JPS63244743A - Solder die bonding substrate of semiconductor device - Google Patents

Solder die bonding substrate of semiconductor device

Info

Publication number
JPS63244743A
JPS63244743A JP7799987A JP7799987A JPS63244743A JP S63244743 A JPS63244743 A JP S63244743A JP 7799987 A JP7799987 A JP 7799987A JP 7799987 A JP7799987 A JP 7799987A JP S63244743 A JPS63244743 A JP S63244743A
Authority
JP
Japan
Prior art keywords
layer
thickness
substrate
die bonding
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7799987A
Other languages
Japanese (ja)
Inventor
Naoki Uchiyama
直樹 内山
Shigeru Yamamoto
茂 山本
Hideaki Yoshida
秀昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7799987A priority Critical patent/JPS63244743A/en
Publication of JPS63244743A publication Critical patent/JPS63244743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To assure the excellent solder wetting expansivity and high bond strength simultaneously cutting down the manufacturing cost of semiconductor device by a method wherein Ag layer in specified thickness is lamination-formed on one side or both sides of Fe-Ni alloy made material 1 through the intermediary of an Ni layer in specified thickness. CONSTITUTION:An Ni alloy made basic material is prepared to form an Ni layer of 0.1-2mum in thickness and then an Ag layer of 5-15mum in thickness on both side of this basic material by electroplating process and finally a substrate is manufactured by stamping process in specified dimension.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体チップの基板へのハンダダイボンデ
ィング時に、薄いAg層によっても、すぐれたハンダぬ
れ性を示し、高い接合強度が得られる半導体装置のハン
ダダイボンディング用基板に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a semiconductor that exhibits excellent solder wettability and provides high bonding strength even with a thin Ag layer during solder die bonding of a semiconductor chip to a substrate. The present invention relates to a solder die bonding substrate for an apparatus.

〔従来の技術〕[Conventional technology]

従来、一般に半導体装置として、例えば第1図に概略断
面図で示されるサーディツプ型のセラミックパッケージ
が知られている。
2. Description of the Related Art Conventionally, as a semiconductor device, for example, a cerdip type ceramic package shown in a schematic cross-sectional view in FIG. 1 has been known.

このセラミックパッケージは、ノーンダダイボンディン
グ用基板1として、例えば厚さ:0.30のFe −4
2%Ni合金製基材の片面あるいは両面に、厚さ二0.
5μmのCu層をはさんで厚さ120μmのAg層を、
通常の湿式メッキ法やロールクラッド法などにより形成
したものを用い、これをセラミック下型2のキャビティ
底面にガラスペーストを用いて接着した後、この基板1
の上面に、例えばPb−5%Sn合金ノ・ンダを用いて
81などの半導体チップ3を接着し、ついで前記セラミ
ック下型2の上面に同じくガラスペーストを用いて接着
しであるFe −42%Ni合金製リード4と、半導体
チップ3とに渡ってAu極細線5をボールボンディング
し。
This ceramic package is made of Fe-4 having a thickness of 0.30, for example, as a substrate 1 for non-under die bonding.
A 20% thick Ni alloy substrate is coated on one or both sides of the 2% Ni alloy base material.
A 120 μm thick Ag layer sandwiched between a 5 μm Cu layer,
This substrate 1 is formed using a normal wet plating method or roll cladding method, and is bonded to the bottom of the cavity of the ceramic lower mold 2 using glass paste.
A semiconductor chip 3 such as 81 is bonded to the top surface using, for example, a Pb-5%Sn alloy powder, and then a Fe-42% semiconductor chip 3 such as 81 is bonded to the top surface of the ceramic lower mold 2 using a glass paste as well. An ultrafine Au wire 5 is ball-bonded across the Ni alloy lead 4 and the semiconductor chip 3.

jl終的に同じくセラミック上型6をガラスは−ストを
用いてセラミック下型2にノミツク接合することによっ
て製造されている。
Finally, the ceramic upper mold 6 is similarly manufactured by chiseling the glass to the ceramic lower mold 2 using a metal mold.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように従来半導体装置においては、ハンダダイボ
ンディング用基板として、 Fe −42%Ni合金製
基材の片面または両面に1通常のメッキ法あるいはクラ
ッド法により、ハンダぬれ性および接合強度を向上させ
るために、 CU層を介してAg層を積層形成したもの
が使用されているが、この場合前記Ag層の厚さが20
μm以下だと、例えば大気中、温度二500℃に10分
間保持の条件での基板のセラミック下型への接着時に、
大気中の酸素がAg層を通して拡散し、 Cu層が著し
く酸化し。
As mentioned above, in conventional semiconductor devices, as a substrate for solder die bonding, one or both sides of a Fe-42%Ni alloy base material is coated with a conventional plating method or cladding method to improve solder wettability and bonding strength. For this reason, a layer in which an Ag layer is laminated through a CU layer is used, but in this case, the thickness of the Ag layer is 20 mm.
If it is less than μm, for example, when bonding the substrate to the ceramic lower mold under conditions of holding the temperature at 2500°C for 10 minutes in the air,
Oxygen in the atmosphere diffuses through the Ag layer, significantly oxidizing the Cu layer.

この結果半導体チップのハンダ付は時に、 Cu層への
拡散酸素によってハンダぬれ性が低下し、高い接合強度
を確保することができなくなることから。
As a result, when soldering semiconductor chips, the solder wettability sometimes decreases due to oxygen diffusing into the Cu layer, making it impossible to ensure high bonding strength.

Ag層の厚さを20μm以上に厚くして、その下層のC
u層への酸素拡散を防止しているのが現状である。
The thickness of the Ag layer is increased to 20 μm or more, and the C layer below it is
The current situation is to prevent oxygen diffusion into the u layer.

一方、近年の半導体装置に対する省力化および低コスト
化の要求は厳しく、かかる点から基板における高価なA
g層の薄肉化が急務となっている。
On the other hand, in recent years there has been a severe demand for labor saving and cost reduction for semiconductor devices, and from this point of view, expensive A
There is an urgent need to reduce the thickness of the G layer.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, from the above-mentioned viewpoint.

半導体装置の組立てに用いられるハンダダイボンディン
グ用基板における特に何層の薄肉化に着目し研究を行な
った結果、従来ハンダダイボンディング用基板における
Cu層をNi層に代えると、その上に形成されるAg層
を薄くしても1例えば前記基板のセラミック下型への接
着時における酸化が著しく抑制されるようになシ、この
結果半導体チップのハンダ付は時に、すぐれたハンダぬ
れ性を示し、高い接合強度で半導体チップを基板に接着
することができるようになるという知見を得たのである
As a result of research focusing on thinning the number of layers in solder die bonding substrates used for assembling semiconductor devices, we found that when the Cu layer in conventional solder die bonding substrates is replaced with a Ni layer, Even if the Ag layer is made thinner, oxidation can be significantly suppressed, for example during bonding of the substrate to the ceramic lower mold, and as a result, soldering of semiconductor chips sometimes exhibits excellent solder wettability and high They discovered that it is possible to bond a semiconductor chip to a substrate by increasing the bonding strength.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、Fe−42%Ni合金製基材の片面あ
るいは両面に、通常のメッキ法あるいはクラッド法を用
いて、厚さ10.1〜2μmのNi層を介して、厚さ2
5〜15μmのAg層を積層形成してなる半導体装置の
・・ンダダイボンデイング用基板に特徴を有するもので
ある。
Therefore, the present invention has been made based on the above knowledge, and uses a conventional plating method or cladding method on one or both sides of a Fe-42%Ni alloy base material to a thickness of 10.1 to 10.1 mm. Through a 2 μm Ni layer, a thickness of 2
This is a substrate for die bonding of a semiconductor device formed by laminating Ag layers of 5 to 15 μm.

なお、この発明の基板において、Ni層は、その厚さが
0.1μm未満では半導体チップを基板に十分な接合強
度で接合することができないので、その厚さをO,1μ
m以上にする必要があるが、一方その厚さが2μmを越
えても、より一層の向上効果は得られず、経済性を考慮
すると、その上限値は2μmで十分であ#)、またAg
層についても、その厚さが5μm未満では、半導体チッ
プの接合強度が低く、十分な接合強度を確保するために
は5μm以上の厚さにする必要があるが、15μmを越
えた厚さにすると、コスト面での有利性が損なわれるよ
うになるばかシでなく、よシ一層の向上効果も現われな
いことから、その上限値を15μmと定めたのである。
In the substrate of the present invention, if the thickness of the Ni layer is less than 0.1 μm, the semiconductor chip cannot be bonded to the substrate with sufficient bonding strength, so the thickness is set to 0.1 μm.
On the other hand, even if the thickness exceeds 2 μm, no further improvement effect can be obtained, and considering economic efficiency, the upper limit of 2 μm is sufficient.
Regarding the layer, if the thickness is less than 5 μm, the bonding strength of the semiconductor chip will be low, and in order to ensure sufficient bonding strength, it is necessary to have a thickness of 5 μm or more, but if the thickness exceeds 15 μm, the bonding strength of the semiconductor chip will be low. The upper limit was set at 15 .mu.m because it would not be foolish to impair the cost advantage and no further improvement would occur.

〔実施例〕〔Example〕

つぎに、この発明の基板を実施例によシ具体的に説明す
る。
Next, the substrate of the present invention will be specifically explained using examples.

厚さ:0.3111のFe−42%Ni合金製基材を用
意し、この基材の両面に通常の電気メツキ法にて。
A base material made of Fe-42%Ni alloy with a thickness of 0.3111 was prepared, and both sides of this base material were plated using a normal electroplating method.

それぞれ第1表に示される厚さのNi層またはCu層を
形成し、さらにその上にAg層を形成し、ついで縦:5
uX横ニア龍の寸法に打抜くことによって本発明基板1
〜7および比較基板1〜9をそれぞれ製造した。
A Ni layer or a Cu layer is formed with the thickness shown in Table 1, and an Ag layer is further formed thereon, and then vertical: 5
The substrate 1 of the present invention is punched to the dimensions of uX horizontal near dragon.
-7 and comparative substrates 1-9 were manufactured, respectively.

つぎに、これらの各種の基板に、基板のセラミック下型
への接着条件に相当する条件、すなわち大気中、温度二
500℃に10分間保持後、冷却の条件で加熱処理を施
した後、これをヒートブロック上に置き、半導体チップ
のノ・ンダ付けに相当する条件、すなわち窒素雰囲気中
、温度:350℃に加熱した状態で、5mgのPb−5
%Sn合金ノ1ンダを乗せ、このノ・ンダのぬれ拡がり
性を観察すると共に、その後直径:31Llの純銅製ピ
ンを垂直に立てた状態で基板にノ・ンダ付けし、室温ま
で冷却して接合強度を測定した。なお、接合強度は、第
2図に正面図で示されるように、引張試験機を用い、基
板Aを支持板Bでおさえた状態でピンCを基板から引き
離し、この時の荷重をもって表わした。これらの結果を
第1表に示した。
Next, these various substrates were heat-treated under conditions equivalent to the bonding conditions of the substrate to the ceramic lower mold, that is, held at a temperature of 2,500°C for 10 minutes in the atmosphere, and then cooled. was placed on a heat block and heated to a temperature of 350°C in a nitrogen atmosphere under conditions equivalent to bonding semiconductor chips.
%Sn alloy solder and observed the wetting and spreading properties of the solder. Then, a pure copper pin with a diameter of 31 Ll was placed vertically on the substrate and soldered, and the solder was cooled to room temperature. The bond strength was measured. As shown in the front view of FIG. 2, the bonding strength was measured by using a tensile testing machine and pulling the pin C away from the substrate while holding the substrate A with the support plate B, and expressed the load at this time. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第   1   表 第1表に示される結果から1本発明基板1〜7は、Ag
層の厚さが15μm以下と薄い釦もかかわらず、下地層
のNi層によってハンダ付は前の大気加熱での酸化が防
止されるので、ハンダ付は時には良好なぬれ拡がシ性を
示し、かつきわめて高い接合強度を示すのに対して、比
較基板1〜7に見られるように、下地層が従来基板にお
けると同様にCu層の場合にはs Ag層の厚さが15
μm以下と薄いと、 Cu層の酸化が原因でハンダのぬ
れ拡がり性が十分でなく、接合強度も著しく低く、この
傾向はNi層またはAg層の厚さがこの発明の範囲から
薄い方に外れた比較基板8.9にも見られることが明ら
かである。
Table 1 From the results shown in Table 1, substrates 1 to 7 of the present invention were Ag
Despite the thin button with a layer thickness of 15 μm or less, the Ni layer as the base layer prevents soldering from oxidizing during previous atmospheric heating, so soldering sometimes exhibits good wetting and spreading properties. On the other hand, as seen in Comparative Boards 1 to 7, when the underlying layer is a Cu layer as in the conventional board, the thickness of the Ag layer is 15 cm.
If the thickness is less than μm, the wetting and spreading properties of the solder will be insufficient due to oxidation of the Cu layer, and the bonding strength will also be extremely low. It is clear that this can also be seen in Comparative Board 8.9.

上述のように、この発明のハンダダイボンディング用基
板は、これの表面に形成されるAgEjiの厚さが薄い
にもかかわらず、これへの半導体チップのハンダ付けに
際しては、良好なハンダぬれ拡がシ性を示し、かつ高い
接合強度が得られるものであって、半導体装置のコスト
低減に寄与するところ大なるものである。
As mentioned above, the solder die bonding substrate of the present invention exhibits good solder wetting and spreading when a semiconductor chip is soldered thereon, despite the thin AgEji formed on its surface. It exhibits high bonding strength and high bonding strength, and greatly contributes to cost reduction of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセラミックパッケージを示す概略断面図、第2
図は接合強度の測定状態を示す正面図である。 1・・・基板、      2・・・セラミック下型。 3・・・半導体チップ、  4・・・リード、5・・・
Au極細線、    6・・・セラミック上型、A・・
・基板、      B・・・支持板、C・・・ピン。
Figure 1 is a schematic sectional view showing a ceramic package, Figure 2 is a schematic cross-sectional view showing a ceramic package.
The figure is a front view showing the state of measurement of bonding strength. 1...Substrate, 2...Ceramic lower mold. 3...Semiconductor chip, 4...Lead, 5...
Au ultra-fine wire, 6...Ceramic upper mold, A...
・Board, B...Support plate, C...Pin.

Claims (1)

【特許請求の範囲】[Claims] Fe−42%Ni合金製基板の片面あるいは両面に、厚
さ:0.1〜2μmのNi層を介して、厚さ:5〜15
μmのAg層を積層形成してなる半導体装置のハンダダ
イボンディング用基板。
A Ni layer with a thickness of 0.1 to 2 μm is interposed on one or both sides of the Fe-42%Ni alloy substrate to a thickness of 5 to 15 μm.
A substrate for solder die bonding of semiconductor devices, which is formed by stacking μm-thick Ag layers.
JP7799987A 1987-03-31 1987-03-31 Solder die bonding substrate of semiconductor device Pending JPS63244743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7799987A JPS63244743A (en) 1987-03-31 1987-03-31 Solder die bonding substrate of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7799987A JPS63244743A (en) 1987-03-31 1987-03-31 Solder die bonding substrate of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63244743A true JPS63244743A (en) 1988-10-12

Family

ID=13649498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7799987A Pending JPS63244743A (en) 1987-03-31 1987-03-31 Solder die bonding substrate of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63244743A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396670A (en) * 1977-02-04 1978-08-24 Hitachi Ltd Pellet bonding method
JPS57149741A (en) * 1981-03-11 1982-09-16 Hitachi Ltd Bonding method for semiconductor pellet
JPS57211762A (en) * 1981-06-24 1982-12-25 Hitachi Cable Ltd Lead frame for semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396670A (en) * 1977-02-04 1978-08-24 Hitachi Ltd Pellet bonding method
JPS57149741A (en) * 1981-03-11 1982-09-16 Hitachi Ltd Bonding method for semiconductor pellet
JPS57211762A (en) * 1981-06-24 1982-12-25 Hitachi Cable Ltd Lead frame for semiconductor

Similar Documents

Publication Publication Date Title
JP5378078B2 (en) Manufacturing method of semiconductor device
JP3760075B2 (en) Lead frame for semiconductor packages
JPH11219420A (en) Ic card module, ic card and their manufacture
JPS616849A (en) Method of producing power semiconductor module
JPS63244743A (en) Solder die bonding substrate of semiconductor device
JPS5936425B2 (en) Lead frame structure with intermediate layer
JPH1074879A (en) Lead frame of semiconductor device
JPS5936426B2 (en) IC lead frame
JP3349166B2 (en) Circuit board
JPS61150253A (en) Semiconductor lead frame
JPH0616522B2 (en) Copper alloy foil for tape carrier
JPS5933851A (en) Airtightly sealed semiconductor container
JP2020155746A (en) Lead frame
JPS6320189A (en) Aluminum-iron-nickel alloy-solder clad material and production of ic device using said material
KR100422271B1 (en) beam lead of micro BGA type semiconductor package
KR100419981B1 (en) layer structure of semiconductor installed board
WO2024053738A1 (en) Copper/ceramic bonded body and insulated circuit board
JPS5815252A (en) Bump structure
KR20090009414A (en) Plated bumps coated with tin and flip chip bonding method using them
CN101834143A (en) Method for manufacturing internal lead of integrated circuit with palladium-copper wires
KR100503038B1 (en) Lead frame for semiconductor package
KR100254271B1 (en) Lead frame with multi-layer plating
JP4018991B2 (en) Semiconductor element storage package and semiconductor device
JPH03206633A (en) Semiconductor device
JPH02100355A (en) Ic lead member