JP2011137599A - Water quality management method for cooling tower, and the cooling tower using the water quality management method - Google Patents

Water quality management method for cooling tower, and the cooling tower using the water quality management method Download PDF

Info

Publication number
JP2011137599A
JP2011137599A JP2009298051A JP2009298051A JP2011137599A JP 2011137599 A JP2011137599 A JP 2011137599A JP 2009298051 A JP2009298051 A JP 2009298051A JP 2009298051 A JP2009298051 A JP 2009298051A JP 2011137599 A JP2011137599 A JP 2011137599A
Authority
JP
Japan
Prior art keywords
water
cooling water
cooling
inlet
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009298051A
Other languages
Japanese (ja)
Inventor
Masato Kokayu
正登 小粥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2009298051A priority Critical patent/JP2011137599A/en
Publication of JP2011137599A publication Critical patent/JP2011137599A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain water quality management that stably maintains the concentration of impurities in cooling water, in a cooling tower to a tolerance or lower by a simple and easy-to-use facility. <P>SOLUTION: In maintaining the concentration of impurities to the tolerance or lower by controlling blown down amount by opening/closing an automatic water discharge valve 22 provided in a water discharge pipe 21 of the cooling tower 1, an inlet/outlet temperature difference of cooling water of a water cooler/heater 11, when the cooling water is circulated at a set flow rate at set load of the water cooler/heater, is represented as ΔT<SP>*</SP>. Reference opening time T2<SP>*</SP>for the automatic water discharge valve, necessary for discharging the blown down amount according to the evaporation amount of the cooling water, at this time in a control cycle T1, is set. Inlet/outlet temperature difference ΔT of the cooling water circulated and supplied to the water cooler/heater with respect to each control cycle is calculated. Opening time T2 of the automatic water discharge valve 22 is calculated by multiplying T2<SP>*</SP>by a ratio L of ΔT with respect to ΔT<SP>*</SP>, and according to the calculated opening time T2, the opening time of the automatic water discharge valve 22 is controlled in a next control cycle, so as to control the amount blown down. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷却塔の水質管理方法及びその水質管理方法を用いた冷却塔に係り、具体的には、カウンターフロー型及びクロスフロー型等の開放型の冷却塔の水質管理技術に関する。   The present invention relates to a water quality management method for a cooling tower and a cooling tower using the water quality management method, and more specifically to a water quality management technique for an open type cooling tower such as a counter flow type or a cross flow type.

一般に、冷房装置、冷温水機などの冷熱が要求される冷熱負荷に低温の冷却水を供給し、冷熱負荷から戻ってくる高温の冷却水を大気中で散布して一部の冷却水を蒸発させ、その蒸発潜熱により低温の冷却水を再生して再び冷熱負荷に循環供給する開放型の冷却塔が広く用いられている。   Generally, low-temperature cooling water is supplied to a cooling load that requires cooling, such as a cooling device or a cooling / heating machine, and high-temperature cooling water returning from the cooling load is sprayed in the atmosphere to evaporate some of the cooling water. An open type cooling tower is widely used in which low-temperature cooling water is regenerated by the latent heat of vaporization and circulated again to the cooling load.

開放型の冷却塔は、例えば、頂部に開口を有するケーシングと、ケーシング内の上部に設けられた冷却水の散水ノズルと、ケーシングの底部に設けられて散水ノズルから散布される冷却水を受けて貯留する水槽と、ケーシングの頂部開口に設けられてケーシング内に空気を流通する送風機と、水槽内の冷却水を吸引して冷熱負荷に供給して散水ノズルに循環させる冷却水ポンプと、水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、水位設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管とを備えて構成される。   An open type cooling tower receives, for example, a casing having an opening at the top, a water spray nozzle provided at the top of the casing, and cooling water sprayed from the water nozzle provided at the bottom of the casing. A water tank to be stored, a blower that is provided at the top opening of the casing and circulates air in the casing, a cooling water pump that sucks the cooling water in the water tank and supplies it to the cooling load and circulates it to the watering nozzle, A water level control means for supplying makeup water so as to keep the water level within a set range, and an overflow pipe having an opening position set at a water level higher than the upper limit of the water level set range.

このような開放型の冷却塔の循環冷却水は、放熱のために一部の冷却水が蒸発することから、冷却水に含まれる不純物が濃縮される。濃縮された不純物が冷熱負荷の伝熱管等にスケールとなって付着すると、伝熱性能の悪化及び伝熱管等の腐食を引き起こすことがある。そこで、一般に、循環冷却水の一部を定期的に排水(ブローダウン)して新たな冷却水を補給することにより、不純物の濃縮倍率を希釈して管理値以下に保持することが行われている。しかし、定期的に排水するブローダウン量を一定量に設定すると、季節や時間によって冷熱負荷が少なくて蒸発量が少ないにもかかわらず、必要以上に冷却水をブローダウンすることになり不経済である。   In such circulating cooling water of the open type cooling tower, a part of the cooling water evaporates for heat dissipation, so that impurities contained in the cooling water are concentrated. If the concentrated impurities adhere to the heat transfer tube or the like under a cold load as scale, the heat transfer performance may deteriorate and corrosion of the heat transfer tube or the like may occur. Therefore, in general, a part of the circulating cooling water is periodically drained (blow down) and replenished with new cooling water to dilute the concentration ratio of impurities and keep it below the control value. Yes. However, if the amount of blowdown that is drained regularly is set to a certain amount, it will be uneconomical because cooling water will be blown down more than necessary even though the cooling load is small and the amount of evaporation is small depending on the season and time. is there.

そこで、特許文献1には、冷却水の導電率を計測して冷却水中の不純物の濃度を求め、不純物の濃縮倍率が管理値を超えないように冷却水をブローダウンすることが提案されている。しかし、冷却水の導電率によりブローダウン量を制御する方式によれば、特許文献2に記載されているように、導電率計にスケールが付着すると誤差が生ずる。そのため、導電率計のセンサ部の清掃を定期的(例えば、3か月に1回程度)に行なって、不純物濃度を許容値以下に安定に保持する必要があり、センサ部のメンテナンスに手間がかかる。また、高価な導電率計を定期的に交換する必要がある。   Therefore, Patent Document 1 proposes that the conductivity of cooling water is measured to determine the concentration of impurities in the cooling water, and the cooling water is blown down so that the concentration ratio of impurities does not exceed the control value. . However, according to the method in which the blowdown amount is controlled by the conductivity of the cooling water, as described in Patent Document 2, an error occurs when the scale adheres to the conductivity meter. Therefore, it is necessary to periodically clean the sensor unit of the conductivity meter (for example, about once every three months) to keep the impurity concentration stably below the allowable value, and the maintenance of the sensor unit is troublesome. Take it. In addition, expensive conductivity meters need to be replaced periodically.

そこで、特許文献2では、冷熱負荷に循環供給される冷却水の出入口温度差及び冷却水の循環流量を計測して、それらの積により循環冷却水の放熱量を求め、その放熱量を水の蒸発潜熱で除して冷却水の蒸発量を求めている。そして、求めた蒸発量に基づいて不純物の濃縮倍率を管理値以下に保持するのに必要なブローダウン量を求め、冷却塔の水槽に連通された排水管に設けられた流量検出器で検出される流量がブローダウン量に一致するように、排水管に設けられた流量制御弁を制御することが提案されている。これによれば、冷熱負荷に相関する蒸発量に合わせてブローダウン量を自動的に制御できるから、冷却水を無駄に棄てることがなくなり、運転コストを下げることができる。   Therefore, in Patent Document 2, the temperature difference between the inlet and outlet of the cooling water circulated and supplied to the cooling load and the circulation flow rate of the cooling water are measured. The amount of cooling water evaporated is calculated by dividing by the latent heat of evaporation. Based on the determined evaporation amount, the blowdown amount necessary to keep the impurity concentration ratio below the control value is obtained and detected by a flow rate detector provided in a drain pipe connected to the water tank of the cooling tower. It has been proposed to control a flow control valve provided in the drain pipe so that the flow rate to be matched with the blowdown amount. According to this, since the blowdown amount can be automatically controlled in accordance with the evaporation amount correlated with the cooling load, the cooling water is not wasted and the operating cost can be reduced.

特開昭47−24392号公報JP 47-24392 A 特開昭63−243695号公報JP-A-63-243695

ところで、特許文献2に記載の冷却塔の水質管理方法によれば、導電率計にスケールが付着することに伴う計測誤差を回避するためのセンサ部の定期的な清掃、交換などの問題は解決できる。また、冷却水の蒸発量に応じてブローダウン量を制御しているから、必要以上に冷却水をブローダウンすることがない。   By the way, according to the water quality management method for the cooling tower described in Patent Document 2, problems such as periodic cleaning and replacement of the sensor unit for avoiding measurement errors caused by the scale adhering to the conductivity meter are solved. it can. Moreover, since the blowdown amount is controlled according to the evaporation amount of the cooling water, the cooling water is not blown down more than necessary.

しかし、特許文献2では、蒸発量に比例する循環冷却水の放熱量を求めるために、循環冷却水の流量を検出していることから、また、循環冷却水の蒸発量に応じて流量制御弁によりブローダウン量を制御していることから、循環冷却水の流量検出器及び流量制御弁を設けなければならず、設備費用が高くなるだけでなく、それらのメンテナンス費用も必要になる。   However, in Patent Document 2, since the flow rate of the circulating cooling water is detected in order to obtain the heat dissipation amount of the circulating cooling water proportional to the evaporation amount, the flow rate control valve is set according to the evaporation amount of the circulating cooling water. Since the blow-down amount is controlled by this, a flow rate detector and a flow rate control valve for the circulating cooling water must be provided, which not only increases the equipment cost, but also requires maintenance costs.

本発明が解決しようとする課題は、冷却塔の冷却水中の不純物濃度を許容値以下に安定に保持する水質管理を、簡素及び簡便な設備により実現することにある。   The problem to be solved by the present invention is to realize water quality management that stably keeps the impurity concentration in the cooling water of the cooling tower below an allowable value with simple and simple equipment.

上記の課題を解決するために、本発明の第1の態様は、冷熱負荷から戻される高温の冷却水を空気中に散布して水槽に貯留し、水の蒸発潜熱により前記冷却水を冷却して、再び前記冷熱負荷に設定流量で循環供給する冷却塔の水質管理方法において、前記水槽に連通された排水管に設けられた排水弁を開閉制御してブローダウン量を制御することにより、前記冷却水中の不純物濃度を許容値以下に維持するようにすることを前提構成とする。   In order to solve the above-mentioned problem, a first aspect of the present invention is to spray high-temperature cooling water returned from a cooling load in the air and store it in a water tank, and cool the cooling water by the evaporation latent heat of water. Then, in the water quality management method of the cooling tower that circulates again to the cooling load at a set flow rate, the drain valve provided in the drain pipe connected to the water tank is controlled to open and close to control the blowdown amount, It is assumed that the impurity concentration in the cooling water is maintained below the allowable value.

特に、前記ブローダウン量の制御は、前記冷熱負荷の設定負荷時において前記設定流量で冷却水を循環させたときの前記冷熱負荷の冷却水の出入口温度差を基準出入口温度差として求め、該基準出入口温度差のときの冷却水の蒸発量を求めて前記冷却水中の不純物濃度を許容値以下に維持すべく求めたブローダウン量を、設定された制御周期において排出するのに必要な前記排水弁の基準開時間を設定しておき、前記制御周期ごとに前記冷熱負荷に循環供給される冷却水の出入口温度差を求め、前記基準出入口温度差に対する該冷却水の出入口温度差の割合を前記基準開時間に乗じて前記排水弁の開時間を求め、該求めた開時間に従って次の制御周期において前記排水弁の開時間を制御することを特徴とする。   In particular, the control of the blowdown amount is obtained as a reference inlet / outlet temperature difference as a reference inlet / outlet temperature difference when the cooling water is circulated at the set flow rate when the cooling load is set. The drainage valve required to discharge the blowdown amount obtained in order to maintain the impurity concentration in the cooling water below the allowable value by obtaining the evaporation amount of the cooling water at the inlet / outlet temperature difference in the set control cycle A reference opening time of the cooling water is set, and an inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load is obtained for each control cycle, and a ratio of the cooling water inlet / outlet temperature difference to the reference inlet / outlet temperature difference is determined as the reference The opening time of the drain valve is obtained by multiplying the opening time, and the opening time of the drain valve is controlled in the next control cycle according to the obtained opening time.

ここで、本発明の原理について説明する。冷却塔における冷却水の蒸発量は、冷却水の放熱量に比例する。その放熱量Qは、次式(1)に示すように、冷熱負荷の出口温度To(冷却塔の入口温度)と冷熱負荷の入口温度Ti(冷却塔の出口温度)の出入口温度差ΔT(=To−Ti)と冷却水の循環流量Vとの積を、水の蒸発潜熱Qsで除した値になる。
Q=ΔT・V/Qs (1)
ここで、循環流量Vを可変しないで一定の設定流量V(例えば、冷却水ポンプの定格流量又は冷熱負荷の定格負荷時の流量)で循環させる冷却塔が多い。この場合、循環流量Vは定数であり、蒸発潜熱Qsは元々定数であるから、放熱量Qは冷却水の出入口温度差ΔTにのみ比例することになる。
Here, the principle of the present invention will be described. The evaporation amount of the cooling water in the cooling tower is proportional to the heat dissipation amount of the cooling water. As shown in the following equation (1), the heat dissipation amount Q is the difference in the inlet / outlet temperature ΔT (= the outlet temperature To (cooling tower inlet temperature) of the cooling load and the inlet temperature Ti (cooling tower outlet temperature) of the cooling load. To-Ti) is a value obtained by dividing the product of the cooling water circulation flow rate V by the latent heat of vapor evaporation Qs.
Q = ΔT · V / Qs (1)
Here, there are many cooling towers that circulate at a constant set flow rate V * (for example, the rated flow rate of the cooling water pump or the flow rate at the rated load of the cooling load) without changing the circulating flow rate V. In this case, since the circulation flow rate V * is a constant and the latent heat of vaporization Qs is originally a constant, the heat release amount Q is proportional only to the coolant inlet / outlet temperature difference ΔT.

そこで、本発明は、冷却水を設定流量で循環する冷却塔の場合には、冷却水の出入口温度差ΔTを検出し、その出入口温度差ΔTに比例させて冷却水のブローダウン量を制御すれば、冷却水の流量検出器が不要になることに着目してなされたものである。しかし、ブローダウン量を制御するには、一般に流量制御弁が必要になるので、設備費及びメンテナンスの費用がかかる。   Therefore, in the case of a cooling tower that circulates cooling water at a set flow rate, the present invention detects the cooling water inlet / outlet temperature difference ΔT and controls the cooling water blow-down amount in proportion to the inlet / outlet temperature difference ΔT. For example, the cooling water flow rate detector is not required. However, in order to control the amount of blowdown, a flow control valve is generally required, so that equipment costs and maintenance costs are required.

そこで、本発明は、冷熱負荷は、一般に、急激に変動することは少なく、また、短時間の変動も少ないことから、ブローダウン量制御の応答速度はそれほど高いものが要求されないことに鑑み、ブローダウン量の制御を排水弁の開時間を制御することにより行うことを特徴とする。すなわち、冷却水の循環流量が設定流量に保持されているから、蒸発量Vbに相関する放熱量Qは冷却水の出入口温度差ΔTにのみ比例し、必要なブローダウン量Vbも出入口温度差ΔTにのみ比例する。したがって、冷熱負荷の設定負荷(例えば、定格負荷)時において設定流量(例えば、冷却水ポンプの定格流量)で冷却水を循環させ、任意の制御周期T1(例えば、30分)に対応する時間における冷熱負荷の冷却水の出入口温度差(必要に応じて時間平均値)を基準出入口温度差ΔTとし、この基準出入口温度差ΔTのときの冷却水の蒸発量を求めて冷却水中の不純物濃度を許容値以下に維持する基準ブローダウン量Vbを求める。さらに、基準ブローダウン量Vbを設定された制御周期T1において排出するのに必要な排水弁の開時間T2を基準開時間T2として設定しておく。 Therefore, in view of the fact that the cooling load generally does not fluctuate abruptly and does not fluctuate for a short time, the blowdown amount control response speed is not required to be so high. The down amount is controlled by controlling the opening time of the drain valve. That is, since the circulating flow rate of the cooling water is maintained at the set flow rate, the heat dissipation amount Q correlated with the evaporation amount Vb is proportional only to the cooling water inlet / outlet temperature difference ΔT, and the necessary blowdown amount Vb is also equal to the inlet / outlet temperature difference ΔT. Proportional only to Therefore, the cooling water is circulated at the set flow rate (for example, the rated flow rate of the cooling water pump) at the time of the set load (for example, the rated load) of the cooling load, and at a time corresponding to an arbitrary control cycle T1 (for example, 30 minutes). The temperature difference of the cooling water inlet / outlet (average of time if necessary) is defined as the reference inlet / outlet temperature difference ΔT *, and the amount of cooling water evaporated at this reference inlet / outlet temperature difference ΔT * is determined. To obtain a reference blowdown amount Vb * that keeps the value below the allowable value. Further, the drain valve opening time T2 required for discharging the reference blowdown amount Vb * in the set control cycle T1 is set as the reference opening time T2 * .

このようにして、基準出入口温度差ΔTと基準開時間T2を設定しておき、任意の制御周期T1ごとに冷熱負荷に循環供給される冷却水の出入口温度差ΔTを求め、基準出入口温度差ΔTに対する出入口温度差ΔTの割合ΔT/ΔTを基準開時間T2に乗じて排水弁の開時間T2を求める。この求めた開時間T2に従って次の制御周期において排水弁の開時間T2を制御すれば、冷却水中の不純物濃度を許容値以下に維持することができる。これにより、冷却水の流量検出器及び流量制御弁を用いずに、簡素及び簡便な設備により冷却塔の水質管理を実現することができる。なお、この場合、蒸発量に相当する出入口温度差ΔTを求めた制御周期に対し、その蒸発量に基づいて排水弁の開時間T2を制御してブローダウンする制御周期が1制御周期分遅れるが、連続運転している場合には問題なることはない。 In this manner, the reference inlet / outlet temperature difference ΔT * and the reference opening time T2 * are set, and the inlet / outlet temperature difference ΔT of the cooling water circulated and supplied to the cooling load is obtained every arbitrary control cycle T1 to obtain the reference inlet / outlet temperature. by multiplying the difference [Delta] T * ratio of inlet and outlet temperature difference [Delta] T for the [Delta] T / [Delta] T * based open time T2 * Request opening time T2 of the drain valve. If the drain valve open time T2 is controlled in the next control cycle in accordance with the obtained open time T2, the impurity concentration in the cooling water can be maintained below the allowable value. Thereby, the water quality management of a cooling tower is realizable with simple and simple equipment, without using the flow volume detector and flow control valve of a cooling water. In this case, the control cycle for controlling the drain valve opening time T2 based on the evaporation amount is delayed by one control cycle with respect to the control cycle for obtaining the inlet / outlet temperature difference ΔT corresponding to the evaporation amount. In the case of continuous operation, there is no problem.

本発明の第2の態様は、前記冷熱負荷に循環供給される冷却水の出入口温度差をサンプリング周期ごとに求め、該出入口温度差を制御周期に対応する積算時間の間積算して出入口温度差の積算値を求め、前記冷熱負荷の基準負荷時に前記設定流量で冷却水を循環したときの前記出入口温度差を前記積算時間の間積算して得られる出入口温度差の積算値を基準として前記出入口温度差の積算値の割合を求め、前記基準積算値に対応させて定められた前記排水弁の開時間の基準開時間に前記割合を乗じて前記排水弁の開時間を求め、該開時間に従って次の制御周期における前記排水弁の開時間を制御することを特徴とする。   According to a second aspect of the present invention, an inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load is obtained for each sampling period, and the inlet / outlet temperature difference is integrated during an integration time corresponding to the control period. The integrated value of the inlet / outlet temperature difference obtained by integrating the inlet / outlet temperature difference when the cooling water is circulated at the set flow rate at the reference load of the cooling load during the integrated time is used as a reference. Obtain the ratio of the integrated value of the temperature difference, multiply the reference opening time of the drain valve determined in correspondence with the reference integrated value to determine the opening time of the drain valve by multiplying the ratio, according to the opening time The opening time of the drain valve in the next control cycle is controlled.

本発明の第1及び第2の態様において、前記制御周期ないし積算時間は、前記基準開時間以上に設定されてなることを特徴とする。また、前記排水管は、前記水槽に代えて、前記空気中に散布される冷却水の一部を受ける前記水槽の水面より上方に設置されたドレンパンに連通された構成とすることができる。   In the first and second aspects of the present invention, the control period or accumulated time is set to be equal to or longer than the reference open time. Moreover, the said drainage pipe can be set as the structure connected to the drain pan installed above the water surface of the said water tank which receives some cooling water sprayed in the said air instead of the said water tank.

本発明の第1の態様の水質管理方法を実施する冷却塔は、頂部に開口を有するケーシングと、ケーシング内の上部に設けられた冷却水の散水ノズルと、散水ノズルから散布される冷却水を受けて貯留するケーシングの底部に設けられた水槽と、ケーシング内に空気を流通するケーシングの頂部開口に設けられた送風機と、水槽内の冷却水を吸引して冷熱負荷に供給して散水ノズルに循環させる冷却水ポンプと、水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、水位設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管と、前記冷却水のブローダウン量を制御して前記冷却水中の不純物濃度を許容値以下に維持する水質管理手段とを備えてなる冷却塔を対象とする。   A cooling tower for carrying out the water quality management method according to the first aspect of the present invention includes a casing having an opening at the top, a water spray nozzle provided in the upper part of the casing, and cooling water sprayed from the water spray nozzle. A water tank provided at the bottom of the casing to be received and stored, a blower provided at the top opening of the casing that circulates air in the casing, and sucking the cooling water in the water tank and supplying it to the cooling load to the watering nozzle A cooling water pump to be circulated, a water level control means for supplying makeup water so as to keep the water level of the water tank within a set range, an overflow pipe whose opening position is set at a water level higher than the upper limit of the water level setting range, and the cooling A cooling tower comprising water quality management means for controlling the blow-down amount of water to maintain the impurity concentration in the cooling water below an allowable value is intended.

このような冷却塔において、前記水質管理手段は、前記水槽に連通された排水管と、該排水管に設けられた電動又は電磁型の自動排水弁と、前記冷熱負荷に循環供給される冷却水の出入口温度差に基づいて、前記自動排水弁を開閉制御して前記冷却水のブローダウン量を制御する制御手段とを備え、前記制御手段は、前記冷熱負荷の設定負荷時において前記設定流量で冷却水を循環させたときの前記冷熱負荷の冷却水の出入口温度差を基準出入口温度差とし、該基準出入口温度差のときの冷却水の蒸発量を求めて前記冷却水中の不純物濃度を許容値以下に維持する基準ブローダウン量を求め、該基準ブローダウン量を設定された制御周期において排出するのに必要な前記自動排水弁の基準開時間を設定しておき、前記制御周期ごとに前記冷熱負荷に循環供給される冷却水の出入口温度差を求め、前記基準出入口温度差に対する該冷却水の出入口温度差の割合を前記基準開時間に乗じて前記自動排水弁の開時間を求め、該求めた開時間に従って次の制御周期において前記自動排水弁の開時間を制御することを特徴とする。   In such a cooling tower, the water quality management means includes a drain pipe communicating with the water tank, an electric or electromagnetic automatic drain valve provided in the drain pipe, and a cooling water circulated and supplied to the cooling load. Control means for controlling the blow-down amount of the cooling water by controlling the opening and closing of the automatic drain valve based on the inlet / outlet temperature difference, and the control means at the set flow rate when the cooling load is set. The cooling water inlet / outlet temperature difference of the cooling load when the cooling water is circulated is defined as a reference inlet / outlet temperature difference, and the evaporation amount of the cooling water at the reference inlet / outlet temperature difference is obtained, and the impurity concentration in the cooling water is allowed. A reference blowdown amount to be maintained below is obtained, a reference opening time of the automatic drain valve necessary for discharging the reference blowdown amount in a set control cycle is set, and the cooling / heating is set for each control cycle. The temperature difference between the inlet and outlet of the cooling water circulated and supplied to the load is obtained, and the opening time of the automatic drain valve is obtained by multiplying the reference opening time by the ratio of the temperature difference between the inlet and outlet of the cooling water to the reference inlet and outlet temperature difference. The opening time of the automatic drain valve is controlled in the next control cycle according to the opening time.

また、本発明の第2の態様の水質管理方法を実施する冷却塔の前記水質管理手段は、前記水槽に連通された排水管と、該排水管に設けられた電動又は電磁型の自動排水弁と、前記冷熱負荷に循環供給される冷却水の出入口温度差に基づいて、前記自動排水弁を開閉制御して前記冷却水のブローダウン量を制御する制御手段とを備え、前記制御手段は、前記冷熱負荷に循環供給される冷却水の出入口温度差をサンプリング周期ごとに求め、該出入口温度差を制御周期に対応する積算時間の間積算して出入口温度差の積算値を求め、前記冷熱負荷の基準負荷時に前記設定流量で冷却水を循環したときの前記出入口温度差を前記積算時間の間積算して得られる出入口温度差の積算値を基準として前記出入口温度差の積算値の割合を求め、前記基準積算値に対応させて定められた前記自動排水弁の開時間の基準開時間に前記割合を乗じて前記自動排水弁の開時間を求め、該開時間に従って次の制御周期における前記自動排水弁の開時間を制御することを特徴とする。   Further, the water quality management means of the cooling tower for carrying out the water quality management method of the second aspect of the present invention includes a drain pipe communicating with the water tank, and an electric or electromagnetic automatic drain valve provided in the drain pipe And a control means for controlling the blow-down amount of the cooling water by controlling the opening and closing of the automatic drain valve based on the temperature difference between the inlet and outlet of the cooling water circulated and supplied to the cooling load, the control means, The inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load is obtained for each sampling period, and the inlet / outlet temperature difference is integrated for an integration time corresponding to the control period to obtain an integrated value of the inlet / outlet temperature difference. The ratio of the integrated value of the inlet / outlet temperature difference is obtained on the basis of the integrated value of the inlet / outlet temperature difference obtained by integrating the inlet / outlet temperature difference when the cooling water is circulated at the set flow rate at the reference load. , The reference product The open time of the automatic drain valve is obtained by multiplying the reference open time of the open time of the automatic drain valve corresponding to the value by the ratio, and the open time of the automatic drain valve in the next control cycle according to the open time. It is characterized by controlling time.

また、本発明の第1と第2の態様の水質管理方法を実施する冷却塔の前記排水管は、前記水槽に代えて、前記空気中に散布される冷却水の一部を受ける前記水槽の水面より上方に設置されたドレンパンに連通されている構成とすることができる。   Moreover, the said drainage pipe of the cooling tower which implements the water quality management method of the 1st and 2nd aspect of this invention is replaced with the said water tank, The said water tank which receives a part of cooling water sprayed in the said air It can be set as the structure connected to the drain pan installed above the water surface.

本発明によれば、冷却塔の冷却水中の不純物濃度を許容値以下に安定に保持する水質管理を、簡素及び簡便な設備により実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water quality management which hold | maintains stably the impurity density | concentration in the cooling water of a cooling tower below to an allowable value is realizable with a simple and simple installation.

本発明の水質管理方法を適用してなる一実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図である。1 is a configuration diagram of a cooling water system including a cooling tower and a cooling load according to an embodiment to which a water quality management method of the present invention is applied. 本発明の一実施の形態の水質管理手順のフローチャートである。It is a flowchart of the water quality management procedure of one embodiment of this invention. ブローダウン量に対応する自動排水弁の開時間の求め方を説明する線図である。It is a diagram explaining how to obtain the opening time of the automatic drain valve corresponding to the blowdown amount. 本発明の他の実施の形態の水質管理手順のフローチャートである。It is a flowchart of the water quality management procedure of other embodiment of this invention.

以下、本発明を実施の形態に基づいて説明する。
(実施形態1)
図1に本発明の水質管理方法を適用してなる一実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図を示し、図2に本実施形態の水質管理手順のフローチャートを示す。
Hereinafter, the present invention will be described based on embodiments.
(Embodiment 1)
FIG. 1 shows a cooling water system configuration diagram including a cooling tower and a cooling load of one embodiment to which the water quality management method of the present invention is applied, and FIG. 2 shows a flow chart of a water quality management procedure of this embodiment.

図1に示すように、冷却塔1は、筒状のケーシング2を備え、ケーシング2の下部の側面に空気流入口3が形成され、底部に冷却水の水槽4が設けられている。また、空気流入口3の位置よりも上方のケーシング2内に充填材5が収容され、充填材5の上方に、冷却水の散水ノズル6が配設されている。また、ケーシング2の頂部に開口7が設けられ、その開口7に送風機8が設けられている。水槽4の底部近傍に冷却水ポンプ9の吸引口が連通され、冷却水ポンプ9の吐出口は、冷却水の供給配管10を介して冷温水機11に設けられた冷熱負荷である熱交換器の伝熱コイル12の一端に連結されている。伝熱コイル12の他端は冷却水の戻り配管13を介して冷却塔1の散水ノズル6に連結されている。   As shown in FIG. 1, the cooling tower 1 includes a cylindrical casing 2, an air inlet 3 is formed on the lower side surface of the casing 2, and a cooling water tank 4 is provided at the bottom. In addition, the filler 5 is accommodated in the casing 2 above the position of the air inlet 3, and the cooling water sprinkling nozzle 6 is disposed above the filler 5. An opening 7 is provided at the top of the casing 2, and a blower 8 is provided in the opening 7. The suction port of the cooling water pump 9 communicates with the vicinity of the bottom of the water tank 4, and the discharge port of the cooling water pump 9 is a heat exchanger that is a cooling / heating load provided in the chiller / heater 11 via the cooling water supply pipe 10. Is connected to one end of the heat transfer coil 12. The other end of the heat transfer coil 12 is connected to the watering nozzle 6 of the cooling tower 1 through a cooling water return pipe 13.

水槽4には、給水配管14が挿入され、その先端に水位制御手段であるボールタップ式自動弁15が設けられている。ボールタップ式自動弁15は、周知のように、水槽4の水位が下限値より下がると弁が開かれて給水し、水位が上限値になると弁を閉じて給水を停止することにより、水槽4の水位を設定範囲に保持するようになっている。給水配管14には例えば水道水などの補給水16が供給されるようになっている。さらに、水槽4には、水槽4の上端から冷却水が周囲に溢れ出ないように、図示しない排水溝17に開口されたオーバーフロー配管19が設けられている。オーバーフロー配管19の上端開口は、水槽4の水位の設定範囲の上限よりも高い位置に設定されている。   A water supply pipe 14 is inserted into the water tank 4, and a ball tap type automatic valve 15 as a water level control means is provided at the tip of the water tank 4. As is well known, the ball tap type automatic valve 15 opens the valve to supply water when the water level of the water tank 4 falls below the lower limit value, and closes the valve to stop water supply when the water level reaches the upper limit value. The water level is kept within the set range. The water supply pipe 14 is supplied with makeup water 16 such as tap water. Further, the water tank 4 is provided with an overflow pipe 19 opened in a drain groove 17 (not shown) so that the cooling water does not overflow from the upper end of the water tank 4 to the surroundings. The upper end opening of the overflow pipe 19 is set at a position higher than the upper limit of the water level setting range of the water tank 4.

また、水槽4の水面より上方にドレンパン20が設置され、ドレンパン20の底部にブローダウン用の排水管21が接続されている。排水管21には電動弁又は電磁弁からなる自動排水弁22が介装され、排水管21の先はオーバーフロー配管19と合流して図示しない排水溝17に開口されている。ドレンパン20は、上面が開口された皿状の容器であり、散水ノズル6から散布されて充填材5を流下した冷却水の一部を受けて、ブローダウン用冷却水として貯留できるようになっている。しかし、本発明は、ドレンパン20を設けず、排水管21を水槽4の底部に連通させて設けることができる。   A drain pan 20 is installed above the water surface of the water tank 4, and a drain pipe 21 for blowdown is connected to the bottom of the drain pan 20. An automatic drain valve 22 comprising an electric valve or an electromagnetic valve is interposed in the drain pipe 21, and the tip of the drain pipe 21 joins the overflow pipe 19 and is opened in a drain groove 17 (not shown). The drain pan 20 is a dish-like container having an open upper surface, and receives a part of the cooling water sprayed from the watering nozzle 6 and flowing down the filler 5, and can be stored as blow-down cooling water. Yes. However, in the present invention, the drain pan 21 can be provided in communication with the bottom of the water tank 4 without providing the drain pan 20.

一方、冷却水の供給配管10と伝熱コイル12との接続部に、冷温水機11への冷却水入口温度を検出する温度センサ23が設けられ、冷却水の戻り配管13と伝熱コイル12との接続部に、冷温水機11からの冷却水出口温度を検出する温度センサ24が設けられている。冷温水機11には、冷却水ポンプ9と自動排水弁22の開閉を制御する制御盤25が設けられている。制御盤25には温度センサ23、24の検出信号が入力されるようになっている。ここで、制御盤25は、冷温水機11の制御を行うものであるが、本実施の形態では温度センサ23、24の検出信号に基づいて冷却水の水質を管理する水質管理手段が組み込まれている。   On the other hand, a temperature sensor 23 for detecting a cooling water inlet temperature to the chiller / heater 11 is provided at a connection portion between the cooling water supply pipe 10 and the heat transfer coil 12, and the cooling water return pipe 13 and the heat transfer coil 12 are provided. The temperature sensor 24 which detects the cooling water exit temperature from the cold / hot water machine 11 is provided in the connection part. The chiller / heater 11 is provided with a control panel 25 that controls opening and closing of the cooling water pump 9 and the automatic drain valve 22. Detection signals from the temperature sensors 23 and 24 are input to the control panel 25. Here, the control panel 25 controls the chiller / heater 11, but in this embodiment, a water quality management means for managing the water quality of the cooling water based on the detection signals of the temperature sensors 23 and 24 is incorporated. ing.

次に、上記のように構成される本実施形態の冷却塔1の制御盤25における水質管理手段の構成を動作とともに、図2のフローチャートを参照しながら説明する。まず、冷却水中の不純物濃度を許容値以下に維持するブローダウン量の求め方を説明する。以下で説明する式中の記号の意味は次のとおりである。
冷熱負荷の出入口温度差:ΔT
放熱量:Q
蒸発量:Va
補給水量:Vq
ブローダウン量(排水量):Vb
補給水中の不純物濃度:c
不純物の許容濃縮倍率:F
水の蒸発潜熱:Qs(例えば、600kcal/L)
ここで、補給水16により冷却水に入ってくる不純物量はc・Vqであり、ブローダウンにより冷却水から出て行く不純物量はc・F・Vbである。不純物量の入出がつりあう条件は、c・Vq=c・F・Vbであるから、次式(2)が成立する。
Vb=Vq/F (2)
また、給水の入出の収支から、次式(3)が成立する。
Vq=Va+Vb (3)
冷却塔1における放熱量Qは、全て水の蒸発潜熱Qsによるものとすると、蒸発量Vaは次式(4)になる。
Va=Q/Qs (4)
ここで、式(2)〜(4)から、不純物の許容濃縮倍率Fを維持するのに必要なブローダウン量Vbは次式(5)により得られる。
Vb=Q/((F−1)Qs) (5)
次に、冷却水の循環流量を設定流量Vに保持すると、放熱量Qは、次式(6)で表すことができる。
Q=ΔT・V/Qs (6)
したがって、式(5)は、次式(7)で表せる。
Vb=ΔT・V/((F−1)Qs) (7)
式(7)において、ΔT以外は定数であるから、比例定数Kを用いると式(8)で表せる。
Vb=K・ΔT (8)
つまり、ブローダウン量Vbは、冷却水の出入口温度差ΔTに比例して制御すればよいから、冷却水の流量検出器が不要になることがわかる。
Next, the configuration of the water quality management means in the control panel 25 of the cooling tower 1 of the present embodiment configured as described above will be described together with the operation with reference to the flowchart of FIG. First, how to determine the blowdown amount for maintaining the impurity concentration in the cooling water below the allowable value will be described. The meanings of symbols in the formulas described below are as follows.
Cooling load inlet / outlet temperature difference: ΔT
Heat dissipation: Q
Evaporation amount: Va
Makeup water volume: Vq
Blowdown amount (drainage): Vb
Impurity concentration in makeup water: c
Permissible concentration ratio of impurities: F
Evaporation latent heat of water: Qs (for example, 600 kcal / L)
Here, the amount of impurities entering the cooling water by the makeup water 16 is c · Vq, and the amount of impurities coming out of the cooling water by blowdown is c · F · Vb. Since the condition that the amount of impurities enters and exits is c · Vq = c · F · Vb, the following equation (2) is established.
Vb = Vq / F (2)
In addition, the following equation (3) is established from the balance of water supply / exit.
Vq = Va + Vb (3)
If the heat radiation amount Q in the cooling tower 1 is entirely due to the water evaporation latent heat Qs, the evaporation amount Va is expressed by the following equation (4).
Va = Q / Qs (4)
Here, from the equations (2) to (4), the blowdown amount Vb necessary to maintain the allowable concentration ratio F of impurities is obtained by the following equation (5).
Vb = Q / ((F-1) Qs) (5)
Next, if the circulating flow rate of the cooling water is maintained at the set flow rate V * , the heat release amount Q can be expressed by the following equation (6).
Q = ΔT · V * / Qs (6)
Therefore, Formula (5) can be expressed by the following Formula (7).
Vb = ΔT · V * / ((F−1) Qs 2 ) (7)
In Expression (7), since constants other than ΔT are constants, when proportional constant K is used, it can be expressed by Expression (8).
Vb = K · ΔT (8)
That is, the blowdown amount Vb may be controlled in proportion to the cooling water inlet / outlet temperature difference ΔT, so that it is understood that the cooling water flow rate detector is unnecessary.

ここで、ブローダウン量Vbを制御するには、一般に流量制御弁が必要になるので好ましくない。そこで、本実施の形態では、冷温水機11の冷熱負荷は、一般に、急激に変動することは少なく、また、短時間の変動も少ないことから、ブローダウン量の制御は高い応答速度が要求されないことに鑑み、ブローダウン量Vbの制御を一定の制御周期において自動排水弁22の開時間を制御することにより行うことを特徴とする。   Here, in order to control the blowdown amount Vb, a flow control valve is generally required, which is not preferable. Therefore, in the present embodiment, the cooling / heating load of the chiller / heater 11 generally does not fluctuate rapidly, and since there is little fluctuation in a short time, control of the blowdown amount does not require a high response speed. In view of this, the blowdown amount Vb is controlled by controlling the opening time of the automatic drain valve 22 in a constant control cycle.

すなわち、任意の制御周期(例えば、30分)において、冷却水の出入口温度差ΔTの変動が小さい場合は、制御周期T1ごとに冷温水機11の冷熱負荷に循環供給される冷却水の出入口温度差ΔTを求めて、必要なブローダウン量(排水量)Vbを求めることができる。ここで、出入口温度差ΔTが変動しているときは、例えば、制御周期における出入口温度差ΔTの時間平均値を用いることが好ましい。   That is, when the fluctuation of the cooling water inlet / outlet temperature difference ΔT is small in an arbitrary control cycle (for example, 30 minutes), the inlet / outlet temperature of the cooling water circulated and supplied to the cooling load of the chilled water heater 11 every control cycle T1. By obtaining the difference ΔT, the necessary blowdown amount (drainage amount) Vb can be obtained. Here, when the inlet / outlet temperature difference ΔT fluctuates, for example, it is preferable to use the time average value of the inlet / outlet temperature difference ΔT in the control cycle.

次に、本実施の形態の特徴について説明する。冷温水機11の設定負荷時において設定流量Vで冷却水を循環させたときの冷却水の出入口温度差ΔTを基準出入口温度差ΔTとする。設定負荷は、例えば冷温水機11の冷熱負荷の定格負荷を採用できるが、本発明はこれに限らず、定格負荷内の任意の負荷を設定することができる。上記の基準出入口温度差ΔTは、設計段階あるいは試運転などにおいて予め求めることができる。この基準出入口温度差ΔTのときの冷却水の蒸発量Vaを計算により求めて、冷却水中の不純物濃度を許容値以下に維持する基準ブローダウン量Vbを、前式(7)により求める。 Next, features of the present embodiment will be described. The cooling water inlet / outlet temperature difference ΔT when the cooling water is circulated at the set flow rate V * at the set load of the chiller / heater 11 is defined as a reference inlet / outlet temperature difference ΔT * . For example, the rated load of the cooling / heating load of the chiller / heater 11 can be adopted as the setting load, but the present invention is not limited to this, and an arbitrary load within the rated load can be set. The reference inlet / outlet temperature difference ΔT * can be obtained in advance in the design stage or trial operation. The cooling water evaporation amount Va at the reference inlet / outlet temperature difference ΔT * is obtained by calculation, and the reference blowdown amount Vb * for maintaining the impurity concentration in the cooling water below the allowable value is obtained by the previous equation (7).

次に、自動排水弁22を開いて基準ブローダウン量Vbを排出するのに要する弁の開時間を、基準開時間T2として設定する。このときの排水圧力は、ドレンパン20内の水面高さ(静水頭)であるから、少なくともドレンパン20と排水管21を合わせた容積は、基準ブローダウン量Vb以上、好ましくは基準ブローダウン量Vbに合わせることが好ましい。また、ドレンパン20と排水管21を合わせた容積の調整が必要なときは、ドレンパン20の開口面積を調整可能な蓋体を設け、落下してくる冷却水の受け入れ量を調整することが好ましい。なお、ドレンパン20を設けず、水槽4の底部に排水管21を接続した場合、排水圧力は水槽4の水面高さ(静水頭)であるが、水面は設定範囲内に保持されているので、多少の誤差を考慮して基準開時間T2を余裕を持って設定する。 Next, the valve opening time required to open the automatic drain valve 22 and discharge the reference blowdown amount Vb * is set as the reference opening time T2 * . Since the drain pressure at this time is the water surface height (hydrostatic head) in the drain pan 20, at least the combined volume of the drain pan 20 and the drain pipe 21 is equal to or greater than the reference blowdown amount Vb * , preferably the reference blowdown amount Vb. It is preferable to match * . In addition, when adjustment of the combined volume of the drain pan 20 and the drain pipe 21 is necessary, it is preferable to provide a lid that can adjust the opening area of the drain pan 20 and adjust the amount of cooling water that falls. In addition, when the drain pan 21 is connected to the bottom of the water tank 4 without providing the drain pan 20, the drain pressure is the water surface height (hydrostatic head) of the water tank 4, but the water surface is kept within the set range. The standard opening time T2 * is set with a margin in consideration of some errors.

このように、設定流量Vにおける基準出入口温度差ΔTと、その場合の基準ブローダウン量Vbを排出するのに要する自動排水弁22の基準開時間T2とを、例えばメモリに記憶させて設定しておく。これにより、任意の制御周期T1における出入口温度差ΔTを求めれば、その時のブローダウン量を排出するのに要する自動排水弁22の開時間T2は、次式(9)により求めることができる。
T2=T2・ΔT/ΔT (9)
式(9)の関係の一例を図3に示す。そして、任意の制御周期T1において求めた開時間T2に従って、自動排水弁22を開制御することにより、必要なブローダウン量Vbを排出することができる。その結果、本実施の形態によれば、ブローダウン量を制御する流量制御弁が不要になる。
Thus, the reference inlet / outlet temperature difference ΔT * at the set flow rate V * and the reference opening time T2 * of the automatic drain valve 22 required to discharge the reference blowdown amount Vb * in that case are stored in, for example, a memory. To set. Thus, if the inlet / outlet temperature difference ΔT in an arbitrary control cycle T1 is obtained, the opening time T2 of the automatic drain valve 22 required to discharge the blowdown amount at that time can be obtained by the following equation (9).
T2 = T2 * · ΔT / ΔT * (9)
An example of the relationship of Formula (9) is shown in FIG. And the required blow-down amount Vb can be discharged | emitted by carrying out open control of the automatic drain valve 22 according to the open time T2 calculated | required in arbitrary control periods T1. As a result, according to the present embodiment, a flow control valve for controlling the blowdown amount is not necessary.

ここで、図2のフローチャートを参照して、本実施の形態のブローダウン量の制御を詳細に説明する。図2において、今回の制御周期(周期T1)がスタートすると、初期化処理として前回の制御周期で求めた出入口温度差ΔTの演算値をリセットするとともに、制御周期T1のタイマをリセットする(S1)。次に、冷却水ポンプ9が運転中か否かを判断し(S2)、停止していればΔTのサンプリングを停止して(S11)、S6に進む。一方、冷却水ポンプ9が運転中であればサンプリング周期T0(<T1)毎に出入口温度差ΔT(=To−Ti)をサンプリングする。次いで、前回の制御周期で設定した自動排水弁22の開時間T2が満了したか否かを判断し(S4)、満了していれば自動排水弁22を閉じてブローダウンを完了し(S12)、満了していなければ自動排水弁22の開を維持する(S5)。そして、今回の制御周期T1が満了したか否か判断し(S6)、満了していなければ、S3に戻って処理を繰り返す。今回の制御周期T1が満了していれば、ΔTのサンプリングを終了して、今回の制御周期の出入口温度差ΔTの演算値を求める(S7)。このΔTの演算は、今回の制御周期に複数回サンプリングしたΔTの変動が許容範囲内であれば代表的なΔTのサンプリング値を採用する。また、変動が許容範囲を超えていれば、複数回サンプリングしたΔTの平均値を求めてΔTの演算値とすることができる。   Here, with reference to the flowchart of FIG. 2, the blowdown amount control according to the present embodiment will be described in detail. In FIG. 2, when the current control cycle (cycle T1) is started, the calculated value of the inlet / outlet temperature difference ΔT obtained in the previous control cycle is reset as an initialization process, and the timer of the control cycle T1 is reset (S1). . Next, it is determined whether or not the cooling water pump 9 is in operation (S2). If it is stopped, sampling of ΔT is stopped (S11), and the process proceeds to S6. On the other hand, if the cooling water pump 9 is in operation, the inlet / outlet temperature difference ΔT (= To−Ti) is sampled every sampling period T0 (<T1). Next, it is determined whether or not the opening time T2 of the automatic drain valve 22 set in the previous control cycle has expired (S4). If it has expired, the automatic drain valve 22 is closed to complete the blowdown (S12). If it has not expired, the automatic drain valve 22 is kept open (S5). Then, it is determined whether or not the current control cycle T1 has expired (S6). If it has not expired, the process returns to S3 and the process is repeated. If the current control cycle T1 has expired, sampling of ΔT is terminated, and the calculated value of the inlet / outlet temperature difference ΔT in the current control cycle is obtained (S7). For the calculation of ΔT, if the variation of ΔT sampled a plurality of times in the current control cycle is within an allowable range, a representative sampling value of ΔT is adopted. If the fluctuation exceeds the allowable range, the average value of ΔT sampled a plurality of times can be obtained and used as the calculated value of ΔT.

次に、図示していないメモリ等に格納されている冷却水の基準出入口温度差ΔTを読み出し、ΔTに対する今回の制御周期T1で求めた出入口温度差ΔTの割合L(%)を求める(S8)。そして、メモリ等に格納されている自動排水弁22の基準開時間T2を読み出し、基準開時間T2にLを乗じて今回の制御周期に対するブローダウン量Vbを排出するのに必要な自動排水弁22の開時間T2を求める(S9)。次いで、自動排水弁22に開時間T2をセットして、自動排水弁22を開き、S1に戻って引き続き次回の制御周期の処理を実行する。 Next, a reference water inlet / outlet temperature difference ΔT * stored in a memory (not shown ) is read, and a ratio L (%) of the inlet / outlet temperature difference ΔT obtained in the current control cycle T1 with respect to ΔT * is obtained ( S8). Then, reading the reference opening time T2 * of the automatic drain valve 22 that is stored in a memory or the like, automatic drainage necessary for discharging the blowdown rate Vb for the current control cycle is multiplied by L on the reference open time T2 * An opening time T2 of the valve 22 is obtained (S9). Next, the opening time T2 is set in the automatic drain valve 22, the automatic drain valve 22 is opened, the process returns to S1, and the process of the next control cycle is continuously executed.

以上説明したように、本実施の形態によれば、冷却塔の冷却水中の不純物濃度を許容値以下に安定に保持する水質管理を、冷却水の流量計及びブローダウンの流量制御弁を用いることなく、簡素及び簡便な設備により実現することができる。   As described above, according to the present embodiment, the water quality management for stably maintaining the impurity concentration in the cooling water of the cooling tower below the allowable value is performed using the flow meter for the cooling water and the flow control valve for the blow-down. It can be realized with simple and simple equipment.

(実施形態2)
図4に本発明の水質管理方法を適用してなる他の実施形態の水質管理手順のフローチャートを示す。本実施の形態が、実施の形態1と異なる点は、制御盤25の水質管理手段の構成にあることから、冷却塔及び冷温水機の系統構成は図1を参照して説明する。
(Embodiment 2)
FIG. 4 shows a flowchart of a water quality management procedure of another embodiment to which the water quality management method of the present invention is applied. Since the present embodiment is different from the first embodiment in the configuration of the water quality management means of the control panel 25, the system configuration of the cooling tower and the hot and cold water machine will be described with reference to FIG.

図4に示すように、本実施の形態の水質管理手順が、実施の形態1の水質管理手順と異なる点は、実施の形態1では制御周期T1内における出入口温度差ΔTの変動が小さい場合を例に示したが、本実施の形態は制御周期T1内における出入口温度差ΔTの変動が比較的大きい場合にも適用できる。すなわち、図4において、ΔTの積算値及び制御周期T1(積算時間)を初期化する(S21)。次いで、冷却水ポンプ9が運転中であれば(S22)、サンプリング周期T0(<T2)毎にΔTを積算する(S23)。次に、前回の制御周期T1で設定した自動排水弁22の開時間T2が満了しているか否か判断する(S24)。満了していれば、自動排水弁22を閉じてブローダウンを終了する(S32)。S24の判断で、開時間T2が満了していなければ、自動排水弁22の開を継続するとともに、開時間T2からサンプリング周期T0を差し引いて新たなT2とする(S25)。次に、制御周期T1が満了したか否か判断する(S26)。満了していなければ、S23に戻って処理を繰り返す。   As shown in FIG. 4, the water quality management procedure of the present embodiment is different from the water quality management procedure of the first embodiment in the case where the fluctuation of the inlet / outlet temperature difference ΔT in the control cycle T1 is small in the first embodiment. Although shown as an example, the present embodiment can also be applied when the fluctuation of the inlet / outlet temperature difference ΔT within the control cycle T1 is relatively large. That is, in FIG. 4, the integrated value of ΔT and the control cycle T1 (integrated time) are initialized (S21). Next, if the cooling water pump 9 is in operation (S22), ΔT is integrated every sampling period T0 (<T2) (S23). Next, it is determined whether or not the open time T2 of the automatic drain valve 22 set in the previous control cycle T1 has expired (S24). If it has expired, the automatic drain valve 22 is closed and the blow-down is finished (S32). If it is determined in S24 that the opening time T2 has not expired, the automatic drain valve 22 is kept open, and the sampling period T0 is subtracted from the opening time T2 to obtain a new T2 (S25). Next, it is determined whether or not the control cycle T1 has expired (S26). If it has not expired, the process returns to S23 and is repeated.

S26の判断で、制御周期T1が満了していれば、ΔTの積算を終了する(S27)。次に、冷却水の基準出入口温度差ΔTを制御周期T1の間積分してメモリ等に格納されている積算値ΣΔTを読み出し、積算値ΣΔTに対する今回の制御周期T1で求めた出入口温度差ΔTの積算値ΣΔTの割合L(%)を求める(S28)。そして、メモリ等に格納されている自動排水弁22の基準開時間T2を読み出し、基準開時間T2にLを乗じて今回の制御周期に対するブローダウン量Vbを排出するのに必要な自動排水弁22の開時間T2を求める(S29)。次いで、自動排水弁22に開時間T2をセットして、自動排水弁22を開き、S21に戻って引き続き次回の制御周期の処理を実行する。 If it is determined in S26 that the control cycle T1 has expired, the integration of ΔT is terminated (S27). Next, a reference inlet and outlet temperature difference ΔT of the cooling water integrated during control period T1 reads the accumulated value ShigumaderutaT * stored in the memory or the like, inlet and outlet temperature difference obtained in the current control period T1 for the integrated value ShigumaderutaT * A ratio L (%) of the integrated value ΣΔT of ΔT is obtained (S28). Then, reading the reference opening time T2 * of the automatic drain valve 22 that is stored in a memory or the like, automatic drainage necessary for discharging the blowdown rate Vb for the current control cycle is multiplied by L on the reference open time T2 * An opening time T2 of the valve 22 is obtained (S29). Next, an open time T2 is set in the automatic drain valve 22, the automatic drain valve 22 is opened, and the process returns to S21 to continue the next control cycle.

以上説明したように、本実施の形態によれば、冷却塔の冷却水中の不純物濃度を許容値以下に安定に保持する水質管理を、冷却水の流量計及びブローダウンの流量制御弁を用いることなく、簡素及び簡便な設備により実現することができる。特に、本実施の形態は、出入口温度差ΔTの積算値ΣΔTに基づいてブローダウン量を制御していることから、実施の形態1に比べて出入口温度差ΔTが比較的変動する冷熱負荷に対しても、冷却水中の不純物濃度を許容値以下に精度よく安定に保持することができる。   As described above, according to the present embodiment, the water quality management for stably maintaining the impurity concentration in the cooling water of the cooling tower below the allowable value is performed using the flow meter for the cooling water and the flow control valve for the blow-down. It can be realized with simple and simple equipment. In particular, the present embodiment controls the blow-down amount based on the integrated value ΣΔT of the inlet / outlet temperature difference ΔT, so that the cooling / heating load in which the inlet / outlet temperature difference ΔT varies relatively compared to the first embodiment. Even in this case, the impurity concentration in the cooling water can be stably maintained with high accuracy below the allowable value.

1 冷却塔
2 ケーシング
4 水槽
6 散水ノズル
8 送風機
9 冷却水ポンプ
11 冷温水機
12 伝熱コイル
15 ボールタップ式自動弁
19 オーバーフロー配管
20 ドレンパン
21 排水管
22 自動排水弁
23 温度センサ
24 温度センサ
25 制御盤
DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Casing 4 Water tank 6 Sprinkling nozzle 8 Blower 9 Cooling water pump 11 Cold / hot water machine 12 Heat transfer coil 15 Ball tap type automatic valve 19 Overflow piping 20 Drain pan 21 Drain pipe 22 Automatic drain valve 23 Temperature sensor 24 Temperature sensor 25 Control panel

Claims (4)

冷熱負荷から戻される高温の冷却水を空気中に散布し、水の蒸発潜熱により前記冷却水を冷却して水槽に貯留し、再び前記冷熱負荷に設定流量で循環供給する冷却塔の水質管理方法において、
前記水槽に連通された排水管に設けられた排水弁を開閉制御してブローダウン量を制御することにより、前記冷却水中の不純物濃度を許容値以下に維持するようにし、
前記ブローダウン量の制御は、前記冷熱負荷の設定負荷時において前記設定流量で冷却水を循環させたときの前記冷熱負荷の冷却水の出入口温度差を基準出入口温度差として求め、該基準出入口温度差のときの冷却水の蒸発量を求めて前記冷却水中の不純物濃度を許容値以下に維持すべく求めたブローダウン量を、設定された制御周期において排出するのに必要な前記排水弁の基準開時間を設定しておき、前記制御周期ごとに前記冷熱負荷に循環供給される冷却水の出入口温度差を求め、前記基準出入口温度差に対する該冷却水の出入口温度差の割合を前記基準開時間に乗じて前記排水弁の開時間を求め、該求めた開時間に従って次の制御周期において前記排水弁の開時間を制御することを特徴とする冷却塔の水質管理方法。
Water quality management method for a cooling tower in which high-temperature cooling water returned from a cooling load is dispersed in the air, the cooling water is cooled by the latent heat of water evaporation, stored in a water tank, and circulated again to the cooling load at a set flow rate In
By controlling the blowdown amount by opening and closing a drain valve provided in a drain pipe communicated with the water tank, the impurity concentration in the cooling water is maintained below an allowable value,
The control of the blowdown amount is obtained by calculating a reference inlet / outlet temperature difference as a reference inlet / outlet temperature difference when cooling water is circulated at the set flow rate when the cooling load is set. The drain valve standard required for discharging the amount of cooling water at the time of the difference and discharging the blow-down amount determined to maintain the impurity concentration in the cooling water below the allowable value in the set control cycle An opening time is set, an inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load for each control cycle is obtained, and a ratio of the cooling water inlet / outlet temperature difference to the reference inlet / outlet temperature difference is determined as the reference opening time. To determine the opening time of the drain valve, and control the opening time of the drain valve in the next control cycle according to the determined opening time.
冷熱負荷から戻される高温の冷却水を空気中に散布し、水の蒸発潜熱により前記冷却水を冷却して水槽に貯留し、再び前記冷熱負荷に設定流量で循環供給する冷却塔の水質管理方法において、
前記水槽に連通された排水管に設けられた排水弁を開閉制御してブローダウン量を制御して、前記冷却水中の不純物濃度を許容値以下に維持するようにし、
前記ブローダウン量の制御は、前記冷熱負荷に循環供給される冷却水の出入口温度差をサンプリング周期ごとに求め、該出入口温度差を制御周期に対応する積算時間の間積算して出入口温度差の積算値を求め、前記冷熱負荷の基準負荷時に前記設定流量で冷却水を循環したときの前記出入口温度差を前記積算時間の間積算して得られる出入口温度差の積算値を基準として前記出入口温度差の積算値の割合を求め、前記基準積算値に対応させて定められた前記排水弁の開時間の基準開時間に前記割合を乗じて前記排水弁の開時間を求め、該開時間に従って次の制御周期における前記排水弁の開時間を制御することを特徴とする冷却塔の水質管理方法。
Water quality management method for a cooling tower in which high-temperature cooling water returned from a cooling load is dispersed in the air, the cooling water is cooled by the latent heat of water evaporation, stored in a water tank, and circulated again to the cooling load at a set flow rate In
Controlling the amount of blowdown by controlling the opening and closing of a drain valve provided in a drain pipe connected to the water tank, so as to maintain the impurity concentration in the cooling water below an allowable value,
The control of the blowdown amount is performed by obtaining the inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load for each sampling period, and integrating the inlet / outlet temperature difference for the integration time corresponding to the control period to An integrated value is obtained, and the inlet / outlet temperature is based on the integrated value of the inlet / outlet temperature difference obtained by integrating the inlet / outlet temperature difference when the cooling water is circulated at the set flow rate during the reference load of the cooling load during the integrated time. The ratio of the integrated value of the difference is obtained, and the opening time of the drain valve is obtained by multiplying the ratio by the reference opening time of the drain valve opening time determined in correspondence with the reference integrated value, and according to the opening time. The water quality management method of a cooling tower characterized by controlling the open time of the said drain valve in the control period of this.
頂部に開口を有するケーシングと、ケーシング内の上部に設けられた冷却水の散水ノズルと、ケーシングの底部に設けられて散水ノズルから散布される冷却水を受けて貯留する水槽と、ケーシングの頂部開口に設けられてケーシング内に空気を流通する送風機と、水槽内の冷却水を吸引して冷熱負荷に供給して散水ノズルに循環させる冷却水ポンプと、水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、水位設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管と、前記冷却水のブローダウン量を制御して前記冷却水中の不純物濃度を許容値以下に維持する水質管理手段とを備えてなる冷却塔において、
前記水質管理手段は、前記水槽に連通された排水管と、該排水管に設けられた電動又は電磁型の自動排水弁と、前記冷熱負荷に循環供給される冷却水の出入口温度差に基づいて、前記自動排水弁を開閉制御して前記冷却水のブローダウン量を制御する制御手段とを備え、
前記制御手段は、前記冷熱負荷の設定負荷時において前記設定流量で冷却水を循環させたときの前記冷熱負荷の冷却水の出入口温度差を基準出入口温度差として求め、該基準出入口温度差のときの冷却水の蒸発量を求めて前記冷却水中の不純物濃度を許容値以下に維持すべく求めたブローダウン量を、設定された制御周期において排出するのに必要な前記自動排水弁の基準開時間を設定しておき、前記制御周期ごとに前記冷熱負荷に循環供給される冷却水の出入口温度差を求め、前記基準出入口温度差に対する該冷却水の出入口温度差の割合を前記基準開時間に乗じて前記自動排水弁の開時間を求め、該求めた開時間に従って次の制御周期において前記自動排水弁の開時間を制御することを特徴とする冷却塔。
A casing having an opening at the top, a sprinkling nozzle for cooling water provided at the top of the casing, a water tank for receiving and storing cooling water provided at the bottom of the casing and sprayed from the sprinkling nozzle, and a top opening of the casing A blower that circulates air through the casing, a cooling water pump that sucks the cooling water in the water tank, supplies it to the cooling load and circulates it to the watering nozzle, and maintains the water level of the water tank in the set range A water level control means for supplying makeup water, an overflow pipe whose opening position is set at a water level higher than the upper limit of the water level setting range, and an amount of impurities in the cooling water controlled by controlling the blow-down amount of the cooling water In the cooling tower comprising the water quality management means to maintain below,
The water quality management means is based on a drainage pipe communicating with the water tank, an electric or electromagnetic automatic drainage valve provided in the drainage pipe, and a temperature difference between the inlet and outlet of cooling water circulated and supplied to the cooling load. A control means for controlling the blow-down amount of the cooling water by controlling opening and closing of the automatic drain valve,
The control means obtains a cooling water inlet / outlet temperature difference when the cooling water is circulated at the set flow rate when the cooling load is set as a reference inlet / outlet temperature difference. The reference opening time of the automatic drain valve required to discharge the blowdown amount obtained to determine the evaporation amount of the cooling water in order to maintain the impurity concentration in the cooling water below the allowable value in the set control cycle The inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load at each control cycle is determined, and the ratio of the inlet / outlet temperature difference of the cooling water to the reference inlet / outlet temperature difference is multiplied by the reference opening time. A cooling tower characterized in that an open time of the automatic drain valve is obtained and the open time of the automatic drain valve is controlled in the next control cycle according to the obtained open time.
頂部に開口を有するケーシングと、ケーシング内の上部に設けられた冷却水の散水ノズルと、ケーシングの底部に設けられて散水ノズルから散布される冷却水を受けて貯留する水槽と、ケーシングの頂部開口に設けられてケーシング内に空気を流通する送風機と、水槽内の冷却水を吸引して冷熱負荷に供給して散水ノズルに循環させる冷却水ポンプと、水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、水位設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管と、前記冷却水のブローダウン量を制御して前記冷却水中の不純物濃度を許容値以下に維持する水質管理手段とを備えてなる冷却塔において、
前記水質管理手段は、前記水槽に連通された排水管と、該排水管に設けられた電動又は電磁型の自動排水弁と、前記冷熱負荷に循環供給される冷却水の出入口温度差に基づいて、前記自動排水弁を開閉制御して前記冷却水のブローダウン量を制御する制御手段とを備え、
前記制御手段は、前記冷熱負荷に循環供給される冷却水の出入口温度差をサンプリング周期ごとに求め、該出入口温度差を制御周期に対応する積算時間の間積算して出入口温度差の積算値を求め、前記冷熱負荷の基準負荷時に前記設定流量で冷却水を循環したときの前記出入口温度差を前記積算時間の間積算して得られる出入口温度差の積算値を基準として前記出入口温度差の積算値の割合を求め、前記基準積算値に対応させて定められた前記自動排水弁の開時間の基準開時間に前記割合を乗じて前記自動排水弁の開時間を求め、該開時間に従って次の制御周期における前記自動排水弁の開時間を制御することを特徴とする冷却塔。
A casing having an opening at the top, a sprinkling nozzle for cooling water provided at the top of the casing, a water tank for receiving and storing cooling water provided at the bottom of the casing and sprayed from the sprinkling nozzle, and a top opening of the casing A blower that circulates air through the casing, a cooling water pump that sucks the cooling water in the water tank, supplies it to the cooling load and circulates it to the watering nozzle, and maintains the water level of the water tank in the set range A water level control means for supplying makeup water, an overflow pipe whose opening position is set at a water level higher than the upper limit of the water level setting range, and an amount of impurities in the cooling water controlled by controlling the blow-down amount of the cooling water In the cooling tower comprising the water quality management means to maintain below,
The water quality management means is based on a drainage pipe communicating with the water tank, an electric or electromagnetic automatic drainage valve provided in the drainage pipe, and a temperature difference between the inlet and outlet of cooling water circulated and supplied to the cooling load. A control means for controlling the blow-down amount of the cooling water by controlling opening and closing of the automatic drain valve,
The control means obtains the inlet / outlet temperature difference of the cooling water circulated and supplied to the cooling load for each sampling period, integrates the inlet / outlet temperature difference for the integration time corresponding to the control period, and obtains the integrated value of the inlet / outlet temperature difference. The integration of the inlet / outlet temperature difference based on the integrated value of the inlet / outlet temperature difference obtained by integrating the inlet / outlet temperature difference when the cooling water is circulated at the set flow rate during the reference load of the cooling load. The ratio of the value is obtained, the opening time of the automatic drain valve is obtained by multiplying the reference opening time of the automatic drain valve determined in correspondence with the reference integrated value by the ratio, and according to the opening time, A cooling tower for controlling an opening time of the automatic drain valve in a control cycle.
JP2009298051A 2009-12-28 2009-12-28 Water quality management method for cooling tower, and the cooling tower using the water quality management method Pending JP2011137599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009298051A JP2011137599A (en) 2009-12-28 2009-12-28 Water quality management method for cooling tower, and the cooling tower using the water quality management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298051A JP2011137599A (en) 2009-12-28 2009-12-28 Water quality management method for cooling tower, and the cooling tower using the water quality management method

Publications (1)

Publication Number Publication Date
JP2011137599A true JP2011137599A (en) 2011-07-14

Family

ID=44349174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298051A Pending JP2011137599A (en) 2009-12-28 2009-12-28 Water quality management method for cooling tower, and the cooling tower using the water quality management method

Country Status (1)

Country Link
JP (1) JP2011137599A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072629A (en) * 2011-09-29 2013-04-22 Miura Co Ltd Water treatment system
CN103592151A (en) * 2013-11-12 2014-02-19 湖南泰通电力科技有限公司 Testing system and method used for conducting energy conservation study on industrial circulation cooling water
JP2014199149A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Open circulation cooling facility and facility working detection device
CN105571378A (en) * 2015-12-21 2016-05-11 中国能源建设集团广东省电力设计研究院有限公司 Improved cooling method and structure for boiler discharge water of gas-turbine power plant
CN108344324A (en) * 2018-04-02 2018-07-31 上海寰沛实业有限公司 Cooling tower Intelligence Stanza Water System
CN111680411A (en) * 2020-05-29 2020-09-18 鞍钢股份有限公司 Method for determining pollution discharge rate of circulating water cooling system through temperature concentration rate
JP2021032499A (en) * 2019-08-26 2021-03-01 三浦工業株式会社 Boiler system
CN113566639A (en) * 2021-07-01 2021-10-29 深圳中广核工程设计有限公司 Method and system for controlling circulating water discharge capacity of closed cooling tower
CN114184065A (en) * 2021-12-20 2022-03-15 北京瑞晨航宇能源科技有限公司 High-temperature plate heat exchanger and temperature control method
CN114702145A (en) * 2022-03-30 2022-07-05 中电(四会)热电有限责任公司 Industrial circulating water quality monitoring device and control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072629A (en) * 2011-09-29 2013-04-22 Miura Co Ltd Water treatment system
JP2014199149A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Open circulation cooling facility and facility working detection device
CN103592151A (en) * 2013-11-12 2014-02-19 湖南泰通电力科技有限公司 Testing system and method used for conducting energy conservation study on industrial circulation cooling water
CN105571378A (en) * 2015-12-21 2016-05-11 中国能源建设集团广东省电力设计研究院有限公司 Improved cooling method and structure for boiler discharge water of gas-turbine power plant
CN105571378B (en) * 2015-12-21 2018-01-26 中国能源建设集团广东省电力设计研究院有限公司 A kind of cool-down method and structure of improved GTCC power plant discharging of boiler
CN108344324A (en) * 2018-04-02 2018-07-31 上海寰沛实业有限公司 Cooling tower Intelligence Stanza Water System
JP7419702B2 (en) 2019-08-26 2024-01-23 三浦工業株式会社 boiler system
JP2021032499A (en) * 2019-08-26 2021-03-01 三浦工業株式会社 Boiler system
CN111680411B (en) * 2020-05-29 2023-06-16 鞍钢股份有限公司 Method for determining pollution discharge rate of circulating water cooling system through temperature concentration ratio
CN111680411A (en) * 2020-05-29 2020-09-18 鞍钢股份有限公司 Method for determining pollution discharge rate of circulating water cooling system through temperature concentration rate
CN113566639A (en) * 2021-07-01 2021-10-29 深圳中广核工程设计有限公司 Method and system for controlling circulating water discharge capacity of closed cooling tower
CN113566639B (en) * 2021-07-01 2023-11-24 深圳中广核工程设计有限公司 Method and system for controlling circulating water discharge capacity of closed cooling tower
CN114184065A (en) * 2021-12-20 2022-03-15 北京瑞晨航宇能源科技有限公司 High-temperature plate heat exchanger and temperature control method
CN114184065B (en) * 2021-12-20 2022-08-30 北京瑞晨航宇能源科技有限公司 Temperature control method for high-temperature plate heat exchanger
CN114702145A (en) * 2022-03-30 2022-07-05 中电(四会)热电有限责任公司 Industrial circulating water quality monitoring device and control method
CN114702145B (en) * 2022-03-30 2024-02-09 中电(四会)热电有限责任公司 Industrial circulating water quality monitoring device and control method

Similar Documents

Publication Publication Date Title
JP2011137599A (en) Water quality management method for cooling tower, and the cooling tower using the water quality management method
JP4437262B2 (en) cooling tower
CN101680682B (en) Heat pump-type hot-water supply device
US10670340B2 (en) Cooling water supply system and method
CN104501326B (en) A kind of cooling system and method
GB2534081A (en) Actuating unit for a heat exchanger, heat exchanger, and a method for controlling a heat exchanger
JP4962035B2 (en) Hot water supply device and control device for hot water supply device
CN102186547A (en) Rotary evaporator
CN102261633B (en) There is the cooking appliance of steam generating function
ES2606049T3 (en) Method to operate a solar thermal plant
JP5463114B2 (en) Operation method of water heater and water heater
JP2018159516A (en) Cooling tower facility, and water quality control method thereof
KR20050100399A (en) Cooling system
US10527297B2 (en) Domestic hot water installation
KR20160003677A (en) In-line heated solar thermal storage collector
JP2003130587A (en) Circulating type cooling apparatus for cooling water and water quality controlling method
JP2008190731A (en) Cooling water supply and discharge structure of cooling tower and cooling water supply and discharge structure of cooling tower group using it
US20180156471A1 (en) Water heater appliance
GB2612733A (en) Methods and systems for tracking thermal profile of hot water storage tanks
JPH10325697A (en) Capacity regulator for heat exchanger
JPS63243695A (en) Automatic blow down system for cooling tower
JP2001300512A (en) Evaporating/concentrating device
JP2005058873A (en) Low temperature liquid heating method and apparatus therefor
JP6416848B2 (en) Absorption heat pump
JPH0660771B2 (en) Absorption refrigerator crystal prevention method