JPS6324563A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6324563A
JPS6324563A JP61168728A JP16872886A JPS6324563A JP S6324563 A JPS6324563 A JP S6324563A JP 61168728 A JP61168728 A JP 61168728A JP 16872886 A JP16872886 A JP 16872886A JP S6324563 A JPS6324563 A JP S6324563A
Authority
JP
Japan
Prior art keywords
gas
electrode
sides
layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168728A
Other languages
Japanese (ja)
Inventor
Akemi Hijikata
土方 明躬
Masaaki Matsumoto
正昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61168728A priority Critical patent/JPS6324563A/en
Priority to US07/072,756 priority patent/US4767680A/en
Publication of JPS6324563A publication Critical patent/JPS6324563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make a fuel cell thin by forming a gas separator of a gas impermeable dense layer and porous members arranged on both sides of the dense layer, and having gas flow passages in the porous members, and directly holding an electrode consisting of a catalyst layer only by the gas separators. CONSTITUTION:A gas separator 16 is furnished with a gas impermeable dense layer 13 and porous members 14 and 15 which have gas flow passages 11 and 12 on the both sides of the dense layers. On both sides of an electrolyte matrix 1, are arranged electrodes consisting of catalyst layers 6 and 7 only without base materials, contacting directly to the gas separators 16, and a fuel cell is composed of laminating such a structure plurally. By making the fed gas diffuse into the porous members 14 and 15 to spread over the electrode, the base material as a gas diffusing layer is not necessary, and a thinform cell is realized. Therefore, plural cells can be laminated in a same height, and the space factor to the output can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この開明は、積層形燃料電池のセル構成に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a cell configuration of a stacked fuel cell.

〔従来の技術〕[Conventional technology]

第4図は特開昭58〜68881号公報に示された従来
の代表的なセル構成を示す断面図であυ、図において、
(1)は電解質マトリックス、(2)および(3)は電
極、(4)および(5)は電極基材、(6)および(7
)は電極の触媒層、(8)および(9)は湿潤ガスシー
ル部、00はガス分離板(セパレータ、インタコネクタ
とも呼ばれる。)01)および(6)は互いに直交する
燃料と酸化剤ガスのガス流路である。
FIG. 4 is a cross-sectional view showing a typical conventional cell configuration disclosed in Japanese Patent Application Laid-open No. 58-68881. In the figure,
(1) is an electrolyte matrix, (2) and (3) are electrodes, (4) and (5) are electrode base materials, (6) and (7)
) is the catalyst layer of the electrode, (8) and (9) are the wet gas seal parts, 00 is the gas separation plate (also called a separator or interconnector), and 01) and (6) are the fuel and oxidant gas perpendicular to each other. It is a gas flow path.

次に動作について説明する。ガス分離板αQは不透気性
の例ば緻密な炭素の板でその両面に互に直交するガス流
路(11、(6)を形成している。一方、電極基材(4
) + (5)はポーラスな例ば炭素繊維で構成されて
おシ、ガス流路aDl■へ供給された燃料ガスおよび酸
化剤ガスは電極基材(4)、および(5)中で拡散され
電極の触媒層(6)および(7)の全面に達し、電解質
マトリックス(1)を通して反応、発電する。ここで、
反応に使われなかった余剰ガヌや反応生成物である水蒸
気ガヌは、ガス流路(ロ)および(2)を通じて外部へ
排出される。この排出ガス中には、電解Wマトリックス
(1)や電極(2)および(3)に含まれる電解質が燃
料電池の動作条件で決まる蒸気となって存在し、電解質
も外部へ排出される。
Next, the operation will be explained. The gas separation plate αQ is an air-impermeable plate made of, for example, dense carbon, and has mutually orthogonal gas flow paths (11, (6) formed on both sides thereof.On the other hand, the electrode base material (4)
) + (5) is made of porous carbon fiber, for example, and the fuel gas and oxidant gas supplied to the gas flow path aDl are diffused in the electrode base materials (4) and (5). It reaches the entire surface of the catalyst layers (6) and (7) of the electrode, reacts and generates electricity through the electrolyte matrix (1). here,
Excess gas that is not used in the reaction and steam gas that is a reaction product are discharged to the outside through the gas flow path (b) and (2). In this exhaust gas, the electrolyte contained in the electrolytic W matrix (1) and the electrodes (2) and (3) exists in the form of vapor determined by the operating conditions of the fuel cell, and the electrolyte is also discharged to the outside.

湿潤ガヌシール(s+ + (9)は、燃料および酸化
剤ガヌがポーラスなwL電極基材ら外部へ漏洩するのを
防いでいる。
The wet Ganus seal (s + + (9)) prevents fuel and oxidant Ganus from leaking out from the porous wL electrode substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池は以上のように構成される一方、それぞ
れの部品の厚さは、現状技術では、ガス分離板αOはt
rL6〜cL8”冨電極基材(41、(5)は、t 1
8〜!o 1m+、燃料極はtIlo6〜α1絽空気極
はtα1〜α45111電解質マトリックヌ(1)はt
(L15〜α25 IIあるのでセルの基本単位構成の
厚さはt4J〜H3fl+となシ多積層化する場合、高
さが高くなる問題があった。また、出力に対するスペー
スファクタが悪かった。
While the conventional fuel cell is constructed as described above, the thickness of each part is
rL6~cL8'' rich electrode base material (41, (5) is t 1
8~! o 1m+, fuel electrode is tIlo6~α1, air electrode is tα1~α45111, electrolyte matrix (1) is t
(Since there are L15 to α25 II, the thickness of the basic unit structure of the cell is t4J to H3fl+.There was a problem that the height would increase when multi-layered. Also, the space factor for the output was poor.

この発明は上記のような問題点を解消をするためになさ
れたもので、セルの基本単位構成の厚さを薄形化できる
とともに、出力に対するスペースファクタを向上できる
燃料電池を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a fuel cell that can reduce the thickness of the basic unit structure of the cell and improve the space factor for output. do.

〔問題点を解決するための手段〕 この発明に係る燃料!池は、ガス分離板にガス不透気性
のある緻密層とこの緻密層の両面に直交するガス流路を
形成するように多孔部を配置し、このガス分離板が基材
を含まない触媒層のみで形成した。電極を直接挾持する
ようにしたものである。
[Means for solving the problem] Fuel according to this invention! The pond has a gas impermeable dense layer and porous sections arranged to form gas flow paths perpendicular to both sides of this dense layer, and this gas separating plate is a catalyst layer that does not contain a base material. Formed with chisel. It is designed to directly hold the electrodes.

〔作用〕[Effect]

この発明における燃料電池の構成は、ガス分離板がガス
不透気性のある緻密層とこの緻密層の両面に直交するガ
ス流路を形成する多孔部によシ形成され、供給ガスは電
極全面に拡がるのでII極のガス拡散層としての基材が
不用となシ薄形化することができる。
In the structure of the fuel cell in this invention, the gas separation plate is formed by a gas-impermeable dense layer and a porous portion forming a gas flow path perpendicular to both sides of this dense layer, and the supplied gas is distributed over the entire surface of the electrode. Since it spreads, the base material as a gas diffusion layer of the II electrode is unnecessary and the structure can be made thinner.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)は電解質マトリックス、(6)およ
び(7)は電極触媒層、(ロ)および(財)は互に直交
する燃料および酸化剤ガスのガス流路、α・はガス分離
板(複合化リプ付セパレータと称す、)で緻密層(至)
とその両面にリブ状に形成された多孔部αカおよび(ト
)のによシ一体構成化されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is an electrolyte matrix, (6) and (7) are electrode catalyst layers, (b) and (b) are mutually orthogonal gas flow paths for fuel and oxidant gas, and α is a gas separation plate. (referred to as composite lip separator) with dense layer (to)
and the rib-like porous portions α and (g) formed on both sides thereof are integrally constructed.

それぞれの部品の厚さはガス分離板αQの緻密層0がt
α6〜16111.多孔部α◆、に)が各t1〜1.5
朋、電極触媒層(6) l (7)が燃料極でt(LO
6〜cL11111空気極でt、、1〜1151E1、
電解質マトリックス(1)がtα1〜l125IEiK
となるのでセルの基本単位構成の厚さはtか4龍となる
The thickness of each part is t for the dense layer 0 of the gas separation plate αQ.
α6~16111. The porous parts α◆, t1 to 1.5 each
Me, electrode catalyst layer (6) l (7) is the fuel electrode and t(LO
6~cL11111 air electrode t,, 1~1151E1,
Electrolyte matrix (1) is tα1~l125IEiK
Therefore, the thickness of the basic unit structure of the cell is t or 4 times.

次に動作について説明する。ガス分離板(複合化リブ付
セパレータ)(2)の両面の多孔部へ4およびαGによ
って形成された互に直交するガス流ll8(ロ)および
(2)にそれぞれ燃料および酸化剤ガスを供給する。こ
の時、ガス分離板α・の緻密層側は、両面を流れる燃料
と酸化剤が互に混じるのを防いでおシ、両ガスは直接あ
るいは、ガス分離板α・の多孔部Q4および(至)を拡
散して電極触媒層(6)および(7)の全面に達する。
Next, the operation will be explained. Fuel and oxidizing gas are supplied to the gas flows ll8 (b) and (2), which are perpendicular to each other formed by 4 and αG, to the porous portions on both sides of the gas separation plate (composite ribbed separator) (2), respectively. . At this time, the dense layer side of the gas separation plate α prevents the fuel and oxidizer flowing on both sides from mixing with each other, and both gases are directly or ) is diffused to reach the entire surface of the electrode catalyst layers (6) and (7).

触媒層に達したガスは、イオン化し電解質マトリックス
(1)を通して反応し発電が行われる。
The gas that has reached the catalyst layer is ionized and reacts through the electrolyte matrix (1) to generate electricity.

多数の単位電池を積層された電池では、積層の上、下端
から電力を取)出す。
In a battery that has many unit cells stacked together, power is extracted from the top and bottom of the stack.

なお、上記実施例では多孔部α(およびaoをリプ状と
して説明したが必しもその必要はなく電極触媒層に均等
にガスを供給できればよく、第2図に示すようにガス流
路αη、および(イ)が形成される様に多孔部を一均な
飛石状に配設してもよい。また、ガス分離板的の両面に
多孔部Q4および(至)を設けたが、第8図に示すよう
にいずれか一方を従来形の緻密層で形成してもよい。
In the above embodiments, the porous portions α (and ao) were described as lip-shaped, but this is not necessary as long as gas can be uniformly supplied to the electrode catalyst layer, and as shown in FIG. 2, the gas flow paths αη, The porous portions may be arranged in a uniform stepping stone shape so that Q4 and (A) are formed.Also, the porous portions Q4 and (Q) are provided on both sides of the gas separation plate, but as shown in FIG. Either one may be formed of a conventional dense layer as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように1この発明によればガス分離板をガスを透
さない緻密層とこの両面にガス流路を形成するように多
孔部を設けたので、この多孔部中をガスが拡散し、電極
の拡散層としての基材層が不要となるので、セル厚さが
薄くなシ同じ高さの中に多数のセルを積層することがで
き、出力に対するスペースファクタが改善される効果が
ある。
As described above, 1.According to the present invention, the gas separation plate is made of a dense layer that does not allow gas to pass through, and the porous portions are provided on both sides of the dense layer to form gas flow paths, so that the gas diffuses through the porous portions. Since the base material layer as a diffusion layer of the electrode is not required, the cell thickness is small and a large number of cells can be stacked at the same height, which has the effect of improving the space factor for output.

更にガスの!極への供給が基材層を介さず直接行われる
ため拡散ロアが減シ特性が向上する効果がある。
Even more gas! Since the supply to the electrode is performed directly without going through the base material layer, the diffusion lower has the effect of improving shrinkage reduction characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池を示す断面
図、第2図は及び第8図はそれぞれこの発明の他の実施
例を示す断面図、第4図は従来の燃料電池を示す断面図
である。 図において、(1)は電解質マトリックス、(2)およ
び(3)は電極、(6)および(7)は電極触媒層、0
]および(2)はガス流路、Q3は緻密層、 Q4およ
び(ト)は多孔部・Q6はガス分離板である。 尚、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a fuel cell according to one embodiment of the present invention, FIGS. 2 and 8 are sectional views showing other embodiments of the invention, and FIG. 4 is a conventional fuel cell. FIG. In the figure, (1) is an electrolyte matrix, (2) and (3) are electrodes, (6) and (7) are electrode catalyst layers, and 0
] and (2) are gas flow paths, Q3 is a dense layer, Q4 and (g) are porous parts, and Q6 is a gas separation plate. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電解質マトリックスを挾む1対の電極を、ガス分離板を
介して複数個積層する燃料電池において、前記ガス分離
板が直接電極触媒層を挾む構成をとることを特徴とする
燃料電池。
1. A fuel cell in which a plurality of pairs of electrodes sandwiching an electrolyte matrix are stacked with gas separation plates interposed therebetween, characterized in that the gas separation plates directly sandwich an electrode catalyst layer.
JP61168728A 1986-07-16 1986-07-16 Fuel cell Pending JPS6324563A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61168728A JPS6324563A (en) 1986-07-16 1986-07-16 Fuel cell
US07/072,756 US4767680A (en) 1986-07-16 1987-07-13 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168728A JPS6324563A (en) 1986-07-16 1986-07-16 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6324563A true JPS6324563A (en) 1988-02-01

Family

ID=15873319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168728A Pending JPS6324563A (en) 1986-07-16 1986-07-16 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6324563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280872B1 (en) 1998-12-11 2001-08-28 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and a method for producing the electrode
JP2006190561A (en) * 2005-01-06 2006-07-20 Hitachi Ltd Fuel cell separator, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280872B1 (en) 1998-12-11 2001-08-28 Toyota Jidosha Kabushiki Kaisha Electrode for fuel cell and a method for producing the electrode
JP2006190561A (en) * 2005-01-06 2006-07-20 Hitachi Ltd Fuel cell separator, and fuel cell
JP4648007B2 (en) * 2005-01-06 2011-03-09 株式会社日立製作所 Fuel cell separator and fuel cell

Similar Documents

Publication Publication Date Title
JPH08222237A (en) Separator for fuel cell
JPH041469B2 (en)
JPH04355061A (en) Fuel cell
US5085950A (en) Fuel cell
JPH02168564A (en) Fuel battery
JPH03276569A (en) Fuel cell
JPH0443566A (en) Solid electrolyte type fuel cell
JPS60227361A (en) Internal structure of fuel cell for supply and exhaust of reaction gas
JPH09326259A (en) Solid electrolyte fuel cell
JPS6324563A (en) Fuel cell
JP4031952B2 (en) Fuel cell
JPS63119166A (en) Fuel battery
JPS6010565A (en) Seal structure for fuel cell
JPH04149966A (en) Solid electrolyte-type fuel battery
JPH1021944A (en) Solid polymer electrolyte fuel cell
JPH04121967A (en) Solid electrolyte type fuel cell
JPH076772A (en) Fuel cell
JPH01151163A (en) Fuel cell
JPS59184463A (en) Fuel cell
JPH01183070A (en) Separator for fuel cell
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPS6364268A (en) Fuel cell
JP2012049007A (en) Fuel cell system
JP2003242998A (en) Solid polymer fuel cell
US4975342A (en) Fuel cell