-),, fCH2CH(COONa),:)
,.

−〔CH2CH(COOLi)−)、O群より選ばれた
少なくとも一種を用いるものである。
-[CH2CH(COOLi)-), at least one selected from group O is used.

これらの防食剤の適用方法は電解液中への添加セパレー
タ、保液材の双方又は一方への含浸、負極活物質表面へ
の付着などの方法を採ることができる0また、上記防食
剤の重合度(ロ)は5〜60のものが好ましい。
These anticorrosives can be applied by adding them into the electrolyte, impregnating both or one of the separator and liquid retaining material, and attaching them to the surface of the negative electrode active material. The degree (b) is preferably 5 to 60.

また、負極活物質には、純亜鉛、又は亜鉛合金を用いる
が、特に大幅な氷化率の低減を実現するには耐食性亜鉛
合金と上記防食剤を併用するのが効果的である。例えば
、インジウム、鉛を添加した亜鉛合金、或いはこれにガ
リウムを添加した亜鉛合金と併用すると0.2チの氷化
率でも負極の耐食性が十分な電池が得られ、さらに上記
の亜鉛合金の添加元素に加え、アルミニウム、ストロン
チウム、カルシウム、マグネシウム、バリウム、ニッケ
ルのうち少なくとも一種を含有する亜鉛合金を併用する
と0.05 %の汞化率でも負極の耐食性が確保できる
Further, pure zinc or a zinc alloy is used as the negative electrode active material, but in order to achieve a particularly significant reduction in the freezing rate, it is effective to use a corrosion-resistant zinc alloy and the above-mentioned anticorrosive agent together. For example, when used in combination with a zinc alloy to which indium and lead are added, or a zinc alloy to which gallium is added, a battery with sufficient corrosion resistance of the negative electrode can be obtained even at a freezing rate of 0.2 inches; If a zinc alloy containing at least one of aluminum, strontium, calcium, magnesium, barium, and nickel is used in addition to the above elements, the corrosion resistance of the negative electrode can be ensured even at a 0.05% filtration rate.

作  用 本発明で用いる防食剤の作用機構は不明確であるが、下
記のように推察される。
Effect The mechanism of action of the anticorrosive agent used in the present invention is unclear, but is presumed to be as follows.

本発明の防食剤は炭素−炭素結合の骨格構造の主鎖に側
鎖として極性基のカルボキシル基を有しており、電解液
中に容易に溶解するとともに、溶解した防食剤の極性基
の一部が負極の亜鉛又は亜鉛合金の表面に吸着するもの
と考えられる。亜鉛のアルカリ電解液中での腐食反応は
次式で示されるが、防食剤が負極表面に吸着し被膜を形
成すると。
The anticorrosive agent of the present invention has a carboxyl group, which is a polar group, as a side chain in the main chain of the carbon-carbon bond skeleton structure, and is easily dissolved in an electrolytic solution. It is thought that a portion of the zinc or zinc alloy of the negative electrode is adsorbed on the surface of the zinc or zinc alloy. The corrosion reaction of zinc in an alkaline electrolyte is shown by the following equation, and when the anticorrosive agent is adsorbed on the negative electrode surface and forms a film.

7/−ド反応Zn+40H−+$ Zn(OH)4 +
 2e力ソード反応 2H20+ 2e−→20H−+
f(2アノ一ド反応の原因となる水酸イオンの亜鉛負極
への接近が妨害され、またカソード反応に必要な水分子
が亜鉛負極表面近傍に存在できなくなり亜鉛の腐食が抑
えられる。防食剤が少量で亜鉛負極表面を完全に覆って
いない状態でも、添加した防食剤の亜鉛負極表面の吸7
Ii部分での亜鉛の腐食反応が抑制され、亜鉛負極の総
腐食量が減少する。
7/-de reaction Zn+40H-+$ Zn(OH)4 +
2e force sword reaction 2H20+ 2e-→20H-+
f(2) The approach of hydroxide ions, which cause the anode reaction, to the zinc negative electrode is blocked, and the water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode, suppressing corrosion of zinc. Corrosion inhibitor Even if the amount of anticorrosion added is small and does not completely cover the surface of the zinc negative electrode, the adsorption of the added corrosion inhibitor on the surface of the zinc negative electrode is
The corrosion reaction of zinc in the Ii portion is suppressed, and the total amount of corrosion of the zinc negative electrode is reduced.

また防食剤はセパレータおよび/または保液材への含浸
、負極活物質表面への付着などの方法で添加しても、電
池構成後に防食剤が電解液中に溶解あるいは分散し、上
記と同様に亜鉛負極表面に吸着し、亜鉛の腐食が抑制さ
れる。以上の如く本発明に用いる防食剤は亜鉛の腐食反
応に関する表面を覆うため防食効果が得られたものと考
えられる。
Furthermore, even if the anticorrosive agent is added by impregnating the separator and/or liquid retaining material, or attaching it to the surface of the negative electrode active material, the anticorrosive agent will dissolve or disperse in the electrolyte after battery construction, and the same problem as above will occur. Adsorbs to the surface of the zinc negative electrode, suppressing zinc corrosion. As described above, it is thought that the anticorrosive agent used in the present invention has an anticorrosive effect because it covers the surface where the corrosion reaction of zinc occurs.

また、特開昭58−18266で開示されたインジウム
と鉛を含有する亜鉛合金、あるいは特開昭60−176
368 、特開昭61−77267゜特開昭61−18
1058.特開昭61−203563゜特願昭61−1
50307等で発明者等が開示したインジウムと鉛を含
有し、さらにガリウム、アルミニウム、ストロンチウム
、カルシウム、マグネシウム、バリウム、ニッケルの群
より選ばれた一4以上?含万する亜鉛合金はいずれも耐
食性が優れているが氷化率を0.2チ程度まで低下させ
ると充分な耐食性が確保できない。しかしながら上記防
食剤を併用すると両者の防食作用が併合され、場合によ
っては0.05 %の氷化率でも負極の耐食性が確保さ
れる。
In addition, a zinc alloy containing indium and lead disclosed in JP-A-58-18266, or JP-A-60-176
368, JP-A-61-77267° JP-A-61-18
1058. Unexamined Japanese Patent Publication No. 61-203563゜Patent Application No. 61-1
50307 etc., containing indium and lead, and further selected from the group of gallium, aluminum, strontium, calcium, magnesium, barium, and nickel? All of the zinc alloys containing zinc have excellent corrosion resistance, but if the icing rate is reduced to about 0.2 inches, sufficient corrosion resistance cannot be ensured. However, when the above-mentioned anticorrosive agents are used in combination, the anticorrosion effects of both are combined, and in some cases, the corrosion resistance of the negative electrode is ensured even at a freezing rate of 0.05%.

上記の如く本発明は亜鉛負極の耐食性向上に有効な防食
剤とその分子構造による相違、さらに耐食性亜鉛合金と
の併用を実績的に検討し、低汞化率で実用性の高い亜鉛
アルカリ電池を完成したものである。
As mentioned above, the present invention has developed a highly practical zinc-alkaline battery with a low corrosion rate, based on a practical study of corrosion inhibitors that are effective in improving the corrosion resistance of zinc negative electrodes, differences in their molecular structures, and their use in combination with corrosion-resistant zinc alloys. It is completed.

以下芙適例により詳細に説明する。This will be explained in detail below using suitable examples.

実施例 実施例1 まず、本発明の防食剤のアルカリ溶液中での亜鉛に対す
る腐食抑制効果を調べた。実験方法は40重量−の水酸
化カリウム水浴液に酸化亜鉛を溶解した電解液に本発明
の防食剤、又は従来例の防食剤11000pp  溶解
させて5tji採り、その液中に水化亜鉛粉110p投
入し、46℃の温度下で20日間で発生した水素ガス量
を測定した。水化亜鉛粉の氷化率は1.0%で、粒径は
35〜150メツシユとした。得られた測定結果を第1
表に示した。
Examples Example 1 First, the corrosion inhibiting effect of the anticorrosive agent of the present invention on zinc in an alkaline solution was investigated. The experimental method was to dissolve 11,000 pp of the anticorrosive agent of the present invention or a conventional anticorrosive agent in an electrolytic solution in which zinc oxide was dissolved in a 40 wt. The amount of hydrogen gas generated over 20 days at a temperature of 46°C was measured. The freezing rate of the zinc hydrate powder was 1.0%, and the particle size was 35 to 150 mesh. The obtained measurement results are the first
Shown in the table.

第1表のうち、本発明の防食剤を用いた厖1〜140群
は、従来から提案されている防食剤を用いた&15〜1
7の群や、防食剤を添加していない厖18より水素ガス
の発生量が少く、本発明の防食剤の腐食抑制効果が大き
いことが判る。
In Table 1, Groups 1 to 140 using the anticorrosive agent of the present invention are group 1 to 140 using the anticorrosive agent of the present invention;
The amount of hydrogen gas generated was smaller than Group 7 and Group 18 to which no anticorrosive agent was added, indicating that the corrosion inhibiting effect of the anticorrosive agent of the present invention is large.

厖1〜14のうち、ム1〜4は防食剤の重合度を16に
統一し、アルカリ金属での中和による防食効果の差異を
検討したものであり、何れも防食効果が大きく、相互の
間で大差は認められない。
Among the cases 1 to 14, in cases 1 to 4, the degree of polymerization of the anticorrosive agent was unified to 16, and the difference in the anticorrosive effect due to neutralization with alkali metal was investigated. There is no significant difference between them.

慝5〜8は重合度(n)の異る各種の低分子ポリアクリ
ル酸の防食効果を検討したもので、中でも厖16.7が
惠15〜18の従来例又は無添加の場合よシ圧倒的に水
素ガス発生量が少く、重合度(n)は5〜60が好まし
いと判断される。又、アルカリ金属塩の場合にも重合度
(n)が5〜50の場合に効果的であることが、遡9〜
140群とt/G1s〜180群を対比すれば明白であ
る。
5 to 8 investigated the anticorrosive effects of various low-molecular-weight polyacrylic acids with different degrees of polymerization (n), and among them, 16.7 was overwhelmingly superior to the conventional examples of 15 to 18 or the cases without additives. It is judged that the amount of hydrogen gas generated is small and the degree of polymerization (n) is preferably 5 to 60. Furthermore, in the case of alkali metal salts, it has been shown that they are effective when the degree of polymerization (n) is 5 to 50.
This becomes clear when comparing the 140 group and the t/G1s~180 group.

実施例2 次に、実施例1で得られた結果に基づき、代表的な防食
剤を選び、負極活物質である亜鉛又は亜鉛合金の汞化率
低減に対する効果を図に示すボタン形酸化銀電池を試作
して比較検討した。
Example 2 Next, based on the results obtained in Example 1, a typical anticorrosive agent was selected, and a button-shaped silver oxide battery was prepared, with the effect of reducing the corrosion rate of zinc or zinc alloy, which is the negative electrode active material, shown in the figure. We made a prototype and compared it.

図において、1はステンレス鋼製の封目板で、その内面
に銅メッキが施されている。2は水酸化カリウムの40
重量%水溶液に酸化亜鉛を飽和させた電解液(防食剤を
添加する場合は第2表に示した防食剤を11000pp
溶解させた電解液)をカルボキシメチルセルロースによ
シゲル化し、このゲル中に水化亜鉛又は水化亜鉛合金の
60〜160メツシユの粉末を分散させた亜鉛負極であ
る。3はセルロース系の保液材、4は多孔性ポリプロピ
レン製のセパレータ、6は酸化銀に黒鉛を混合して加圧
成形した正極、6は鉄にニッケルメッキを施した正極リ
ング、7はニッケルメッキを施したステンレス鋼製の正
極缶である。8はポリプロピレン製のガスケットで、正
極缶7の折シ曲げによシ正極缶7と封口板1との間に圧
縮されている。
In the figure, reference numeral 1 denotes a sealing plate made of stainless steel, the inner surface of which is plated with copper. 2 is 40 of potassium hydroxide
Electrolyte solution saturated with zinc oxide in a wt% aqueous solution (when adding an anticorrosive agent, add 11,000 pp of the anticorrosive agent shown in Table 2)
This is a zinc negative electrode in which a dissolved electrolytic solution is gelled with carboxymethyl cellulose, and 60 to 160 mesh powder of zinc hydride or zinc hydrate alloy is dispersed in this gel. 3 is a cellulose-based liquid retaining material, 4 is a separator made of porous polypropylene, 6 is a positive electrode made of a mixture of silver oxide and graphite and pressure molded, 6 is a positive electrode ring made of iron plated with nickel, and 7 is nickel plated. This is a positive electrode can made of stainless steel. A polypropylene gasket 8 is compressed between the positive electrode can 7 and the sealing plate 1 when the positive electrode can 7 is bent.

試作した電池は直径11.6ff、総高6.4Hである
1試作した電池の60°Cで1力月間貯蔵した後の放電
性能と電池総高の変化、及び目視判定で漏液が観察され
た電池の個数を第2表に示す。放電性能は、20″Cに
おいて510Ωで0.9■を終止電圧として放電した時
の放電持続時間で表わした。
The prototype battery has a diameter of 11.6ff and a total height of 6.4H. After storage at 60°C for one month, changes in discharge performance and total battery height, and leakage were observed by visual inspection. Table 2 shows the number of batteries used. The discharge performance was expressed as the discharge duration when discharging at 510Ω at 20″C with a final voltage of 0.9μ.

第   2   表 [ 正常なボタン電池では通常、電池を封口後、各電池構成
要素間の応力の関係が安定化するまでは経時的に電池総
高が若干減少するが、負極亜鉛の腐食に伴う水素ガスの
発生が多い電池では電池内圧の上昇により電池総高が増
大する傾向が強くなる。従って、貯蔵期間中の電池総高
の増減により負極亜鉛の耐食性が評価できる。耐食性が
不十分な電池では電池総高が増大するほか、電池内圧の
上昇によシ漏液し易く、また、腐食による負極亜鉛の消
耗1表面の酸化により放電性能も劣化する。
Table 2 [In normal button batteries, the total height of the battery decreases slightly over time after the battery is sealed until the stress relationship between each battery component stabilizes; In a battery that generates a large amount of gas, the total height of the battery tends to increase due to an increase in the internal pressure of the battery. Therefore, the corrosion resistance of the negative electrode zinc can be evaluated by the increase or decrease in the total height of the battery during the storage period. A battery with insufficient corrosion resistance not only increases the total height of the battery, but also tends to leak due to an increase in battery internal pressure, and also deteriorates discharge performance due to the consumption of negative electrode zinc due to corrosion and oxidation of the surface.

このような観点で、第2表の試作実験結果は次のように
評価される。先ず、廠1〜7は負極活物質として耐食性
が極めてすぐれ、通常、汞化率1.6−以上なら、防食
剤の助けなして実用電池の負極として使用することが有
望視されている亜鉛合金(Pb、In、AIを含有する
亜鉛合金)を0.05%という極めて低汞化率で電池を
構成して防食剤の効果を比較したものである。これらの
結果は、本発明の防食剤を添加した厖1〜4の場合が厖
5〜7の従来例の防食剤を添加、又は無添加の場合よシ
極めて良好であることを示し、上記の耐食性亜鉛合金と
本発明の防食剤を併用することKよシ0.05 ’1以
上の氷化率で負極の耐食性を十分に確保でき、極めて低
汞化率の亜鉛アルカリ電池が構成できることを示してい
る。また、&8〜14は現在、普及材料としてすでに3
%の氷化率で実用化されている亜鉛合金(Pb、Inを
含有する亜鉛合金)の汞化率を0.29Jまで減少させ
て、本発明の防食剤の効果を検討したものである。この
場合にも、&8〜11の実施例は黒12〜14の従来例
又は無添加の場合とで、明白に電池性能に差異が見られ
、上記亜鉛合金と本発明の防食剤を併用すれば0.2%
以上の汞化率で負風の耐食性が十分で実用性能にすぐれ
た低汞化率の亜鉛アルカリ電池が構成できることを示し
ている。さらに、&15〜2oは通常7〜10%程度の
汞化率を必要とする純亜鉛粉を負極活物質に用いた場合
に本発明を適用して3%まで汞化率を低減しても十分な
実用性のある電池を構成できることを示している。また
、A21〜26は防食剤の助けなしでもほぼ負極の耐食
性が確保できる1、5〜3チの汞化率の亜鉛合金を負極
に用いた場合に本発明の効果を念のため確認したもので
あjJ、A21〜23及びA27〜29の実施例の場合
は、A24〜26、及びA30〜32の従来例又は無添
加の場合よシさらに特性が向上しておシ、高度の耐食性
が確保されたことによシ品質が安定化したことを示して
いム/Fl133 、34はpbとInを含有する亜鉛
合金とほぼ同等の腐食性を有する、Pb、In、Gaを
含有する亜鉛合金を汞化率0.2%として本発明の効果
を調べたもので、 & 39の実施例の場合は黒8〜1
1のPb、Inを含有した亜鉛合金での実施例と同様0
.2チの汞化率が実現できることを示している。
From this point of view, the prototype experiment results shown in Table 2 are evaluated as follows. First of all, Zinc alloys 1 to 7 have extremely good corrosion resistance as negative electrode active materials, and if the corrosion rate is 1.6 or higher, they are promising for use as negative electrodes in practical batteries without the aid of anticorrosive agents. (Zinc alloy containing Pb, In, and AI) was constructed with an extremely low corrosion rate of 0.05%, and the effects of the anticorrosive agent were compared. These results show that cases 1 to 4 in which the anticorrosive agent of the present invention is added are much better than cases 5 to 7 in which the conventional anticorrosive agent is added or not added. It has been shown that by using a corrosion-resistant zinc alloy and the anticorrosive agent of the present invention in combination, sufficient corrosion resistance of the negative electrode can be ensured with a freezing rate of 0.05'1 or more, and a zinc-alkaline battery with an extremely low freezing rate can be constructed. ing. In addition, &8~14 are currently being used as popular materials for 3
The effect of the anticorrosive agent of the present invention was investigated by reducing the freezing rate of a zinc alloy (zinc alloy containing Pb and In), which has been put into practical use with a freezing rate of 0.29 J, to 0.29J. In this case as well, there is a clear difference in battery performance between Examples &8 to 11 and the conventional examples of Black 12 to 14 or cases without additives. 0.2%
This shows that it is possible to construct a zinc-alkaline battery with a low corrosion rate that has sufficient negative wind corrosion resistance and excellent practical performance with the above concentration ratio. Furthermore, &15~2o is sufficient even if the present invention is applied to reduce the filtration rate to 3% when pure zinc powder, which normally requires a filtration rate of about 7 to 10%, is used as the negative electrode active material. This shows that it is possible to construct a practical battery. In addition, A21 to A26 are cases in which the effects of the present invention were confirmed to be sure when a zinc alloy with a corrosion rate of 1, 5 to 3, which can ensure almost the corrosion resistance of the negative electrode without the aid of anticorrosive agents, was used for the negative electrode. In the case of examples of JJ, A21-23 and A27-29, the properties are further improved compared to the conventional examples of A24-26 and A30-32 or cases without additives, and a high degree of corrosion resistance is ensured. This indicates that the quality has been stabilized due to the corrosion resistance. The effect of the present invention was investigated with a conversion rate of 0.2%.
0 as in Example 1 with zinc alloy containing Pb and In.
.. This shows that it is possible to achieve a conversion rate of 2.

& 35〜44は、Pb、In、Alを含有する耐食性
の改良された亜鉛合金とほぼ同等の耐食性を有する亜鉛
合金として、期待されるものについて、氷化率0.05
%で本発明の効果を調べたもので、いずれの実施例(黒
35 、37 、39 、41.43)も0.05%と
いう低汞化率でも、Pb、In、Alを含有する亜鉛合
金でのA1〜4の実施例と同様に、すぐれた電池性能を
示している。以上の場合はいずれも電解液中に防食剤を
溶解させて本発明の効果を検討した結果であるが、A 
45 、46 、47は防食剤を電解液中に添加する方
法以外の本発明の実施例を示したもので、予め、氷化亜
鉛合金に防食剤を付着させた黒45、予めセパレータも
しくは保液材に防食剤を含浸させた& 46 、47の
何れもが電解液に防食剤を溶解させた場合とほぼ等しい
効果が認められた。これらの場合、いずれも電池構成後
に序々に防食剤が電解液中に溶解して防食効果を発揮す
るもので、特に、セパレータもしくは保液材に防食剤を
含浸させた場合には、電解液の浸透が速くなるので電池
摘成が容易になシ、生産性を高める効果もある。
& 35 to 44 are zinc alloys that are expected to have corrosion resistance almost equivalent to zinc alloys with improved corrosion resistance containing Pb, In, and Al, and have a freezing rate of 0.05.
%, and all examples (black 35, 37, 39, 41.43) showed that zinc alloys containing Pb, In, and Al were used even when the reduction rate was as low as 0.05%. Similar to Examples A1 to A4, excellent battery performance was exhibited. All of the above cases are the results of examining the effects of the present invention by dissolving an anticorrosive agent in the electrolytic solution.
45, 46, and 47 show examples of the present invention other than the method of adding an anticorrosive agent to the electrolytic solution. Both of &46 and 47, in which the material was impregnated with an anticorrosive agent, had almost the same effect as when the anticorrosive agent was dissolved in the electrolytic solution. In all of these cases, the anticorrosive agent gradually dissolves into the electrolyte after the battery is constructed, exerting its anticorrosive effect. In particular, when the separator or liquid retaining material is impregnated with the anticorrosive agent, the anticorrosion agent gradually dissolves into the electrolyte after the battery is constructed. Since penetration becomes faster, battery removal becomes easier and productivity is increased.

発明の効果 本発明は新規に探索した防食剤の効果によシ亜鉛アルカ
リ電池の負極の氷化率を大幅に低減することを可能にし
たものである。
Effects of the Invention The present invention has made it possible to significantly reduce the freezing rate of the negative electrode of a zinc alkaline battery through the effect of a newly discovered anticorrosive agent.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いたボタン形酸化銀電池の一部
を断面にした側面図である。 2・・・・・・亜鉛負極、4・・・・・・セパレータ、
6・・・・・・酸化銀正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2−
−一亜鉛負る 李−−−t)マレータ 5−m−酸化銀二極 Si
The figure is a partially sectional side view of a button-shaped silver oxide battery used in an example of the present invention. 2...Zinc negative electrode, 4...Separator,
6...Silver oxide positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person2-
-One zinc lithium---t) Mareta 5-m-Silver oxide bipolar Si

Claims (7)

【特許請求の範囲】[Claims] (1)負極活物質の防食剤として、低分子ポリアクリル
酸、−〔CH_2CH(COOH)〕−_n、及びこれ
をアルカリ金属で中和した塩類の群より選ばれた少くと
も一種を用いた亜鉛アルカリ電池。
(1) Zinc using at least one member selected from the group of low-molecular polyacrylic acid, -[CH_2CH(COOH)]-_n, and salts obtained by neutralizing this with an alkali metal as a corrosion preventive agent for the negative electrode active material. alkaline battery.
(2)防食剤の重合度(n)が5〜50である特許請求
の範囲第1項記載の亜鉛アルカリ電池。
(2) The zinc-alkaline battery according to claim 1, wherein the degree of polymerization (n) of the anticorrosive agent is 5 to 50.
(3)防食剤を電解液中に溶解させた特許請求の範囲第
1項又は第2項記載の亜鉛アルカリ電池。
(3) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is dissolved in the electrolyte.
(4)防食剤を予めセパレータ、電解液保持材の双方又
は一方に含浸させた特許請求の範囲第1項又は第2項記
載の亜鉛アルカリ電池。
(4) The zinc-alkaline battery according to claim 1 or 2, wherein both or one of the separator and the electrolyte holding material is impregnated with an anticorrosive agent in advance.
(5)防食剤を予め負極活物質の表面に付着させた特許
請求の範囲第1項又は第2項記載の亜鉛アルカリ電池。
(5) The zinc-alkaline battery according to claim 1 or 2, wherein an anticorrosive agent is previously attached to the surface of the negative electrode active material.
(6)必須添加元素としてインジウム、鉛を、任意の添
加元素としてガリウムを含有する亜鉛合金を負極活物質
に用い、負極活物質の汞化率が3〜0.2%である特許
請求の範囲第1項から第5項のいずれかに記載の亜鉛ア
ルカリ電池。
(6) A claim in which a zinc alloy containing indium and lead as essential additive elements and gallium as an optional additive element is used as the negative electrode active material, and the filtration rate of the negative electrode active material is 3 to 0.2%. The zinc-alkaline battery according to any one of items 1 to 5.
(7)必須添加元素としてインジウム、鉛を含有し、さ
らにアルミニウム、ストロンチウム、カルシウム、マグ
ネシウム、バリウム、ニッケル、ガリウムの群より選ば
れた一種以上を含有する亜鉛合金を負極活物質に用い、
負極活物質の汞化率が1.5〜0.05%である特許請
求の範囲第1項から第5項のいずれかに記載の亜鉛アル
カリ電池。
(7) Using a zinc alloy as a negative electrode active material, which contains indium and lead as essential additive elements, and further contains one or more selected from the group of aluminum, strontium, calcium, magnesium, barium, nickel, and gallium;
The zinc-alkaline battery according to any one of claims 1 to 5, wherein the negative electrode active material has a hydrogenation rate of 1.5 to 0.05%.
JP8147287A 1987-04-02 1987-04-02 Zinc alkaline battery Pending JPS63248070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147287A JPS63248070A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147287A JPS63248070A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPS63248070A true JPS63248070A (en) 1988-10-14

Family

ID=13747343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147287A Pending JPS63248070A (en) 1987-04-02 1987-04-02 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS63248070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067494A1 (en) * 2008-12-12 2010-06-17 パナソニック株式会社 Alkaline dry battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067494A1 (en) * 2008-12-12 2010-06-17 パナソニック株式会社 Alkaline dry battery
EP2367226A1 (en) * 2008-12-12 2011-09-21 Panasonic Corporation Alkaline dry battery
EP2367226A4 (en) * 2008-12-12 2012-07-11 Panasonic Corp Alkaline dry battery

Similar Documents

Publication Publication Date Title
JP2770396B2 (en) Zinc alkaline battery
JPS63248070A (en) Zinc alkaline battery
JPH0371559A (en) Zinc alkaline battery
JPS63250063A (en) Zinc-alkaline battery
JP2737233B2 (en) Zinc alkaline battery
JPS63248061A (en) Zinc alkaline battery
JPS63248064A (en) Zinc alkaline battery
JP2737230B2 (en) Zinc alkaline battery
JP2737232B2 (en) Zinc alkaline battery
JPS63248062A (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JPS63248068A (en) Zinc alkaline battery
JPS63244559A (en) Zinc alkaline battery
JPS63248065A (en) Zinc alkaline battery
JPS63248063A (en) Zinc alkaline battery
JPS63248066A (en) Zinc alkaline battery
JPS63276871A (en) Zinc alkali cell
JPS63250061A (en) Zinc-alkaline battery
JP2737231B2 (en) Zinc alkaline battery
JPH0513070A (en) Alkaline battery
JPS63248067A (en) Zinc alkaline battery
JPS63248069A (en) Zinc alkaline battery
JP2935855B2 (en) Alkaline battery
JPS63239770A (en) Zinc alkaline cell
JPS63250062A (en) Zinc-alkaline battery