JPS63243695A - Automatic blow down system for cooling tower - Google Patents

Automatic blow down system for cooling tower

Info

Publication number
JPS63243695A
JPS63243695A JP7661387A JP7661387A JPS63243695A JP S63243695 A JPS63243695 A JP S63243695A JP 7661387 A JP7661387 A JP 7661387A JP 7661387 A JP7661387 A JP 7661387A JP S63243695 A JPS63243695 A JP S63243695A
Authority
JP
Japan
Prior art keywords
water
cooled
flow rate
cooling tower
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7661387A
Other languages
Japanese (ja)
Inventor
Toshiichi Kuroiwa
黒岩 登志一
Seiichi Shinkai
新開 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7661387A priority Critical patent/JPS63243695A/en
Publication of JPS63243695A publication Critical patent/JPS63243695A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold the quality of cooled water stably in a given level for a long period of time, by making the data base of control by temperature and flow rate. CONSTITUTION:The evaporating rate of spray water is operated by a valve control device 19 from a temperature difference between temperatures of cooled water at the inlet port side and the outlet port side of a sealed cooling tower 1, the flow rate of cooled water and the latent heat of evaporation. Further, the amount of blow down is operated from the rate of evaporation and the discharging of water is controlled by controlling the opening degree of a water discharge control valve 17 so that the water discharging flow rate of a water discharging pipeline 15, branched from a spray water pipeline 10, is equalized to the amount of blow down. Fresh water, corresponding to the amount of spray water which is a decrement in the main body 1 of a cooling tower due to evaporation and discharging of water, is supplemented by a water feeding means, so that the level of the spray water in a lower water tank 8 is kept in constant at all times. According to this method, the quality of the spray water in the sealed cooling tower 1 may be kept at a given level stably for a long period of time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は冷却塔の自動ブローダウン装置に係り、特に密
閉冷却塔における散布水、あるいは開放式冷却塔におけ
る被冷却水の水質を長期間にわたって一定基準に安定に
保ち得るようにした冷却塔の自動ブローダウン装置に関
するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an automatic blowdown device for a cooling tower, and particularly to spray water in a closed cooling tower or cooled water in an open cooling tower. This invention relates to an automatic blowdown device for a cooling tower that can stably maintain water quality at a certain standard over a long period of time.

(従来の技術) 従来から、被冷却対象を冷却するために用いられる冷却
塔としては、大別して密閉冷却塔と開放式冷却塔とがあ
る。この密閉冷却塔と開放式冷却塔との違いは、前者が
被冷却水を熱交換器を介して散水、送風により冷却する
のに対して、後者が被冷却水を冷却外気との直接接触に
より冷却することである。そして、散布水、被冷却水の
違いはあるものの、共に蒸発潜熱を利用して冷却を行な
うという基本原理に相違はなく、散布水、被冷却水の水
質の悪化という点については共通の問題である。以下の
説明では、密閉冷却塔を例として述べることにする。
(Prior Art) Conventionally, cooling towers used to cool objects to be cooled can be broadly classified into closed cooling towers and open cooling towers. The difference between a closed cooling tower and an open type cooling tower is that the former cools the water to be cooled by sprinkling water and blowing air through a heat exchanger, whereas the latter cools the water to be cooled by direct contact with the cooling outside air. It is to cool down. Although there is a difference between the spray water and the cooled water, there is no difference in the basic principle of cooling using latent heat of vaporization, and the common problem is deterioration of the water quality of the spray water and the cooled water. be. In the following description, a closed cooling tower will be described as an example.

密閉冷却塔は、冷却塔本体の一部を構成する熱交換器内
に被冷却水を循環させ、この熱交換器に対して、当該熱
交換器の下方部に設けた下部水槽内に溜められている散
布水を散布水配管を通して散水手段により散水すると共
に、冷却外気を送風することにより、散布水の蒸発によ
る潜熱を利用して被冷却水を冷却するようにしたもので
ある。
In a closed cooling tower, water to be cooled is circulated in a heat exchanger that forms part of the cooling tower body, and the water is stored in a lower water tank provided below the heat exchanger. The water to be cooled is cooled by using the latent heat generated by the evaporation of the sprayed water by spraying the sprayed water through the spraying water piping with a water spraying means and by blowing cooled outside air.

また、この種の密閉冷却塔には、下部水槽内の散布水の
不足分を自動的に補給して、下部水槽内の散布水の水位
を一定に保つための給水手段を付設しているが、熱交換
器での散水の蒸発による減少分を補給していたのでは、
散水の凝縮が進行して水質が悪化する。そして、この水
質の悪化によってスケール生成、腐蝕因子の増加等の傾
向が顕著に現われ、いずれも密閉冷却塔の性能低下、運
転寿命の短縮等の致命的トラブルにつながることになる
。そこで、散布水配管より分岐した排水配管を通して散
布水の一部を強制的に排水して散布水の入替えを行なう
ためのブローダウン装置が必要となり、効率的な散布水
の入替えによる散布水の水質の安定化を図るために、制
御器を搭載したブローダウン装置の開発が成されてきて
いる。
In addition, this type of closed cooling tower is equipped with a water supply means that automatically replenishes the shortage of spray water in the lower water tank and maintains the level of spray water in the lower water tank at a constant level. , the amount lost due to evaporation of water sprinkled in the heat exchanger may have been replenished.
Condensation of sprinkled water progresses and water quality deteriorates. As a result of this deterioration of water quality, tendencies such as scale formation and increase in corrosion factors become noticeable, which both lead to fatal troubles such as decreased performance of the closed cooling tower and shortened operating life. Therefore, a blowdown device is required to forcibly drain a portion of the spray water through a drainage pipe branched from the spray water pipe and replace the spray water. Blowdown devices equipped with controllers have been developed in order to stabilize the

さて、この種のブローダウン装置としては、次のような
制御構成のものが採用されている。すなわち、散布水配
管より分岐した排水配管を流れる一部の散布水の水質を
、水質検出器として例えば導電率計を用いて散布水の導
電率を検出することによって検出し、この導電率計にて
検出された導電率値が予め設定した許容1!率値よりも
高くなった場合には、散布水配管より分岐した排水配管
上に設けられた排水制御弁を全開として排水を行ない、
逆に導電率値が許容導電率値よりも低くなった場合には
、排水制御弁を全開として排水を停止するように構成さ
れている。そして、この一連の動作により、散布水の導
電率は制御器の許容導電率値の範囲内で安定するため、
散布水の過度の水質の悪化を防止することができる。
Now, as this type of blowdown device, one having the following control configuration is employed. That is, the water quality of a portion of the sprayed water flowing through a drainage pipe branched from the sprayed water pipe is detected by detecting the conductivity of the sprayed water using, for example, a conductivity meter as a water quality detector. The detected conductivity value is within the preset tolerance 1! If the water becomes higher than the water rate, the drain control valve installed on the drain pipe that branches off from the spray water pipe is fully opened to drain the water.
Conversely, when the conductivity value becomes lower than the allowable conductivity value, the drainage control valve is fully opened to stop drainage. Through this series of operations, the conductivity of the sprayed water is stabilized within the range of allowable conductivity values of the controller.
Excessive deterioration of the water quality of sprayed water can be prevented.

ところが、このようなブローダウン装置においては、次
のような問題がある。すなわち、散布水の水質の検出項
目としては、腐蝕あるいはスケ−ル生成の傾向を示す指
針となり易い導電率を採用し、水質検出器として導電率
計を使用しており、これは寿命9校正の容易さ2校正類
度等多角的にみて現存する水質検出器としては最も取扱
いが容易なものではある。しかしながら、この導電率計
は電気抵抗を測定する検出器であることから、その検出
部としてはN極を用いているが、この電極に散布水の水
あか、スケール等が付着すると検出誤差を生じるため、
電極面を常に清浄に保つ必要がある。特に、水質の非常
に悪い散布水の導電率の検出では短い周期で清掃を行な
うことが必要となり、散布水の水質を長期間に渡って一
定水準に安定に保つことは不可能であった。
However, such a blowdown device has the following problems. In other words, as a detection item for the water quality of the sprayed water, we use conductivity, which can easily serve as a guideline to indicate the tendency of corrosion or scale formation, and we use a conductivity meter as the water quality detector, which has a lifespan of 9 calibrations. It is the easiest water quality detector to handle among the existing water quality detectors in terms of ease of use and two calibration levels. However, since this conductivity meter is a detector that measures electrical resistance, it uses an N pole as its detection part, but if water scale, scale, etc. from sprayed water adhere to this electrode, detection errors will occur. ,
It is necessary to keep the electrode surface clean at all times. In particular, when detecting the conductivity of sprayed water with very poor water quality, it is necessary to clean the sprayed water at short intervals, making it impossible to stably maintain the quality of the sprayed water at a constant level over a long period of time.

(発明が解決しようとする問題点) 以上のように、従来のブローダウン装置においては、制
御のデータベースを水質とし水質検出器(導電率計)を
使用していることから、密閉冷却塔における散布水、あ
るいは開放式冷却塔における被冷却水の水質のような苛
酷な条件下では正確な検出特性が得られず、散布水ある
いは被冷却水の水質を長期間に渡って一定水準に安定に
保つことができないという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional blowdown equipment, the control database is water quality and a water quality detector (conductivity meter) is used. Accurate detection characteristics cannot be obtained under severe conditions such as the quality of water or cooled water in an open cooling tower, and the water quality of sprayed water or cooled water cannot be maintained at a stable level for a long period of time. The problem was that I couldn't do it.

本発明は上述のような問題を解決するために成されたも
ので、その目的は制御のデータベースを温度および流口
とすることによって検出器の安定性、信頼性、保守性を
向上させ、密閉冷却塔における散布水あるいは開放式冷
却塔における液冷N]水の水質を長期間に渡って一定水
準に安定に保つことが可能な冷W塔の自動ブローダウン
装置を提供することにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to improve the stability, reliability, and maintainability of the detector by using the temperature and flow port as the control database, and to improve the stability, reliability, and maintainability of the detector. An object of the present invention is to provide an automatic blowdown device for a cold W tower that can stably maintain the quality of sprayed water in a cooling tower or liquid-cooled N water in an open type cooling tower at a constant level over a long period of time.

[発明の構成] (問題点を解決するための手段) 上記の目的を達成するために第1の発明では、冷却塔本
体の一部を構成する熱交換器内に入口側被冷却水配管、
出口側被冷却水配管を通して被冷却水を循環させ、熱交
換器に対して、当該熱交換器の下方部に設けた下部水槽
内に溜められている散布水を散布水配管を通して散水手
段により散水すると共に冷却外気を送風することにより
被冷却水を冷却するようにした密閉冷却塔において、入
口側被冷却水配管、出口側被冷却水配管を流れる被冷却
水の温度を夫々検出する第1.第2の温度検出器と、入
口側被冷却水配管または出口側被冷却水配管を流れる被
冷却水の流量を検出する第1の流量検出器と、散布水配
管より分岐した排水配管上に設けられた排水制御弁と、
排水配管を流れる排水の流量を検出する第2の流量検出
器と、各温度検出器にて検出された被冷却水湿度の温度
差。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the first invention, an inlet-side cooled water pipe,
The water to be cooled is circulated through the outlet-side cooled water piping, and the spray water stored in the lower water tank provided at the lower part of the heat exchanger is sprayed by the water spraying means through the spray water piping. In a hermetically sealed cooling tower that cools the water by blowing cooled outside air, the first step detects the temperature of the water flowing through the inlet-side cooled water pipe and the outlet-side cooled water pipe, respectively. A second temperature detector, a first flow rate detector that detects the flow rate of the cooled water flowing through the inlet-side cooled water pipe or the outlet-side cooled water pipe, and a first flow rate detector installed on the drainage pipe branched from the spray water pipe. a drain control valve;
The temperature difference between the humidity of the cooled water detected by the second flow rate detector that detects the flow rate of the waste water flowing through the drain pipe and each temperature detector.

第1の流量検出器にて検出された被冷却水流量。The flow rate of the cooled water detected by the first flow rate detector.

および蒸発潜熱に基づいて散布水の蒸発量を算出し、さ
らにこの散布水の蒸発量からブローダウン量を算出し、
かつこのブローダウン但と第2の流量検出器にて検出さ
れた排水流量とが等しくなるように排水制御弁の開度を
制御する弁制御装置と、熱交換器での蒸発および排水に
より減少した散布水理に相当する清水を補給して、下部
水槽内の散布水の水位を一定に保つ給水手段とを備えて
自動ブローダウン装置を構成したことを特徴とし、また
第2の発明では、冷却塔本体の下方部に設けた下部水槽
内に溜められている被冷却水を出口側被冷却水配管、入
口側被冷却水配管を通して散水手段により冷却塔本体に
散水しかつ@環させ、この散水に対して冷却外気を送風
することにより被冷却水を冷却するようにした6n放式
冷却塔において、入口側被冷却水配管、出口側被冷却水
配管を流れる被冷却水の温度を夫々検出する第1.第2
の温度検出器と、出口側被冷却水配管、入口側被冷却水
配管を通して冷却塔本体に循環する被冷却水の流出を検
出する第1の流量検出器と、出口側被冷却水配管より分
岐した排水配管上に設けられた排水制御弁と、排水配管
を流れる排水の流mを検出する第2の流量検出器と、各
温度検出器にて検出された被冷却水温度の温度差、第1
の流量検出器にて検出された被冷却水流出、および蒸発
潜熱に基づいて散布水の蒸発量を算出し、さらにこの散
布水の蒸発量からブローダウン量を算出し、かつこのブ
ローダウン量と第2の流量検出器にて検出された排水流
量とが等しくなるように排水制御弁の開度を制御する弁
制御装置と、冷却塔本体での蒸発および排水により減少
した被冷却水けに相当する清水を補給して、下部水(a
内の被冷却水の水位を一定に保つ給水手段とを備えて構
成したことを特徴とする。
The amount of evaporation of the sprayed water is calculated based on the latent heat of vaporization, and the amount of blowdown is calculated from the amount of evaporation of this sprayed water.
In addition, a valve control device is provided to control the opening degree of the drainage control valve so that this blowdown is equal to the drainage flow rate detected by the second flow rate detector, and a valve control device that controls the opening degree of the drainage control valve so that the blowdown flow rate detected by the second flow rate detector is equal to the drainage flow rate detected by the second flow rate detector. The automatic blowdown device is characterized in that it comprises a water supply means for supplying fresh water equivalent to the spraying hydraulics and keeping the water level of the sprayed water in the lower water tank constant. The water to be cooled stored in the lower water tank provided in the lower part of the tower body is sprinkled onto the main body of the cooling tower by a water spraying means through the outlet side cooled water pipe and the inlet side cooled water pipe. In a 6N open-air cooling tower that cools water by blowing cooled outside air into the tower, the temperature of the water flowing through the inlet-side cooled water pipe and the outlet-side cooled water pipe is detected, respectively. 1st. Second
a temperature detector, a first flow rate detector that detects the outflow of the cooled water that circulates to the cooling tower body through the outlet-side cooled water piping and the inlet-side cooled water piping, and a The temperature difference between the temperature of the cooled water detected by the drain control valve installed on the drain pipe, the second flow rate detector that detects the flow m of the waste water flowing through the drain pipe, and each temperature sensor, 1
The amount of evaporation of the sprayed water is calculated based on the outflow of the cooled water detected by the flow rate detector and the latent heat of vaporization, and the amount of blowdown is calculated from the amount of evaporation of this sprayed water. A valve control device that controls the opening degree of the drainage control valve so that the drainage flow rate detected by the second flow rate detector is equal to the drainage flow rate, and a valve control device that controls the opening degree of the drainage control valve so that the drainage flow rate detected by the second flow rate detector is equivalent to the amount of water to be cooled that has decreased due to evaporation and drainage in the cooling tower main body. By replenishing fresh water, the bottom water (a
and a water supply means for keeping the level of the water to be cooled in the cooling water at a constant level.

(作用) 上述の自動ブローダウン′¥4置においては、弁制御装
置により、冷却塔本体の入口側被冷却水と出口側被冷却
水の温度差と、被冷却水の流量と。
(Function) In the automatic blowdown system described above, the valve control device controls the temperature difference between the cooled water on the inlet side and the cooled water on the outlet side of the cooling tower main body, and the flow rate of the cooled water.

蒸発潜熱とから散布水あるいは被冷却水の蒸発量を四出
し、さらにこの蒸発量からブローダウンωを算出し、こ
のブローダウン量と散布水配管より分岐した排水配管の
排水流量あるいは出口側被冷却水配管より分岐した排水
配管の排水流量とが等しくなるように、排水制御弁の開
度を制御して排水制御が行なわれる。また、冷却塔本体
での蒸発および排水により減少した分の散布水量あるい
は被冷却水量に相当する清水を給水手段により補給して
、下部水槽内の散布水あるいは被冷却水の水位が常に一
定に保たれる。以上により、密閉冷却塔における散布水
あるいは開放式冷却塔における被冷却水の水質が、長期
間に渡って一定水準に安定に保たれることになる。
Calculate the amount of evaporation of the spray water or cooled water from the latent heat of evaporation, then calculate the blowdown ω from this amount of evaporation, and calculate the amount of blowdown and the drainage flow rate of the drainage pipe branched from the spray water pipe or the cooled water on the outlet side. Drainage control is performed by controlling the opening degree of the drainage control valve so that the drainage flow rate of the drainage pipe branched from the water pipe becomes equal. In addition, fresh water equivalent to the amount of sprayed water or cooled water reduced due to evaporation and drainage in the cooling tower body is replenished by the water supply means, and the level of sprayed water or cooled water in the lower water tank is always kept constant. dripping As a result of the above, the quality of the water sprayed in the closed cooling tower or the water to be cooled in the open cooling tower is stably maintained at a constant level over a long period of time.

(実施例) まず、本発明の考え方について述べる。(Example) First, the concept of the present invention will be described.

前述したように、密閉冷却塔における散布水あるいは開
放式冷却塔における被冷却水の水質の悪化は、蒸発によ
る凝縮が原因であることから、散布水あるいは被冷却水
の蒸発量を定量的に検出することができ、なおかつ水道
水のような安定した水質の水を補給できるとすれば、ブ
ローダウン量(排水型)は演算により算出することがで
きる。
As mentioned above, deterioration in the water quality of sprayed water in closed cooling towers or cooled water in open cooling towers is caused by condensation due to evaporation, so it is necessary to quantitatively detect the amount of evaporation of sprayed water or cooled water. If water of stable quality such as tap water can be supplied, the amount of blowdown (drainage type) can be calculated by calculation.

従って、この演算により算出したブローダウン量と実際
に排出する流量とが常に等しくなるように排水制御を行
なうことにより、散布水あるいは被冷却水の水質を一定
水準に保つことができる。
Therefore, by controlling the drainage so that the blowdown amount calculated by this calculation is always equal to the flow rate actually discharged, the quality of the spray water or the water to be cooled can be maintained at a constant level.

この点に関して、密閉冷却塔を例として述べる。In this regard, an example is given of a closed cooling tower.

密閉冷却塔は、散布水が熱交換器に当たって蒸発するこ
とにより冷却する、換言すると密閉冷却塔で冷却された
熱量は、そのまま散布水が蒸気となるのに要したエネル
ギーであるため、次のような式が成立する。
A closed cooling tower cools the sprayed water by evaporating it when it hits the heat exchanger.In other words, the amount of heat cooled by the sealed cooling tower is the energy required for the sprayed water to turn into steam, so it is calculated as follows. The formula holds true.

E−Q/R・・・・・・ (1) ここで、Eは蒸発損失<J2/H)、Qは冷却熱量(K
cal)、Rは蒸発潜熱(Kca l/ff1) T:
ある。
E-Q/R... (1) Here, E is evaporation loss < J2/H), Q is cooling heat amount (K
cal), R is the latent heat of vaporization (Kcal/ff1) T:
be.

また、冷却熱IQは被冷却水の条件により、次式から算
出される。
Further, the cooling heat IQ is calculated from the following equation depending on the conditions of the water to be cooled.

Q=GXΔTX比熱、×比重  ・・・・・・(2)こ
こで、Gは被冷却水流量(R/H)、ΔTは密閉冷却塔
の入口側被冷却水と出口側被冷却水の温度差(dec+
>である。
Q= G Difference (dec+
> is.

以上から散布水の蒸発量Eが求められ、この蒸発MEと
目標とする水質が決まれば、ブローダウン量を算出する
ことができる。すなわち、目標とする水質の決め方は、
例えば散布水の濃縮を何倍まで許容できるのか(以下、
この許容値を濃縮倍数と称する)で決めるとすると、次
のような式が成立する。
From the above, the evaporation amount E of the sprayed water is determined, and once this evaporation ME and the target water quality are determined, the blowdown amount can be calculated. In other words, how to determine the target water quality is
For example, how many times can the concentration of spray water be allowed?
If this allowable value is determined by the concentration factor (referred to as the concentration factor), the following equation holds true.

B=E・ 1/(N−1)   ・・・・・・(3)こ
こで、Bはブローダウンffi(g/H)、Nは濃fl
it倍数である。
B=E・1/(N-1) ・・・・・・(3) Here, B is blowdown ffi (g/H), N is thick fl
It is a multiple.

以上からブローダウンff1Bが決まれば、散布水の排
出流量をこのブローダウン醋と等しくなるように排水制
御すれば、給水手段より(蒸発量+排水流量)に相当す
る水が補給され、散布水の水質は補給される補給水のN
倍の濃縮の状態で推移することが可能となる。なお、開
放式冷却塔についても上述と同様のことが言える。
Once the blowdown ff1B is determined from the above, if the drainage is controlled so that the discharge flow rate of the sprayed water is equal to this blowdown, water corresponding to (evaporation amount + drainage flow rate) is replenished from the water supply means, and the sprayed water is The water quality is N of the makeup water being replenished.
It becomes possible to maintain a state of twice the concentration. In addition, the same thing as above can be said about an open type cooling tower.

以下、上述のような考え方に基づく本発明の一実施例に
ついて図面を参照して説明する。
Hereinafter, an embodiment of the present invention based on the above-mentioned idea will be described with reference to the drawings.

第1図は、本発明による密閉冷却塔の自動ブローダウン
装置の構成例を示すものである。第1図において、まず
密閉冷却塔1は次のように構成されている。すなわち、
被冷却体2と熱交換した冷却水は、冷却水ポンプ3によ
り入口側被冷却水配管4を通して、密閉冷却塔1の一部
を構成する熱交換器5内に被冷却水として送られ、ここ
で冷却され出口側被冷却水配管6を通して被冷却体2に
再び戻り循環する。また、冷却外気は送風機7によって
取入れられ、かつ熱交換器5の下方部に設けた下部水槽
8内に溜められている散布水は、散水ポンプ9により散
布水配管10を通して送られ、散水装置11によって熱
交換器5に散布され、ここで散布水の一部は蒸発して冷
却外気と共に密閉冷却塔1外へ放出される。
FIG. 1 shows an example of the configuration of an automatic blowdown device for a closed cooling tower according to the present invention. In FIG. 1, a closed cooling tower 1 is constructed as follows. That is,
The cooling water that has exchanged heat with the object to be cooled 2 is sent as cooling water by the cooling water pump 3 through the inlet-side cooling water pipe 4 into the heat exchanger 5 that constitutes a part of the hermetic cooling tower 1. The cooled water is cooled and returned to the cooled body 2 through the outlet-side cooled water piping 6 and circulated there. In addition, cooling outside air is taken in by a blower 7, and spray water stored in a lower water tank 8 provided below the heat exchanger 5 is sent through a spray water pipe 10 by a sprinkler pump 9, and is sent to a sprinkler device 11. A part of the sprayed water is evaporated and discharged to the outside of the closed cooling tower 1 together with the cooled outside air.

一方、自動ブローダウン装置は次のように構成している
。すなわち、W!閉冷却塔1内の熱交換器5の入口側被
冷却水配管4に、当該配管4を流れる被冷却水の温度を
検出する第1の′a度検出器12を設け、また熱交換器
5の出口側被冷却水配管6に、当該配管6を流れる被冷
却水の温度を検出する第2の湿度検出器13を設けると
共に、当該配管6を流れる被冷却水の流量を検出する第
1の流m検出器14を設けている。また、密閉冷却塔1
の散水ポンプ9の吐出側の散布水配管10より分岐して
排水配管15を設け、さらにこの排水配管15上に、当
該配管15を流れる排水の流量を検出する第2の流0検
出器16を設けると共に、当該配管15を流れる排水の
流量を制御する排水制御弁17を設けて、ドレンビット
18に結合している。さらに、19は弁制御装置であり
、次のように構成している。すなわち、上記第1.第2
の温度検出器12.13からの出力信号を、第1゜第2
の変換器20.21により例えば直流電流信号のような
共通信号に変換し、この第1.第2の変換器20.21
からの出力信号をそれぞれ減算器22に入力し、ここで
入口側と出口側の被冷却水温度の温度差6丁を算出して
出力する。また、この減算器22からの出力信号と、第
1の流量検出器14からの出力信号をそれぞれ乗算器2
3に入力し、ここで散布水の蒸発aQを算出して出力す
る。さらに、この乗算器23からの出力信号をそれぞれ
除算器24に入力し、除算器24に予め設定されている
散布水の蒸発潜熱値Rと1乗算器23からの出力信号Q
とから、散布水の蒸発損失ff1Eを算出して出力する
。さらにまた、この除算器24からの出力信号を倍数乗
算器25に入力し、この倍数乗算器25に濃縮倍数Nを
入力することにより、ブローダウン量Bを算出して出力
する。
On the other hand, the automatic blowdown device is configured as follows. In other words, W! A first degree detector 12 for detecting the temperature of the cooled water flowing through the pipe 4 is provided on the cooled water pipe 4 on the inlet side of the heat exchanger 5 in the closed cooling tower 1. A second humidity detector 13 for detecting the temperature of the water to be cooled flowing through the pipe 6 is provided on the outlet side of the water pipe 6 to be cooled, and a first humidity detector 13 for detecting the flow rate of the water to be cooled flowing through the pipe 6 is provided. A flow m detector 14 is provided. In addition, closed cooling tower 1
A drain pipe 15 is provided branching from the spray water pipe 10 on the discharge side of the water sprinkler pump 9, and a second flow detector 16 is further provided on the drain pipe 15 to detect the flow rate of the waste water flowing through the pipe 15. In addition, a drainage control valve 17 for controlling the flow rate of drainage flowing through the pipe 15 is provided and connected to the drain bit 18. Furthermore, 19 is a valve control device, which is configured as follows. That is, the above 1. Second
The output signals from the temperature detectors 12 and 13 of
This first . second converter 20.21
The output signals from the subtracters 22 are respectively inputted to the subtracter 22, where six temperature differences between the cooled water temperatures on the inlet side and the outlet side are calculated and output. Further, the output signal from the subtracter 22 and the output signal from the first flow rate detector 14 are respectively input to a multiplier 2.
3, and here the evaporation aQ of the sprayed water is calculated and output. Furthermore, the output signals from the multipliers 23 are respectively input to the divider 24, and the latent heat of evaporation value R of the spray water set in advance in the divider 24 and the output signal Q from the multiplier 23 are input.
From this, the evaporation loss ff1E of the sprayed water is calculated and output. Furthermore, the output signal from the divider 24 is input to a multiple multiplier 25, and by inputting the concentration multiple N to the multiple multiplier 25, the blowdown amount B is calculated and output.

そして、この倍数乗算器25からの出力信号と。and the output signal from this multiple multiplier 25.

第2の流量検出器16からの出力信号をそれぞれ弁開度
制御器26に入力し、この各出力信号の値が常に等しく
なるように排水制御弁17の開度を制御するようにして
いる。一方、熱交換器5での蒸発、および排水により減
少した散布水量に相当する清水を、図示しない給水タン
クから水位調整弁としてのポールタップ27を介して補
給し、下部水槽8内の散布水の水位を一定に保つように
している。
The output signals from the second flow rate detector 16 are respectively input to the valve opening degree controller 26, and the opening degree of the drainage control valve 17 is controlled so that the values of the respective output signals are always equal. On the other hand, fresh water equivalent to the amount of sprayed water reduced due to evaporation and drainage in the heat exchanger 5 is replenished from a water supply tank (not shown) via a pole tap 27 serving as a water level adjustment valve, and the sprayed water in the lower water tank 8 is replenished. Trying to keep the water level constant.

次に、以上のように構成した自動ブローダウン装置の作
用について述べる。
Next, the operation of the automatic blowdown device configured as described above will be described.

第1図において、第1の温度検出器12および第1の変
換器20により密閉冷却塔1の入口側被冷却水温度を、
また第2の温度検出器13および第2の変換器21によ
り密閉冷却塔1の出口側被冷却水温度を共通信号として
送出し、この第1゜第2の変換器20.21からの出力
信号11゜t2はそれぞれ減算器22に入力され、減算
器22から(tx−t2)の減算式によりΔtの出力が
送出される。このΔtは、密閉冷却塔1の入口側と出口
側の被冷却水の温度差ΔT(deG)に相当する。また
、密閉冷却塔1の出口側被冷却水の流量は第1の流m検
出器14で検出され、温度検出の場合と同様に共通信号
として出力qが送出される。そして、減算器22からの
出力信号Δtと、第1の流量検出器14からの出力信号
qは共に乗算器23に入力され、乗算器23内では(Δ
tXg)の乗算式により出力qが送出され。
In FIG. 1, the temperature of the cooled water on the inlet side of the closed cooling tower 1 is determined by the first temperature detector 12 and the first converter 20.
In addition, the second temperature detector 13 and the second converter 21 send out the temperature of the cooled water on the outlet side of the closed cooling tower 1 as a common signal, and the output signal from the first and second converters 20 and 21 is 11°t2 are each input to the subtracter 22, and the output of Δt is sent from the subtracter 22 according to the subtraction formula (tx-t2). This Δt corresponds to the temperature difference ΔT (deG) of the water to be cooled between the inlet side and the outlet side of the closed cooling tower 1. Further, the flow rate of the water to be cooled on the outlet side of the hermetic cooling tower 1 is detected by the first flow m detector 14, and the output q is sent out as a common signal as in the case of temperature detection. Then, the output signal Δt from the subtracter 22 and the output signal q from the first flow rate detector 14 are both input to the multiplier 23, and within the multiplier 23, (Δ
The output q is sent out by the multiplication formula of tXg).

この出力qは、密閉冷却塔1の冷却熱量Qに相当する出
力信号であり、熱源の負荷変動および外気温乾球温度の
変動によって刻々と変化する冷却熱量をタイイムラグな
しで信号として送出し、除算器24に入力として与えら
れる。除算器24では、予め除算器24に設定されてい
る散布水の蒸発潜熱値Rに相当する条件rにより、(q
/r)の除算式により出力eを送出する。この出力eは
、散布水の蒸発損失ff1Eに相当する出力情報である
This output q is an output signal corresponding to the amount of cooling heat Q of the hermetic cooling tower 1, and the amount of cooling heat that changes every moment due to changes in the load of the heat source and fluctuations in the outside air temperature dry bulb temperature is sent out as a signal without a time lag, and is divided by 24 as an input. The divider 24 calculates (q
/r) output e is sent out. This output e is output information corresponding to the evaporation loss ff1E of the sprayed water.

さらに、この除算器24から送出される出力eは、倍数
乗算器25の入力信号として入力される。倍数乗算器2
5では、ポールタップ27にて下部水槽8に補給される
給水の水質に対し、散布水として許容できる濃縮の割合
を数値として入力することにより、散布水の排出流量で
あるブローダウン聞が算出される。すなわち、許容濃縮
倍数n(−蔽布水の許容する水質/給水の水質〉を倍数
乗算器25に入力すると、倍数乗算器25ではex1/
 (n−1’)の演算式により排水流1btに相当する
出力を送出し、これに相当する散布水を常時排水するこ
とによって、常に給水の水質のn倍の水質を散布水は維
持できることになる。一方、実際の排水流量は第2の流
量検出器16で常時検出され、この排水流量に対応した
出力b2が送出される。そして、倍数乗算器25からの
出力b1と、第2の流量検出器16からの出力b2は共
に弁開度制御器26に入力され、弁開度制御器26によ
り各出力す、、b2の値が常に等しくなるように排水制
御弁17の開度が制御される。すなわち弁開度制御器2
6は、出力b1 >b2の場合には排水制御弁17を開
く信号を送出し、また出力bl <t)2の場合には排
水制御弁17を閉じる信号を送出することにより、出力
bt=出力b2に保つように制御が行なわれることにな
る。一方、熱交換器5での蒸発、および上述の排水によ
る散布水量の減少は、下部水槽8の散布水の水位低下と
して現われるが、この下部水槽8の散布水の水位は、ポ
ールタップ27により一定水位に保つように補給される
。すなわち、散布水の減少分に相当する清水が図示しな
い給水タンクから常に補給されることになる。
Furthermore, the output e sent from the divider 24 is input as an input signal to the multiple multiplier 25. Multiple multiplier 2
In step 5, the blowdown rate, which is the discharge flow rate of the sprayed water, is calculated by inputting as a numerical value the concentration ratio that is allowable as sprayed water with respect to the quality of the water supplied to the lower water tank 8 at the pole tap 27. Ru. That is, when the allowable concentration factor n (-allowable water quality of water supply/water quality of water supply) is input to the multiple multiplier 25, the multiple multiplier 25 calculates ex1/
By sending out an output equivalent to 1 bt of drainage flow using the calculation formula (n-1') and constantly draining the spray water equivalent to this, it is possible to maintain the water quality of the spray water at all times n times higher than the water quality of the supplied water. Become. On the other hand, the actual drainage flow rate is constantly detected by the second flow rate detector 16, and an output b2 corresponding to this drainage flow rate is sent out. The output b1 from the multiple multiplier 25 and the output b2 from the second flow rate detector 16 are both input to the valve opening controller 26, which outputs the values of The opening degree of the drainage control valve 17 is controlled so that the values are always equal. In other words, the valve opening controller 2
6 sends a signal to open the drainage control valve 17 when the output b1 > b2, and a signal to close the drainage control valve 17 when the output bl < t)2, so that the output bt=output Control will be performed to keep it at b2. On the other hand, the decrease in the amount of sprayed water due to evaporation in the heat exchanger 5 and the above-mentioned drainage appears as a drop in the water level of the sprayed water in the lower water tank 8, but the water level of the sprayed water in the lower water tank 8 is kept constant by the pole tap 27. It is replenished to maintain the water level. That is, fresh water corresponding to the decrease in the sprayed water is constantly replenished from a water supply tank (not shown).

上述したように、本実施例による密閉冷却塔の自動ブロ
ーダウン装置においては、制御のデータベースを水質と
し水質検出器(導電率計)を使用していた従来の自動ブ
ローダウン装置に対し、制御のデータベースを温度およ
び流量として温度検出器および流量検出器を使用してい
ることにより、検出器の安定性、信頼性、保守性が大幅
に向上し、これに伴って自動ブローダウン装置全体の安
定性。
As mentioned above, in the automatic blowdown device for a closed cooling tower according to this embodiment, the control database is water quality and the control database is different from the conventional automatic blowdown device that uses a water quality detector (conductivity meter). The use of temperature and flow rate detectors as temperature and flow rate databases significantly improves the stability, reliability and maintainability of the detectors, and with this the stability of the entire automatic blowdown equipment. .

信頼性も向上することになる。これにより、長期間に渡
って安定した運転を行なうことができるため、密閉冷却
塔1における散布水の水質も一定水準に保つことが可能
となる。また、従来の水質検出器のように水質の一因子
で管理するのではなく、蒸発損失という水質悪化の絶対
因子を定量的に求めてブローダウン制御を行なうように
しているので、他の水質因子による水質悪化等がなく、
バランスの取れた水質を確保することが可能となる。
Reliability will also be improved. This allows stable operation over a long period of time, making it possible to maintain the quality of the sprayed water in the closed cooling tower 1 at a constant level. In addition, unlike conventional water quality detectors, which control water quality using only one factor, the blowdown control is performed by quantitatively determining the absolute factor of water quality deterioration called evaporation loss. There is no deterioration of water quality due to
It becomes possible to ensure balanced water quality.

さらに、密閉冷却塔1の冷却能力を全ての制叩の基本条
件としているので、熱源の負荷へんどう。
Furthermore, since the cooling capacity of the hermetic cooling tower 1 is used as the basic condition for all control, the load on the heat source is low.

冷却外気条件の変動には関係なく、タイムラグのない安
定した排水制御を行なうことが可能となる。
It is possible to perform stable drainage control without time lag, regardless of fluctuations in the cooling outside air conditions.

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても実施することができるものである。
It should be noted that the present invention is not limited to the above embodiments, but can also be implemented as follows.

第2図は、本発明による開放式冷却塔の自動ブローダウ
ン装置の構成例を示すものであり、第1図と対応する部
分には同一符号を付して示している。
FIG. 2 shows an example of the configuration of an automatic blowdown device for an open cooling tower according to the present invention, and parts corresponding to those in FIG. 1 are designated by the same reference numerals.

開放式冷却塔は密閉冷却塔と異なり、被冷却水は熱交換
器を介さずに直接外気と接触して冷却するもので、冷却
原理は全く同一である。すなわち、密閉冷却塔における
散布水と、開放式冷却塔における被冷却水は全く同一の
条件ならびに状態であるが、被冷却水系統内金ての機器
にまで水質悪化の影響が及び、問題はより深刻であると
言える。
Open cooling towers differ from closed cooling towers in that the water to be cooled is cooled by directly contacting the outside air without going through a heat exchanger, and the cooling principle is exactly the same. In other words, the spray water in a closed cooling tower and the cooled water in an open cooling tower are under exactly the same conditions and conditions, but the deterioration in water quality affects all the equipment in the cooled water system, making the problem even more serious. It can be said that it is serious.

そこで、第2図の実施例では、冷却水ポンプ3より開放
式冷却塔28の散水装置11に至る入口側被冷却水配管
4に、当該配管4を流れる被冷却水の温度を検出する第
1の温度検出器12を設けると共に、当該配管4を流れ
る被冷却水の流量を検出する第1の流量検出器14を設
け、また下部水槽8の出口に通じる出口側被冷却水配管
6に。
Therefore, in the embodiment shown in FIG. 2, a first pipe is installed in the inlet-side cooled water pipe 4 from the cooling water pump 3 to the water sprinkler 11 of the open cooling tower 28 to detect the temperature of the cooled water flowing through the pipe 4. A temperature detector 12 is provided, and a first flow rate detector 14 for detecting the flow rate of the water to be cooled flowing through the pipe 4 is also provided on the outlet side water pipe 6 to be cooled leading to the outlet of the lower water tank 8.

当該配管4を流れる被冷却水の温度を検出する第2の温
度検出器13を設け、ざらに出口側被冷却水配管6より
分岐した排水配管15に、当該配管15を流れる排水の
流量を検出する第2の流量検出器16を設けると共に、
当該配管15を流れる排水の流量を制御する排水制御弁
17を設けて、被冷却水の一部をドレンビット18に排
出するようにしている。なお、弁制all装置19の構
成については、第1図の実施例の場合と全く同様である
A second temperature detector 13 is provided to detect the temperature of the water to be cooled flowing through the pipe 4, and the flow rate of the waste water flowing through the pipe 15 is detected in the drain pipe 15 branched from the cooled water pipe 6 on the outlet side. A second flow rate detector 16 is provided, and
A drainage control valve 17 is provided to control the flow rate of drainage flowing through the pipe 15, and a portion of the water to be cooled is discharged to the drain bit 18. The configuration of the valve control all device 19 is exactly the same as that of the embodiment shown in FIG.

また、29は冷却効果を高めるために設けた、多孔質材
料からなる充填材である。
Further, 29 is a filler made of a porous material provided to enhance the cooling effect.

かかる実施例においても、第1の温度検出器12、第2
の湿度検出器13、第1の流m検出器14からの各出力
信号に基づいて、前述と同様の演筒を行なってブローダ
ウン化を算出し、このブローダウン伍と、第2の流山検
出器16により検出される排水流量とが常に等しくなる
ように排水制御弁17の開度を制御することにより、第
1図における散布水の水質と同様に被冷却水の水質を一
定基準に安定に保つことが可能である。
Also in this embodiment, the first temperature detector 12, the second
Based on the respective output signals from the humidity detector 13 and the first flow m detector 14, the blowdown is calculated by performing the same calculation as described above, and this blowdown rank and the second flow mound detection are calculated. By controlling the opening degree of the drainage control valve 17 so that the drainage flow rate detected by the device 16 is always equal, the quality of the water to be cooled can be stabilized to a certain standard, similar to the quality of the sprayed water in Fig. 1. It is possible to keep it.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、制御のデータベー
スを温度および流量とすることによって検出器の安定性
、信頼性、保守性を向上させ、密閉冷却塔における散布
水あるいは開放式冷却塔における被冷却水の水質を長期
間に渡って一定水準に安定に保つことが可能な冷却塔の
自動ブローダウン装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, the stability, reliability, and maintainability of the detector are improved by using temperature and flow rate as the control database, and the control database improves the stability, reliability, and maintainability of the detector. It is possible to provide an automatic blowdown device for a cooling tower that can stably maintain the quality of water to be cooled in a type cooling tower at a constant level over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による密閉冷却塔の自動ブロ
ーダウン装置を示す構成図、第2図は本発明の他の実施
例による開放式冷却塔の自動ブローダウン装置を示す構
成図である。 1・・・密閉冷却塔、2・・・被冷却体、3・・・冷却
水ポンプ、4・・・入口側被冷却水配管、5・・・熱交
換器、6・・・出口側被冷却水配管、7・・・送風機、
8・・・下部水槽、9・・・散水ポンプ、1o・・・散
布水配管、11・・・散水装置、12・・・第1の温度
検出器、13・・・第2の温度検出器、14・・・第1
の流量検出器、15・・・排水配管、16・・・第2の
流ω検出器、17・・・排水制御弁、18・・・ドレン
ピット、1つ・・・弁制御装置、20・・・第1の変換
器、21・・・第2の変換器、22・・・減算器、23
・・・乗算器、24・・・除算器、25・・・倍数乗算
器、26・・・弁開度制御器、27・・・ポールタップ
、28・・・開放式冷却塔、29・・・充填材。 出願人代理人 弁理士 鈴 江 武 彦第10 第2図
FIG. 1 is a block diagram showing an automatic blowdown device for a closed cooling tower according to one embodiment of the present invention, and FIG. 2 is a block diagram showing an automatic blowdown device for an open type cooling tower according to another embodiment of the present invention. be. DESCRIPTION OF SYMBOLS 1... Sealed cooling tower, 2... Cooled object, 3... Cooling water pump, 4... Inlet side cooled water piping, 5... Heat exchanger, 6... Outlet side cover Cooling water piping, 7...Blower,
8... Lower water tank, 9... Watering pump, 1o... Sprinkling water piping, 11... Watering device, 12... First temperature detector, 13... Second temperature detector , 14...first
Flow rate detector, 15...Drainage piping, 16...Second flow ω detector, 17...Drainage control valve, 18...Drain pit, one...Valve control device, 20. ...First converter, 21...Second converter, 22...Subtractor, 23
... Multiplier, 24 ... Divider, 25 ... Multiple multiplier, 26 ... Valve opening controller, 27 ... Pole tap, 28 ... Open cooling tower, 29 ...・Filling material. Applicant's agent Patent attorney Takehiko Suzue No. 10 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)冷却塔本体の一部を構成する熱交換器内に入口側
被冷却水配管、出口側被冷却水配管を通して被冷却水を
循環させ、前記熱交換器に対して、当該熱交換器の下方
部に設けた下部水槽内に溜められている散布水を散布水
配管を通して散水手段により散水すると共に冷却外気を
送風することにより、前記被冷却水を冷却するようにし
た密閉冷却塔において、前記入口側被冷却水配管を流れ
る被冷却水の温度を検出する第1の温度検出器と、前記
出口側被冷却水配管を流れる被冷却水の温度を検出する
第2の温度検出器と、前記入口側被冷却水配管または出
口側被冷却水配管を流れる被冷却水の流量を検出する第
1の流量検出器と、前記散布水配管より分岐した排水配
管上に設けられた排水制御弁と、前記排水配管を流れる
排水の流量を検出する第2の流量検出器と、前記各温度
検出器にて検出された被冷却水温度の温度差、第1の流
量検出器にて検出された被冷却水流量、および蒸発潜熱
に基づいて散布水の蒸発量を算出し、さらにこの散布水
の蒸発量からブローダウン量を算出し、かつこのブロー
ダウン量と前記第2の流量検出器にて検出された排水流
量とが等しくなるように前記排水制御弁の開度を制御す
る弁制御装置と、前記熱交換器での蒸発および排水によ
り減少した散布水量に相当する清水を補給して、前記下
部水槽内の散布水の水位を一定に保つ給水手段とを備え
て成ることを特徴とする冷却塔の自動ブローダウン装置
(1) The water to be cooled is circulated through the inlet-side cooled water pipe and the outlet-side cooled water pipe in the heat exchanger that constitutes a part of the cooling tower body, and the heat exchanger In a closed cooling tower, the water to be cooled is cooled by spraying water stored in a lower water tank provided in a lower part of the tower by a water spraying means through water spray piping and by blowing cooled outside air, a first temperature detector that detects the temperature of the cooled water flowing through the inlet-side cooled water pipe; a second temperature detector that detects the temperature of the cooled water flowing through the outlet-side cooled water pipe; a first flow rate detector that detects the flow rate of the cooled water flowing through the inlet-side cooled water pipe or the outlet-side cooled water pipe; and a drainage control valve provided on a drainage pipe branched from the spray water pipe. , a temperature difference between the temperature of the cooled water detected by the second flow rate detector that detects the flow rate of the waste water flowing through the drain pipe and each of the temperature detectors, and the temperature difference of the cooled water detected by the first flow rate detector. The amount of evaporation of the sprayed water is calculated based on the cooling water flow rate and the latent heat of evaporation, the amount of blowdown is calculated from the amount of evaporation of this sprayed water, and the amount of blowdown and the amount of blowdown are detected by the second flow rate detector. a valve control device that controls the opening degree of the drainage control valve so that the discharged water flow rate is equal to the discharged water flow rate; 1. An automatic blowdown device for a cooling tower, comprising a water supply means for maintaining a constant level of sprayed water in a water tank.
(2)冷却塔本体の下方部に設けた下部水槽内に溜めら
れている被冷却水を出口側被冷却水配管、入口側被冷却
水配管を通して散水手段により冷却塔本体に散水しかつ
循環させ、この散水に対して冷却外気を送風することに
より、前記被冷却水を冷却するようにした開放式冷却塔
において、前記入口側被冷却水配管を流れる被冷却水の
温度を検出する第1の温度検出器と、前記出口側被冷却
水配管を流れる被冷却水の温度を検出する第2の温度検
出器と、前記出口側被冷却水配管、入口側被冷却水配管
を通して冷却塔本体に循環する被冷却水の流量を検出す
る第1の流量検出器と、前記出口側被冷却水配管より分
岐した排水配管上に設けられた排水制御弁と、前記排水
配管を流れる排水の流量を検出する第2の流量検出器と
、前記各温度検出器にて検出された被冷却水温度の温度
差、第1の流量検出器にて検出された被冷却水流量、お
よび蒸発潜熱に基づいて散布水の蒸発量を算出し、さら
にこの散布水の蒸発量からブローダウン量を算出し、か
つこのブローダウン量と前記第2の流量検出器にて検出
された排水流量とが等しくなるように前記排水制御弁の
開度を制御する弁制御装置と、前記冷却塔本体での蒸発
および排水により減少した被冷却水量に相当する清水を
補給して、前記下部水槽内の被冷却水の水位を一定に保
つ給水手段とを備えて成ることを特徴とする冷却塔の自
動ブローダウン装置。
(2) The water to be cooled stored in the lower water tank provided at the lower part of the cooling tower body is sprinkled and circulated through the outlet side cooled water pipe and the inlet side cooled water pipe by a water spraying means. , in an open type cooling tower configured to cool the water to be cooled by blowing cooled outside air against the water spray, a first cooling tower for detecting the temperature of the water to be cooled flowing through the water to be cooled pipe on the inlet side; a temperature detector; a second temperature detector that detects the temperature of the cooled water flowing through the outlet-side cooled water pipe; and a second temperature detector that detects the temperature of the cooled water flowing through the outlet-side cooled water pipe and the inlet-side cooled water pipe to circulate to the cooling tower main body. a first flow rate detector that detects the flow rate of the water to be cooled; a drainage control valve provided on a drainage pipe branched from the outlet-side cooling water pipe; and a drainage control valve that detects the flow rate of the drainage water flowing through the drainage pipe. The spray water is calculated based on the temperature difference between the temperature of the cooled water detected by the second flow rate detector and each of the temperature detectors, the flow rate of the cooled water detected by the first flow rate detector, and the latent heat of vaporization. The amount of evaporation of the sprayed water is calculated, and the amount of blowdown is calculated from the amount of evaporation of this sprayed water, and the amount of blowdown is calculated from the amount of evaporation of the sprayed water. A valve control device that controls the opening degree of the control valve, and a water level of the cooled water in the lower water tank that is kept constant by replenishing fresh water equivalent to the amount of cooled water that has decreased due to evaporation and drainage in the cooling tower main body. An automatic blowdown device for a cooling tower, comprising: a water supply means for maintaining water supply;
JP7661387A 1987-03-30 1987-03-30 Automatic blow down system for cooling tower Pending JPS63243695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7661387A JPS63243695A (en) 1987-03-30 1987-03-30 Automatic blow down system for cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7661387A JPS63243695A (en) 1987-03-30 1987-03-30 Automatic blow down system for cooling tower

Publications (1)

Publication Number Publication Date
JPS63243695A true JPS63243695A (en) 1988-10-11

Family

ID=13610195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7661387A Pending JPS63243695A (en) 1987-03-30 1987-03-30 Automatic blow down system for cooling tower

Country Status (1)

Country Link
JP (1) JPS63243695A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124994U (en) * 1991-04-22 1992-11-13 住友金属工業株式会社 Cooling device for water in the water tank
JP2008249300A (en) * 2007-03-30 2008-10-16 Aquas Corp Injection method of water treatment chemical
JP2009030936A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Method and device for controlling chemical dosing of cooling water system
JP2009243805A (en) * 2008-03-31 2009-10-22 Aquas Corp Injecting method of water treatment chemical
JP2010247063A (en) * 2009-04-15 2010-11-04 Ebara Engineering Service Co Ltd Method and apparatus for injection control of chemical for cooling water
JP2011112231A (en) * 2009-11-24 2011-06-09 Miura Co Ltd Water treatment system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124994U (en) * 1991-04-22 1992-11-13 住友金属工業株式会社 Cooling device for water in the water tank
JP2008249300A (en) * 2007-03-30 2008-10-16 Aquas Corp Injection method of water treatment chemical
JP2009030936A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Method and device for controlling chemical dosing of cooling water system
JP2009243805A (en) * 2008-03-31 2009-10-22 Aquas Corp Injecting method of water treatment chemical
JP2010247063A (en) * 2009-04-15 2010-11-04 Ebara Engineering Service Co Ltd Method and apparatus for injection control of chemical for cooling water
JP2011112231A (en) * 2009-11-24 2011-06-09 Miura Co Ltd Water treatment system

Similar Documents

Publication Publication Date Title
CN109521813B (en) System and method for stably controlling concentration ratio of circulating water of thermal power plant
KR100363823B1 (en) Ice heat storage cooling unit
US20100126939A1 (en) Method and apparatus for controlling feeding an agent to a cooling water system
JP2011137599A (en) Water quality management method for cooling tower, and the cooling tower using the water quality management method
CN108139107A (en) Air-conditioning device and its method of operation
JP4437262B2 (en) cooling tower
JP2007333361A (en) Energy saving operation method of cooling tower group, and cooling tower group used for same
JPS63243695A (en) Automatic blow down system for cooling tower
US5123262A (en) Cold transfer method and device
JP5699445B2 (en) Water treatment chemical injection management method and apparatus for open circulation cooling water system
JP5551381B2 (en) Cooling water chemical injection control method and apparatus
JP2003130587A (en) Circulating type cooling apparatus for cooling water and water quality controlling method
JP3839915B2 (en) Refrigerant cooling device
JP6243644B2 (en) Free cooling system and free cooling method using the same
CN115597302A (en) Constant-temperature circulation waterway system and constant-temperature circulation water tank
JP4434659B2 (en) Cryogenic liquid heating method and apparatus
GB2612733A (en) Methods and systems for tracking thermal profile of hot water storage tanks
JP3987358B2 (en) Flow control system with split flow measurement
CN207817402U (en) Lithographic equipment and its main substrate structure and main substrate unit
JPH08117663A (en) Device for supplying coating material to roll coater
CN217685589U (en) High-precision humidifying equipment with double groove bodies and flow control valves
JPH11287487A (en) Ice heat accumulator, and method of operating ice heat accumulator
JPH06317393A (en) Water quality control method for circulating cooling water in cooling tower
JPH083376B2 (en) Judgment method of heat storage consumption in heat storage type heat supply system
WO2024130934A1 (en) Composite evaporative cooling unit, control method therefor, and readable storage medium