JP4437262B2 - cooling tower - Google Patents

cooling tower Download PDF

Info

Publication number
JP4437262B2
JP4437262B2 JP2005298346A JP2005298346A JP4437262B2 JP 4437262 B2 JP4437262 B2 JP 4437262B2 JP 2005298346 A JP2005298346 A JP 2005298346A JP 2005298346 A JP2005298346 A JP 2005298346A JP 4437262 B2 JP4437262 B2 JP 4437262B2
Authority
JP
Japan
Prior art keywords
water
cooling
amount
cooling water
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005298346A
Other languages
Japanese (ja)
Other versions
JP2007107794A (en
Inventor
竹彦 名坂
修 檜山
秀亮 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2005298346A priority Critical patent/JP4437262B2/en
Publication of JP2007107794A publication Critical patent/JP2007107794A/en
Application granted granted Critical
Publication of JP4437262B2 publication Critical patent/JP4437262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、冷却塔に係り、具体的には、カウンターフロー型及びクロスフロー型等の開放型冷却塔の水質管理技術に関する。 The present invention relates to a cooling tower, the concrete, on water quality management technology of an open cooling tower counter-flow and cross-flow type.

一般に、冷房装置や冷温水機などの冷熱が要求される冷熱負荷装置に低温の冷却水を供給し、冷熱負荷装置から戻ってくる高温の冷却水を大気中に散布して一部の冷却水を蒸発させ、その蒸発潜熱により低温の冷却水を再生して再び冷熱負荷装置に循環供給する開放型の冷却塔が広く用いられている。   In general, supply low-temperature cooling water to a cooling load device that requires cooling, such as a cooling device or a chiller / heater, and spray high-temperature cooling water returning from the cooling load device into the atmosphere. Open-type cooling towers are widely used in which low-temperature cooling water is regenerated by the latent heat of vaporization and recirculated to the cooling load device.

このような開放型の冷却塔の循環冷却水は、放熱のために一部の冷却水が蒸発するため、冷却水に含まれる例えばシリカなどの不純物が濃縮される。濃縮された不純物が冷熱負荷装置の伝熱管等にスケールとなって付着すると、伝熱性能の悪化及び伝熱管等の腐食を引き起こすことがある。   In such circulating cooling water of the open type cooling tower, a part of the cooling water evaporates for heat dissipation, so that impurities such as silica contained in the cooling water are concentrated. If the concentrated impurities adhere to the heat transfer tube or the like of the cold load device as scale, the heat transfer performance may be deteriorated and the heat transfer tube or the like may be corroded.

このようなスケール付着を防止するため、一般に、循環冷却水の一部を定期的に排水(ブローダウン)して新たな冷却水を補給することにより、不純物の濃縮倍率を管理値以下に保持することが行われている。しかし、ブローダウン量を冷却塔の定格の循環冷却水量に合わせて一定量に設定すると、季節や時間によって冷熱負荷が少なく蒸発量が少ないにもかかわらず、必要以上に冷却水をブローダウンすることになり不経済である。   In order to prevent such scale adhesion, in general, a part of the circulating cooling water is drained (blow down) periodically to supply new cooling water, thereby maintaining the concentration ratio of impurities below the control value. Things have been done. However, if the blowdown amount is set to a constant amount according to the rated circulating cooling water amount of the cooling tower, the cooling water will be blown down more than necessary even though the cooling load is small and the evaporation amount is small depending on the season and time. It is uneconomical.

そこで、特許文献1に、冷却水の導電率を計測し、冷却水中の不純物の濃縮倍率が管理値を超えた場合に、冷却水をブローダウンすることが提案されている。これによれば、冷熱負荷に相関する蒸発量に合わせてブローダウン量を制御できるから、無駄に冷却水を棄てることがなくなり、運転コストを下げることができる。   Therefore, Patent Document 1 proposes that the conductivity of the cooling water is measured and the cooling water is blown down when the concentration ratio of impurities in the cooling water exceeds the control value. According to this, since the blowdown amount can be controlled in accordance with the evaporation amount correlated with the cooling load, the cooling water is not discarded unnecessarily, and the operation cost can be reduced.

特開昭47−24392号公報JP 47-24392 A

しかしながら、特許文献1に記載された導電率計による水質管理方式の場合、ブローダウン量を減らすために水質管理値を厳しく設定すると、導電率計そのものに不純物のスケールが付着することがある。導電率計にスケールが付着すると、導電率が低い方に計測されてしまうため、ブローダウン量が減って、さらにスケールが付着しやすい状態になり、伝熱管にとっては好ましくない方向になる。したがって、水質管理値を安全側に設定するか、導電率計のメンテナンスを定期的に行なって、不純物濃度を許容値以下に安定に保持する必要がある。   However, in the case of the water quality management method using the conductivity meter described in Patent Document 1, if the water quality management value is set strictly in order to reduce the amount of blowdown, an impurity scale may adhere to the conductivity meter itself. If the scale adheres to the conductivity meter, the conductivity is measured in a lower direction, so that the blowdown amount is reduced, and the scale is more likely to adhere, which is not preferable for the heat transfer tube. Therefore, it is necessary to set the water quality control value to the safe side or to periodically maintain the conductivity meter to keep the impurity concentration stably below the allowable value.

一方、不純物スケールの付着を抑制する薬剤を冷却水中に注入して、不純物の許容濃縮倍率を高く(例えば、2倍)することが知られているが、薬剤費による運転コストの上昇という問題の他、冷却水中の不純物濃度を許容値以下に安定に保持するために、水質分析及び薬注管理を比較的短い周期で定期的に実施する必要があるという問題がある。   On the other hand, it is known that a chemical that suppresses the adhesion of impurity scales is injected into cooling water to increase the allowable concentration ratio of impurities (for example, 2 times). In addition, there is a problem that it is necessary to periodically perform water quality analysis and chemical injection management in a relatively short period in order to stably maintain the impurity concentration in the cooling water below the allowable value.

本発明は、メンテナンス及び運転コストを軽減でき、冷却塔の冷却水中の不純物濃度を許容値以下に安定に保持することを課題とする。   An object of the present invention is to reduce maintenance and operation costs, and to stably maintain an impurity concentration in cooling water of a cooling tower below an allowable value.

上記の課題を解決するため、本発明は、頂部に開口を有するケーシングと、該ケーシング内の上部に設けられた冷却水の散水ノズルと、前記ケーシングの底部に設けられた冷却水の水槽と、前記ケーシングの前記開口に設けられ該ケーシング内に空気を流通させる送風機と、前記水槽内の冷却水を吸引して冷熱負荷に供給して前記散水ノズルに循環させる冷却水ポンプと、前記水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、前記設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管と、前記冷却水の水質を管理する水質管理手段とを備えてなる冷却塔において、前記水質管理手段は、前記冷却塔における冷却水の蒸発量を求める蒸発量演算手段と、該蒸発量演算手段により求めた蒸発量に基づいて前記冷却水中の不純物濃度を許容値以下に維持するのに必要な冷却水の補給水量を求める補給水量演算手段と、該補給水量演算手段により求めた補給水量を冷却塔に補給する補給水供給手段と、前記水位制御手段により補給される前記補給水の量を検出する流量検出器と、該流量検出器により検出された補給水の量を設定時間ごとに積算して補給水量積算値(ΣV)を求める補給水量積算手段と備え、前記蒸発量演算手段は、前記蒸発量を前記設定時間ごとに積算して蒸発量積算値(ΣQ/Qs)を求め、前記補給水量演算手段は、前記設定時間ごとに前記蒸発量積算値に基づいて前記不純物濃度を許容値以下に維持する前記必要補給水量(Vq)を求め、該必要補給水量と前記補給水量積算手段により求めた補給水量積算値(ΣV)との差を前記補給水供給手段の前記補給水量とすることを特徴とする。 In order to solve the above problems, the present invention provides a casing having an opening at the top, a water spray nozzle for cooling water provided at the top of the casing, a water tank for cooling water provided at the bottom of the casing, A blower that is provided in the opening of the casing and circulates air in the casing; a cooling water pump that sucks cooling water in the water tank, supplies the cooling water to a cooling load, and circulates it to the watering nozzle; and a water level of the water tank Water level control means for supplying make-up water so as to keep the temperature within a set range, an overflow pipe whose opening position is set at a water level higher than the upper limit of the set range, and a water quality management means for managing the quality of the cooling water The water quality management means includes: an evaporation amount calculating means for obtaining an evaporation amount of cooling water in the cooling tower; and an evaporation amount obtained by the evaporation amount calculating means. A replenishing water amount calculating means for obtaining a replenishing water amount required for maintaining the impurity concentration in the cooling water below an allowable value, and a replenishing water supply for replenishing the cooling tower with the replenishing water amount obtained by the replenishing water amount calculating means Means, a flow rate detector for detecting the amount of the makeup water to be replenished by the water level control means, and a supplementary water amount integrated value (ΣV) by integrating the amount of makeup water detected by the flow rate detector every set time. ), And the evaporation amount calculation means calculates the evaporation amount integrated value (ΣQ / Qs) by integrating the evaporation amount at each set time, and the makeup water amount calculation means The required replenishment water amount (Vq) for maintaining the impurity concentration below an allowable value is obtained based on the evaporation amount integrated value every time, and the required replenishment water amount and the replenished water amount integrated value (ΣV )When Characterized in that the difference between the supply water of the replenishing water supplier.

すなわち、本発明は、冷却水が蒸発して冷却水中の不純物が濃縮されて濃度が高くなることから、蒸発量を求めれば冷却水中の不純物の濃縮度合いを求めることができることに鑑みてなされたものである。このようにして不純物の濃度が求まれば、その濃度を許容値以下に維持するために必要な新たな冷却水の補給量を計算により求めることができる。そして、求めた量の新たな冷却水を補給することにより、冷却水中の不純物濃度を許容値以下に低減でき、伝熱管等にスケールが付着することに伴う問題を回避することができる。特に、導電率計等の計測器や薬剤を用いないことから、メンテナンス及び運転コストを軽減でき、冷却水中の不純物濃度を許容値以下に安定に保持できる。   That is, the present invention has been made in view of the fact that the concentration of impurities in the cooling water can be determined by obtaining the amount of evaporation because the concentration of the cooling water evaporates and the concentration of impurities in the cooling water increases to increase the concentration. It is. If the impurity concentration is obtained in this way, a new replenishment amount of cooling water required to maintain the concentration below the allowable value can be obtained by calculation. Then, by replenishing the determined amount of new cooling water, the impurity concentration in the cooling water can be reduced to an allowable value or less, and problems associated with the scale adhering to the heat transfer tubes and the like can be avoided. In particular, since a measuring instrument such as a conductivity meter and chemicals are not used, maintenance and operation costs can be reduced, and the impurity concentration in the cooling water can be stably maintained below an allowable value.

ここで、冷却水の蒸発量は、冷熱負荷から戻される冷却水の戻り温度と冷熱負荷に供給する冷却水の供給温度との差及び冷却塔に流通される冷却水量に基づいて放熱量を求め、求めた放熱量が冷却水の蒸発潜熱で賄われたものとして算出することができる。つまり、冷却水の戻り温度と供給温度との差は、基本的に、蒸発した冷却水の蒸発潜熱によって生じたものであり、かつ流通される冷却水量に相関する。そこで、戻り温度と供給温度を通常設けられる温度センサにより検出するとともに、冷却水量を例えば冷熱負荷の運転状態量に基づいて求めることにより、容易に冷却水の蒸発量を算出することができる。   Here, the evaporation amount of the cooling water is obtained as a heat release amount based on the difference between the return temperature of the cooling water returned from the cooling load and the supply temperature of the cooling water supplied to the cooling load and the amount of cooling water distributed to the cooling tower. The calculated heat release amount can be calculated as being covered by the latent heat of vaporization of the cooling water. That is, the difference between the return temperature of the cooling water and the supply temperature is basically caused by the latent heat of vaporization of the evaporated cooling water, and correlates with the amount of the circulating cooling water. Therefore, the return temperature and the supply temperature are detected by a temperature sensor that is normally provided, and the amount of cooling water can be easily calculated by obtaining the amount of cooling water based on, for example, the operating state amount of the cooling load.

ところで、蒸発量と同じ量の新たな冷却水だけを補給すると、新たな冷却水中に含まれる不純物のために不純物濃度が徐々に高くなるから、蒸発量以上の冷却水を補給しなければならない。そこで、不純物濃度の許容値を補給水中の不純物濃度のF倍とし、蒸発量をVaとしたとき、補給水量VqをF・Va/(F−1)を目標にして制御することにより、不純物濃度を許容値近傍に維持することができる。 By the way, if only new cooling water having the same amount as the evaporation amount is replenished, the impurity concentration gradually increases due to impurities contained in the new cooling water, so that it is necessary to replenish the cooling water more than the evaporation amount. Therefore, the allowable value of the impurity concentration of F times the impurity concentration of the replenishing water, when the evaporation amount was Va, by controlling the supply amount of water Vq F · Va / (F- 1) to be the target, impurities The concentration can be kept near the tolerance.

この場合において、蒸発量演算手段は、冷却水ポンプが運転開始してから設定時間内(例えば、20秒以上)は、蒸発量の積算を停止することが好ましい。冷却水ポンプの起動直後は、冷却水温度が変動し、信頼性に欠けるためである。   In this case, it is preferable that the evaporation amount calculation means stops the accumulation of the evaporation amount within a set time (for example, 20 seconds or more) after the operation of the cooling water pump. This is because the cooling water temperature fluctuates immediately after the cooling water pump is started, and the reliability is lacking.

また、水位制御手段は、ボールタップ式自動弁を用いることができる。また、これに代えて、水槽の水位を検出する水位センサと、補給水配管に設けられ水位センサにより検出された水位に応じて開閉される電磁弁とを備えて構成することができる。   The water level control means can use a ball tap type automatic valve. Alternatively, a water level sensor that detects the water level of the water tank and an electromagnetic valve that is provided in the makeup water pipe and that is opened and closed according to the water level detected by the water level sensor can be provided.

さらに、オーバーフロー配管は、開口位置を水槽水位の設定範囲の上限よりも、少なくとも冷却水ポンプを停止したときのシステム戻り水の水高を加えた水位に設定することが好ましい。   Furthermore, it is preferable that the overflow pipe is set at a water level that is at least the height of the system return water when the cooling water pump is stopped, rather than the upper limit of the setting range of the water tank water level.

本発明によれば、メンテナンス及び運転コストを軽減でき、冷却塔の冷却水中の不純物濃度を許容範囲内に安定に保持できる。   According to the present invention, maintenance and operation costs can be reduced, and the impurity concentration in the cooling water of the cooling tower can be stably maintained within an allowable range.

以下、本発明を実施の形態に基づいて説明する。
(実施形態1)
図1に本発明の水質管理方法が適用されてなる一実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図を示し、図2に本実施形態の水質管理手順のフローチャートを示す。
Hereinafter, the present invention will be described based on embodiments.
(Embodiment 1)
FIG. 1 shows a cooling water system configuration diagram including a cooling tower and a cooling load of an embodiment to which the water quality management method of the present invention is applied, and FIG. 2 shows a flowchart of a water quality management procedure of this embodiment.

図1に示すように、冷却塔1は、筒状のケーシング2を備え、ケーシング2の下部の側面に空気流入口3が形成され、底部に冷却水の水槽4が設けられている。また、空気流入口3の位置よりも上方のケーシング2内に充填材5が収容され、充填材5の上方に、冷却水の散水ノズル6が配設されている。また、ケーシング2の頂部に開口7が設けられ、その開口7に送風機8が設けられている。水槽4の底部近傍に冷却ポンプ9の吸引口が連通され、冷却ポンプ9の吐出口は、冷却水の供給配管10を介して冷温水機11に設けられた冷熱負荷である熱交換器の伝熱コイル12の一端に連結されている。伝熱コイル12の他端は冷却水の戻り配管13を介して冷却塔1の散水ノズル6に連結されている。   As shown in FIG. 1, the cooling tower 1 includes a cylindrical casing 2, an air inlet 3 is formed on the lower side surface of the casing 2, and a cooling water tank 4 is provided at the bottom. In addition, the filler 5 is accommodated in the casing 2 above the position of the air inlet 3, and the cooling water sprinkling nozzle 6 is disposed above the filler 5. An opening 7 is provided at the top of the casing 2, and a blower 8 is provided in the opening 7. The suction port of the cooling pump 9 is communicated with the vicinity of the bottom of the water tank 4, and the discharge port of the cooling pump 9 is transferred to a heat exchanger that is a cooling load provided in the chiller / heater 11 through the cooling water supply pipe 10. It is connected to one end of the thermal coil 12. The other end of the heat transfer coil 12 is connected to the watering nozzle 6 of the cooling tower 1 through a cooling water return pipe 13.

水槽4には、給水配管14が挿入され、その先端に水位制御手段であるボールタップ式自動弁15が設けられ、後述するように、水槽4の水位を設定範囲に保持するようになっている。また、給水配管14から分岐して電磁弁16を備えた補給水配管17が水槽4の上部に挿入して設けられている。補給水配管17の分岐部の上流側の給水配管14には、給水量を計測する流量検出器18が設けられている。通常、補給水には水道水が用いられるから、流量検出器18は水道メータを適用することができる。さらに、水槽4には、水槽4の上端から冷却水が周囲に溢れ出ないように、図示しない排水溝に連通されたオーバーフロー配管19が設けられている。オーバーフロー配管19の上端開口は、水槽4の水位の設定範囲の上限よりも高い位置に設定されている。   A water supply pipe 14 is inserted into the water tank 4, and a ball tap type automatic valve 15 serving as a water level control means is provided at the tip of the water tank 4. As will be described later, the water level of the water tank 4 is maintained within a set range. Further, a makeup water pipe 17 branched from the water supply pipe 14 and provided with an electromagnetic valve 16 is provided in the upper part of the water tank 4. A flow rate detector 18 for measuring the amount of water supply is provided in the water supply piping 14 upstream of the branch portion of the makeup water piping 17. Usually, tap water is used as makeup water, and therefore a water meter can be applied to the flow rate detector 18. Further, the water tank 4 is provided with an overflow pipe 19 communicated with a drain groove (not shown) so that the cooling water does not overflow from the upper end of the water tank 4 to the surroundings. The upper end opening of the overflow pipe 19 is set at a position higher than the upper limit of the water level setting range of the water tank 4.

一方、冷却水の供給配管10と伝熱コイル12との接続部に、冷却水入口温度を検出する温度センサ20が設けられ、冷却水の戻り配管13と伝熱コイル12との接続部に、冷却水出口温度を検出する温度センサ21が設けられている。冷温水機11には、冷却水ポンプ9と電磁弁16を制御する制御盤22が設けられ流量検出器18と温度センサ20,21の検出信号が入力されるようになっている。制御盤22には、流量検出器18と温度センサ20,21の検出信号に基づいて冷却水の水質を管理する本発明の特徴に係る水質管理手段が組み込まれている。つまり、水質管理手段は、冷却塔1における冷却水の蒸発量を求める蒸発量演算手段と、この蒸発量演算手段により求めた蒸発量に基づいて冷却水中の不純物濃度を許容値以下に維持するのに必要な冷却水の補給水量を求める補給水量演算手段と、この補給水量演算手段により求めた必要補給水量に基づいて、電磁弁16を開閉制御して冷却塔1の水槽4に冷却水を補給する補給水供給手段とを有して構成されている。   On the other hand, a temperature sensor 20 for detecting the cooling water inlet temperature is provided at the connection between the cooling water supply pipe 10 and the heat transfer coil 12, and at the connection between the cooling water return pipe 13 and the heat transfer coil 12, A temperature sensor 21 for detecting the coolant outlet temperature is provided. The chiller / heater 11 is provided with a control panel 22 for controlling the cooling water pump 9 and the electromagnetic valve 16 so that detection signals from the flow rate detector 18 and the temperature sensors 20 and 21 are inputted. The control panel 22 incorporates water quality management means according to the feature of the present invention that manages the quality of the cooling water based on detection signals from the flow rate detector 18 and the temperature sensors 20 and 21. That is, the water quality management means maintains the impurity concentration in the cooling water below the allowable value based on the evaporation amount calculating means for obtaining the evaporation amount of the cooling water in the cooling tower 1 and the evaporation amount obtained by the evaporation amount calculating means. The replenishing water amount calculating means for obtaining the replenishing water amount required for the replenishing water, and the solenoid valve 16 is controlled to open and close based on the required replenishing water amount obtained by the replenishing water amount calculating means to replenish the cooling water to the water tank 4 of the cooling tower 1 And a makeup water supply means.

ここで、水槽4の水位を設定範囲に保持する水位制御手段であるボールタップ式自動弁15の構成について、図3に示した模式図を参照して説明する。オーバーフロー配管19の上端開口の位置OFLは、水槽4の上端縁の位置MLよりも若干の余裕を持たせた低い位置に設定される。一方、冷却水ポンプ9を停止したとき、散水ノズル6、冷却水の戻り配管13及び伝熱コイル12等に残っている冷却水が、システム戻り水として水槽4に流下して、水槽4の水位が停止時水位SDLまで上昇する。そこで、オーバーフロー配管19の上端開口の位置OFLは、停止時水位SDLよりも余裕を持った高い位置に設定される。また、停止時の水位上昇分を見込んで通常運転時の上限水位HLが設定され、通常運転時の下限水位LLは冷却ポンプ9が空気を吸い込むことがない水位に設定される。そして、ボールタップ式自動弁15は、水槽4内の水位に応じてボールが上下方向に揺動し、水位が下限水位LLに達したときに図示していない弁体を開き、上限水位HLに達したときに弁体を閉じるように構成されている。このように構成されることから、ボールタップ式自動弁15の働きによって、冷却塔1の運転状態に応じて、水槽4の運転水位OLは、下限水位LLと上限水位HLとの設定範囲内に保持されるようになっている。   Here, the structure of the ball tap type automatic valve 15 which is a water level control means for holding the water level of the water tank 4 within a set range will be described with reference to the schematic diagram shown in FIG. The position OFL of the upper end opening of the overflow pipe 19 is set to a lower position with a slight margin than the position ML of the upper end edge of the water tank 4. On the other hand, when the cooling water pump 9 is stopped, the cooling water remaining in the watering nozzle 6, the cooling water return pipe 13, the heat transfer coil 12, etc. flows down to the water tank 4 as system return water, and the water level of the water tank 4 Rises to the water level SDL when stopped. Accordingly, the position OFL of the upper end opening of the overflow pipe 19 is set to a higher position with a margin than the stop water level SDL. Further, the upper limit water level HL during normal operation is set in anticipation of the rise in the water level at the time of stop, and the lower limit water level LL during normal operation is set to a water level at which the cooling pump 9 does not inhale air. The ball tap type automatic valve 15 swings in the vertical direction according to the water level in the water tank 4 and opens a valve body (not shown) when the water level reaches the lower limit water level LL and reaches the upper limit water level HL. It is configured to close the valve body when it does. With this configuration, the operation level of the water tank 4 is kept within the set range of the lower limit water level LL and the upper limit water level HL according to the operation state of the cooling tower 1 by the action of the ball tap type automatic valve 15. It has come to be.

次に、上記のように構成される本実施形態の冷却塔1の制御盤22における水質管理手段の構成を動作とともに説明する。まず、本実施形態の冷却水の水質管理方法の原理について説明する。本発明は、冷却塔1における放熱量から蒸発量を求め、蒸発量に基づいて冷却水中の不純物の濃縮度合い(濃縮倍率)を求め、不純物の濃度を許容値以下にするために必要な新たな冷却水の補給量を計算により求めることを特徴とする。そこで、計算に関係する蒸発量等の因子を下記のとおり定義する。なお、本実施例の水質管理制御は、設定時間(例えば、30分)ごとの積算値に基づいて行うものとする。 Next, the structure of the water quality management means in the control panel 22 of the cooling tower 1 of the present embodiment configured as described above will be described together with the operation. First, the principle of the cooling water quality management method of this embodiment will be described. The present invention obtains the evaporation amount from the heat radiation amount in the cooling tower 1, obtains the concentration degree (concentration ratio) of the impurities in the cooling water based on the evaporation amount, and a new necessary for making the impurity concentration below the allowable value. The replenishment amount of cooling water is obtained by calculation. Therefore, factors such as the amount of evaporation related to the calculation are defined as follows. In addition, water quality management control of a present Example shall be performed based on the integrated value for every set time (for example, 30 minutes).

放熱量の積算値 :ΣQ
必要補給水量 :Vq
蒸発量 :Va
排水量(ブローダウン量):Vb
補給水中の不純物濃度 :c
不純物の許容濃縮倍率 :F
水の蒸発潜熱 :Qs(例えば、600kcal/L)
補給水の積算値 :ΣV
ボールタップ式自動弁15又は電磁弁16を介して補給される補給水により冷却水に入ってくる不純物量はc・Vqであり、排水により冷却水から出てゆく不純物量はc・F・Vbである。不純物量の入出がつりあう条件は、c・Vq=c・F・Vbであるから、次式(1)が成立する。
Integrated value of heat dissipation: ΣQ
Necessary makeup water volume: Vq
Evaporation: Va
Drainage (blowdown amount): Vb
Impurity concentration in make-up water: c
Permissible concentration ratio of impurities: F
Water latent heat of vaporization: Qs (for example, 600 kcal / L)
Integrated value of makeup water: ΣV
The amount of impurities entering the cooling water by the replenishing water replenished via the ball tap automatic valve 15 or the electromagnetic valve 16 is c · Vq, and the amount of impurities coming out of the cooling water by the drainage is c · F · Vb. is there. Since the condition that the amount of impurities enters and exits is c · Vq = c · F · Vb, the following equation (1) is established.

Vb=Vq/F (1)
また、給水の入出の収支から、次式(2)が成立する。
Vb = Vq / F (1)
In addition, the following equation (2) is established from the balance of water supply / exit.

Vq=Va+Vb (2)
冷却塔における放熱は、全て水の蒸発潜熱Qsによるものとすると、次式(3)が成立する。
Vq = Va + Vb (2)
If the heat radiation in the cooling tower is all due to the latent heat of vapor evaporation Qs, the following equation (3) is established.

Va=ΣQ/Qs (3)
上記の式(1)〜(3)より、必要補給水量Vqは、次式(4)のようになる。
Va = ΣQ / Qs (3)
From the above formulas (1) to (3), the required replenishment water amount Vq is represented by the following formula (4).

Vq=ΣQ+Vq/F
(1−F)Vq=F・ΣQ/Qs
Vq=F・ΣQ/((1−F)Qs) (4)
また、ブローダウン量である排水量Vbは、次式(5)のようになる。
Vq = ΣQ + Vq / F
(1-F) Vq = F · ΣQ / Qs
Vq = F · ΣQ / ((1-F) Qs) (4)
Further, the drainage amount Vb which is the blowdown amount is expressed by the following equation (5).

Vb=ΣQ/((F−1)Qs) (5)
したがって、設定時間ごとに必要補給水量Vqを演算し、その設定時間内における実際の補給水量の積算値ΣVとを比較し、次式(6)が成立するように、電磁弁16を開いて冷却水を補給することにより、冷却水中の不純物の濃縮倍率を許容値F以下に保持することができる。
Vb = ΣQ / ((F-1) Qs) (5)
Therefore, the required replenishment water amount Vq is calculated at each set time, compared with the integrated value ΣV of the actual replenishment water amount within the set time, and the solenoid valve 16 is opened and cooled so that the following equation (6) is satisfied. By replenishing water, the concentration ratio of the impurities in the cooling water can be kept below the allowable value F.

ΣV≧Vq (6)
ここで、実際の補給水量の積算値ΣVは、流量検出器18に水道メータを用いた場合は、水道メータから発信されるパルス数をカウントし、設定時間ごとに1パルス当りの流量を乗じて求める。また、許容濃縮倍率Fは、補給水の水質分析結果から得られる不純物濃度cと、循環冷却水の基準許容濃度との比率により設定する。
ΣV ≧ Vq (6)
Here, the integrated value ΣV of the actual replenishing water amount is obtained by counting the number of pulses transmitted from the water meter and multiplying the flow rate per pulse every set time when a water meter is used as the flow rate detector 18. Ask. The allowable concentration ratio F is set by the ratio between the impurity concentration c obtained from the water quality analysis result of the makeup water and the reference allowable concentration of the circulating cooling water.

また、冷却水の放熱量の積算値ΣQは、次式(7)により求めることができる。同式において、CTiは温度センサ20により検出された伝熱コイル12の冷却水入口温度(冷却水の供給温度)、CToは温度センサ21により検出された伝熱コイル12の冷却水出口温度(冷却水の戻り温度)である。また、温度補正値Kは、温度センサ20、21相互のばらつきによる温度計測誤差を補正するものであり、工場の出荷検査又は試運転において、それらの温度センサ20、21が設けられ部位の温度が同一になる条件の基に温度を実測し、例えば、CTi−CTo=Kを求めて制御盤22に記憶しておく。 Further, the integrated value ΣQ of the heat dissipation amount of the cooling water can be obtained by the following equation (7). In this equation, CTi is the cooling water inlet temperature (cooling water supply temperature) of the heat transfer coil 12 detected by the temperature sensor 20, and CTo is the cooling water outlet temperature (cooling) of the heat transfer coil 12 detected by the temperature sensor 21. Water return temperature). Further, the temperature correction value K is for correcting the temperature measurement error due to variation in the temperature sensor 20 and 21 each other, the shipping inspection or commissioning of the plant, the temperature of the site is their temperature sensors 20, 21 that are provided The temperature is actually measured based on the same conditions, and for example, CTi-CTo = K is obtained and stored in the control panel 22.

(CTo−CTi+K≦0のとき)
ΣQ=ΣQ
(CTo−CTi+K>0のとき)
ΣQ=ΣQ+(CTo−CTi+K)×w×t (7)
ここで、wは、循環冷却水量(L/min)であり、例えば、冷熱負荷の機種ごとに異なる値であり、tは、冷熱負荷容量の計測時間間隔(演算周期:min)である。
(When CTo-CTi + K ≦ 0)
ΣQ = ΣQ
(When CTo-CTi + K> 0)
ΣQ = ΣQ + (CTo−CTi + K) × w × t (7)
Here, w is the amount of circulating cooling water (L / min), for example, a different value for each model of the cooling / heating load, and t is the measurement time interval (calculation cycle: min) of the cooling / heating load capacity.

このようにして求めた放熱量の積算値ΣQに基づいて、許容濃縮倍率F以下に保持するために必要な補給水量Vqを前記式(4)により求める。なお、真夏などの気温が高い場合は、自然蒸発量を無視できなくなる場合があるから、水質分析を行って許容濃縮倍率Fの基準値との差がある場合は、補給水量の補正値Rを求めて、式(4)の補給水量Vqを補正した次式(8)を用いることが望ましい。   Based on the integrated value ΣQ of the heat dissipation amount thus obtained, the replenishment water amount Vq required to keep the allowable concentration magnification F or less is obtained by the above equation (4). Note that when the temperature is high such as midsummer, the natural evaporation amount may not be negligible. Therefore, if there is a difference from the reference value of the permissible concentration factor F by performing a water quality analysis, the correction value R of the makeup water amount is set. It is desirable to use the following equation (8) obtained by correcting the makeup water amount Vq of equation (4).

Vq=F・ΣQ/((1−F)Qs)×R (8)
このようにして求めた必要な補給水量Vqと、流量検出器18の検出出力に基づいて求めた実際の補給水量の積算値ΣVとを比較し、Vq>ΣVであれば、給水が必要と判断して、その差(Vq−ΣV)を求め、その差(Vq−ΣV)がゼロになるまで、電磁弁16を開いて冷却水を補給する。冷却水が補給されることにより、水槽4の水位が上昇し、濃縮された不純物を含む冷却水の一部がオーバーフロー配管19を介して排水され、冷却水中の不純物濃度を許容値以下に抑えることができる。一方、Vq≦ΣVであれば、冷却水の補給は不要と判断する。
Vq = F · ΣQ / ((1-F) Qs) × R (8)
The necessary makeup water amount Vq obtained in this way is compared with the integrated value ΣV of the actual makeup water amount obtained based on the detection output of the flow rate detector 18, and if Vq> ΣV, it is determined that the water supply is necessary. Then, the difference (Vq−ΣV) is obtained, and the electromagnetic valve 16 is opened to supply coolant until the difference (Vq−ΣV) becomes zero. By replenishing the cooling water, the water level of the water tank 4 rises, and a part of the cooling water containing the concentrated impurities is drained through the overflow pipe 19 to keep the impurity concentration in the cooling water below the allowable value. Can do. On the other hand, if Vq ≦ ΣV, it is determined that replenishment of the cooling water is unnecessary.

このような原理に基づいて、制御盤22の水質管理手段で実行する処理を、図2に示したフローチャートに沿って説明する。図2のフローチャートは、周期的に実行する。まず、ステップS1で、メモリに記憶されている補給水量の積算値ΣVと放熱量の積算値ΣQを現在の値に書き換えてリセットする。次いで、ステップS2において、冷却水ポンプが運転中か否かを判断し、運転中でなければステップS6に進んで電磁弁16を閉じて、あるいは閉じていることを確認してステップS2に戻る。   Based on such a principle, processing executed by the water quality management means of the control panel 22 will be described along the flowchart shown in FIG. The flowchart of FIG. 2 is executed periodically. First, in step S1, the integrated value ΣV of the makeup water amount and the integrated value ΣQ of the heat release amount stored in the memory are rewritten to the current values and reset. Next, in step S2, it is determined whether or not the cooling water pump is in operation. If it is not in operation, the process proceeds to step S6 to close or confirm that the electromagnetic valve 16 is closed, and then returns to step S2.

冷却ポンプが運転中の場合は、ステップS3に進んで、前回の補給から設定時間である30分以上が経過したか否かを判断し、経過していなければステップS6に進み、経過していればステップS4に進む。ステップS4では、必要な補給水量Vqと、実際の補給水量の積算値ΣVとを比較し、Vq>ΣVであれば、給水が必要と判断してステップS5に進み電磁弁16を開いて、ステップS4に戻る。一方、Vq≦ΣVであれば、冷却水の補給は不要と判断して、ステップS1に戻る。   If the cooling pump is in operation, the process proceeds to step S3, where it is determined whether or not a set time of 30 minutes or more has elapsed since the previous replenishment. If not, the process proceeds to step S6 and has passed. If so, the process proceeds to step S4. In step S4, the required makeup water amount Vq is compared with the integrated value ΣV of the actual makeup water amount. If Vq> ΣV, it is determined that water supply is necessary, the process proceeds to step S5, the solenoid valve 16 is opened, and the step Return to S4. On the other hand, if Vq ≦ ΣV, it is determined that cooling water is not required, and the process returns to step S1.

図4に、図2のステップS1における補給水量の積算値ΣVと放熱量の積算値ΣQを現在の値に書き換えてリセットする処理の詳細な処理手順のフローチャートを示す。図4の処理は、所定の演算周期ごとに実行する。まず、ステップS11において冷温水機11が運転中か否かを判断し、運転している場合はステップS12に進んで補給水量の積算値ΣVを積算してメモリに記憶する。次いで、ステップS13に進んで冷却水ポンプが運転中で、かつ起動後、設定時間(例えば、20秒)以上経過しているか否かを判断する。この判断が肯定(Y)であれば、ステップS14に進んで、設定積算時間(例えば、30分)を計数するT1(タイマ)のカウントを進め、放熱量の積算値ΣQの積算を実行してメモリに記憶する。一方、ステップS11の判断が否定(N)であれば、ステップS15に進んで、補給水量の積算値ΣVの積算を停止し、さらにステップS16に進んで、T1(タイマ)のカウントを一時停止するとともに、放熱量の積算値ΣQの積算を一時停止する。また、ステップS13の判断が否定(N)であれば、ステップS16に進んで、T1(タイマ)のカウントを一時停止するとともに、放熱量の積算値ΣQの積算を一時停止する。   FIG. 4 shows a flowchart of the detailed processing procedure of the process of rewriting the integrated value ΣV of the makeup water amount and the integrated value ΣQ of the heat release amount to the current values in step S1 of FIG. The process of FIG. 4 is performed for every predetermined calculation cycle. First, in step S11, it is determined whether or not the chiller / heater 11 is in operation. If it is in operation, the process proceeds to step S12, where the integrated value ΣV of the makeup water amount is integrated and stored in the memory. Next, the process proceeds to step S13, and it is determined whether or not the cooling water pump is in operation and a set time (for example, 20 seconds) or more has elapsed after startup. If this determination is affirmative (Y), the process proceeds to step S14, the count of T1 (timer) that counts the set integration time (for example, 30 minutes) is advanced, and the integration of the integrated value ΣQ of the heat release amount is executed. Store in memory. On the other hand, if the determination in step S11 is negative (N), the process proceeds to step S15, the accumulation of the integrated value ΣV of the makeup water amount is stopped, and the process further proceeds to step S16 to temporarily stop the count of T1 (timer). At the same time, the integration of the integrated value ΣQ of the heat dissipation amount is temporarily stopped. If the determination in step S13 is negative (N), the process proceeds to step S16, where the count of T1 (timer) is temporarily stopped and the integration of the integrated value ΣQ of the heat release amount is temporarily stopped.

以上説明したように、本実施形態によれば、冷却水の戻り温度と冷却水の供給温度との差及び冷却塔1に流通される冷却水量に基づいて放熱量を求め、求めた放熱量が冷却水の蒸発潜熱で賄われたものとして冷却塔1における冷却水の蒸発量を求めて、冷却水中の不純物の濃縮倍率が許容値以下に維持するために必要な新たな冷却水の補給量を計算により求め、求めた量の新たな冷却水を補給するようにしていることから、伝熱管等にスケールが付着することに伴う問題を回避することができる。特に、導電率計等の計測器や薬剤を用いないことから、メンテナンス及び運転コストを軽減でき、冷却水中の不純物濃度を許容値以下に安定に保持できる。   As described above, according to the present embodiment, the heat dissipation amount is obtained based on the difference between the return temperature of the cooling water and the supply temperature of the cooling water and the amount of the cooling water flowing through the cooling tower 1, and the obtained heat dissipation amount is The amount of cooling water evaporated in the cooling tower 1 is calculated as being covered by the latent heat of vaporization of the cooling water, and a new amount of cooling water replenishment necessary for maintaining the concentration ratio of impurities in the cooling water below the allowable value is obtained. Since it is obtained by calculation and replenished with the obtained amount of new cooling water, it is possible to avoid problems associated with scales adhering to the heat transfer tubes and the like. In particular, since a measuring instrument such as a conductivity meter and chemicals are not used, maintenance and operation costs can be reduced, and the impurity concentration in the cooling water can be stably maintained below an allowable value.

具体的には、不純物濃度の許容値を補給水中の不純物濃度のF倍とし、蒸発量をVaとしたとき、補給水量VqをF・Va/(F−1)を目標にして制御していることから、不純物濃度を許容値近傍に維持することができる。
Specifically, the allowable value of the impurity concentration of F times the impurity concentration of the replenishing water, the evaporation amount when the Va, the replenishment water Vq by controlling in the F · Va / (F-1 ) target the Therefore, the impurity concentration can be maintained near the allowable value.

また、冷却水ポンプが運転開始してから設定時間内(例えば、20秒以上)は、蒸発量の積算を停止するようにしているから、冷却水ポンプの起動直後の冷却水温度の変動を排除することができ、蒸発量の積算値の信頼性を向上できる。
(実施形態2)
図5に、本発明の水質管理方法が適用されてなる他の実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図を示す。本実施形態が、図1の実施形態と相違する点は、水位制御手段であるボールタップ式自動弁15に代えて、水槽4の水位を検出する水位センサ31と、補給水配管17に設けられ水位センサ31により検出された水位に応じて開閉される電磁弁16とを備えて構成したことにある。その他の構成は、図1の実施形態と同一であることから、同一の符号を付して説明を省略する。
In addition, since the accumulation of evaporation is stopped within a set time (for example, 20 seconds or more) after the cooling water pump starts operation, fluctuations in the cooling water temperature immediately after starting the cooling water pump are eliminated. It is possible to improve the reliability of the integrated value of evaporation.
(Embodiment 2)
FIG. 5 shows a configuration diagram of a cooling water system including a cooling tower and a cooling load according to another embodiment to which the water quality management method of the present invention is applied. The present embodiment differs from the embodiment of FIG. 1 in that a water level sensor 31 that detects the water level of the water tank 4 and a water level provided in the makeup water pipe 17 instead of the ball tap type automatic valve 15 that is a water level control means. The electromagnetic valve 16 is opened and closed according to the water level detected by the sensor 31. Since other configurations are the same as those of the embodiment of FIG. 1, the same reference numerals are given and description thereof is omitted.

図5に示すように、水位センサ31は3芯式のレベルスイッチであり、図3で説明したように、水槽4の水位が下限水位LL以下に達したときにオフ信号を、上限水位HL以上に達したときにオン信号を、制御盤22に出力するようになっている。制御盤は、水槽4の水位が下限水位LL以下に達したときに電磁弁16を開き、上限水位HLに達したときに電磁弁16を閉じるように構成されている。その結果、水槽4の水位は、下限水位LLと上限水位HLとの設定範囲内に保持されるようになっている。   As shown in FIG. 5, the water level sensor 31 is a three-core type level switch. As described with reference to FIG. 3, when the water level of the water tank 4 reaches the lower limit water level LL or lower, the off signal is set to the upper limit water level HL or higher. The ON signal is output to the control panel 22 when the value reaches the control panel 22. The control panel is configured to open the electromagnetic valve 16 when the water level of the water tank 4 reaches the lower limit water level LL or lower and close the electromagnetic valve 16 when the water level reaches the upper limit water level HL. As a result, the water level of the water tank 4 is maintained within the set range of the lower limit water level LL and the upper limit water level HL.

すなわち、図6に示すように、水位センサ31のオン・オフ状態を判断し(ステップS21)、水位が下限水位LL以下に低下して水位センサ31がオフしたときは、電磁弁16を開いて給水し(ステップS22)、その給水によって水位が上昇して上限水位HLに達し、水位センサ31がオンしたときは、電磁弁16を閉じて給水を停止する。   That is, as shown in FIG. 6, the on / off state of the water level sensor 31 is determined (step S21). When the water level falls below the lower limit water level LL and the water level sensor 31 is turned off, the electromagnetic valve 16 is opened. When water is supplied (step S22), the water level rises to reach the upper limit water level HL, and when the water level sensor 31 is turned on, the electromagnetic valve 16 is closed to stop water supply.

水位センサ31がオンしたときは、ステップS23に進み、冷却水ポンプが運転開始してから設定時間(例えば、20秒)以上経過したか否かを判断する。この判断が肯定(Y)の場合は、ステップS24に進み、T1(タイマ)カウンタが設定積算時間(例えば、30分)を超えているか否か判断する。この判断が肯定(Y)の場合は、ステップS25に進んで、必要な補給水量Vqと、実際の補給水量の積算値ΣVとを比較し、Vq>ΣVで給水が必要と判断した場合は、ステップS26に進み電磁弁16を開いてステップS25に戻る。一方、ステップS25の判断で、Vq≦ΣVで冷却水の補給は不要と判断した場合は、ステップS27に進んで、T1(タイマ)カウンタ、補給水量の積算値ΣVと放熱量の積算値ΣQをゼロにする。そして、ステップS28に進んで、電磁弁16を閉じる。また、ステップS23とステップS24における判断が、否定(N)のときは、ステップS28に進んで、電磁弁16を閉じて終了する。   When the water level sensor 31 is turned on, the process proceeds to step S23, where it is determined whether or not a set time (for example, 20 seconds) has elapsed since the cooling water pump started operation. If this determination is affirmative (Y), the process proceeds to step S24, and it is determined whether or not the T1 (timer) counter exceeds a set integration time (for example, 30 minutes). If this determination is affirmative (Y), the process proceeds to step S25, where the required make-up water amount Vq is compared with the integrated value ΣV of the actual make-up water amount, and if Vq> ΣV and it is determined that water supply is necessary, Proceeding to step S26, the solenoid valve 16 is opened, and the process returns to step S25. On the other hand, if it is determined in step S25 that Vq ≦ ΣV and replenishment of the cooling water is not necessary, the process proceeds to step S27, where the T1 (timer) counter, the replenishment water amount integrated value ΣV and the heat dissipation amount integrated value ΣQ Set to zero. And it progresses to step S28 and the solenoid valve 16 is closed. Moreover, when the judgment in step S23 and step S24 is negative (N), it progresses to step S28, the solenoid valve 16 is closed, and it complete | finishes.

本実施形態によれば、図1の実施形態1の水質管理と同様の効果を奏することができる。   According to this embodiment, the same effect as the water quality management of Embodiment 1 of FIG. 1 can be produced.

なお、上記の実施形態1、2のいずれの場合でも、冷熱負荷が不要なとき(例えば、冷温水機11が暖房モード運転のとき)は、電磁弁16を閉じて給水をしないようにしていることは言うまでもない。また、冷温水機11が暖房モード運転から冷房モード運転に切り替えられたときは、電磁弁16を開いて所定の水位HLまで水張りを行うことは、従来と同様である。この場合、実施形態1のボールタップ自動弁15で水張りする場合、水位が上限水位HLに近づくにつれて弁開度が自動的に絞られるから、水張りに時間がかかる。これに対し、実施形態2の場合は、水位センサ31がオンするまで電磁弁16を全開にすることができるから、水張り時間を短縮できる。   In either case of the first and second embodiments, when the cooling / heating load is unnecessary (for example, when the chiller / heater 11 is in the heating mode operation), the solenoid valve 16 is closed to prevent water supply. Needless to say. When the chiller / heater 11 is switched from the heating mode operation to the cooling mode operation, the electromagnetic valve 16 is opened and water filling is performed up to a predetermined water level HL as in the conventional case. In this case, when water is filled with the ball tap automatic valve 15 of the first embodiment, the valve opening is automatically throttled as the water level approaches the upper limit water level HL, so it takes time to fill the water. On the other hand, in the case of the second embodiment, since the electromagnetic valve 16 can be fully opened until the water level sensor 31 is turned on, the water filling time can be shortened.

本発明の水質管理方法が適用されてなる一実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図である。1 is a configuration diagram of a cooling water system including a cooling tower and a cooling load of an embodiment to which a water quality management method of the present invention is applied. 本発明の水質管理方法の一実施形態の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of one Embodiment of the water quality management method of this invention. 水槽の水位制御を説明する模式図である。It is a schematic diagram explaining the water level control of a water tank. 補給水量の積算値ΣVと放熱量の積算値ΣQを現在の値に書き換え処理手順を示すフローチャートである。It is a flowchart which shows the renewal processing procedure by rewriting the integrated value ΣV of the makeup water amount and the integrated value ΣQ of the heat release amount to the current values. 本発明の水質管理方法が適用されてなる他の実施形態の冷却塔と冷熱負荷を含む冷却水系統構成図である。It is a cooling water system | strain block diagram containing the cooling tower and cooling-heat load of other embodiment to which the water quality management method of this invention is applied. 図5の実施形態の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of embodiment of FIG.

符号の説明Explanation of symbols

1 冷却塔
4 水槽
6 散水ノズル
8 送風機
9 冷却水ポンプ
10 供給配管
11 冷温水機
12 伝熱コイル
13 戻り配管
14 給水配管
15 ボールタップ式自動弁
16 電磁弁
17 補給水管
18 流量検出器
19 オーバーフロー配管
20、21 温度センサ
22 制御盤
DESCRIPTION OF SYMBOLS 1 Cooling tower 4 Water tank 6 Sprinkling nozzle 8 Blower 9 Cooling water pump 10 Supply piping 11 Cold / hot water 12 Heat transfer coil 13 Return piping 14 Water supply piping 15 Ball tap type automatic valve 16 Solenoid valve 17 Supply water pipe 18 Flow rate detector 19 Overflow piping 20 , 21 Temperature sensor 22 Control panel

Claims (5)

頂部に開口を有するケーシングと、該ケーシング内の上部に設けられた冷却水の散水ノズルと、前記ケーシングの底部に設けられた冷却水の水槽と、前記ケーシングの前記開口に設けられ該ケーシング内に空気を流通させる送風機と、前記水槽内の冷却水を吸引して冷熱負荷に供給して前記散水ノズルに循環させる冷却ポンプと、前記水槽の水位を設定範囲に保持するように補給水を供給する水位制御手段と、前記設定範囲の上限よりも高い水位に開口位置が設定されたオーバーフロー配管と、前記冷却水の水質を管理する水質管理手段とを備えてなる冷却塔において、
前記水質管理手段は、前記冷却塔における冷却水の蒸発量を求める蒸発量演算手段と、該蒸発量演算手段により求めた蒸発量に基づいて前記冷却水中の不純物濃度を許容値以下に維持するのに必要な冷却水の補給水量を求める補給水量演算手段と、該補給水量演算手段により求めた補給水量を冷却塔に補給する補給水供給手段と、前記水位制御手段により補給される前記補給水の量を検出する流量検出器と、該流量検出器により検出された補給水の量を設定時間ごとに積算して補給水量積算値(ΣV)を求める補給水量積算手段と備え、
前記蒸発量演算手段は、前記蒸発量を前記設定時間ごとに積算して蒸発量積算値(ΣQ/Qs)を求め、
前記補給水量演算手段は、前記設定時間ごとに前記蒸発量積算値に基づいて前記不純物濃度を許容値以下に維持する前記必要補給水量(Vq)を求め、該必要補給水量と前記補給水量積算手段により求めた補給水量積算値(ΣV)との差を前記補給水供給手段の前記補給水量とすることを特徴とする冷却塔。
A casing having an opening at the top, a sprinkling nozzle for cooling water provided at the top of the casing, a water tank for cooling water provided at the bottom of the casing, and a water tank provided at the opening of the casing. A blower that circulates air, a cooling water pump that sucks cooling water in the water tank and supplies it to a cooling load and circulates it to the watering nozzle, and supplies makeup water so as to keep the water level of the water tank in a set range In a cooling tower comprising water level control means, an overflow pipe whose opening position is set at a water level higher than the upper limit of the setting range, and water quality management means for managing the quality of the cooling water,
The water quality management means maintains the impurity concentration in the cooling water below an allowable value based on the evaporation amount calculating means for determining the evaporation amount of the cooling water in the cooling tower, and the evaporation amount obtained by the evaporation amount calculating means. and replenishing water amount calculating means for calculating the supply quantity of cooling water required, an auxiliary water supply amount and the makeup water supply means for supplying the cooling tower as determined by該補water supply amount calculating means, the supplementary water which is replenished by the level control means A flow rate detector for detecting the amount of water, and a replenishment water amount integrating means for integrating the amount of make-up water detected by the flow rate detector every set time to obtain a replenishment water amount integrated value (ΣV),
The evaporation amount calculation means integrates the evaporation amount for each set time to obtain an evaporation amount integrated value (ΣQ / Qs),
The makeup water amount calculation means obtains the necessary makeup water amount (Vq) for maintaining the impurity concentration below an allowable value based on the evaporation amount integrated value at each set time, and calculates the necessary makeup water amount and the makeup water amount integration means. A cooling tower characterized in that the difference between the supplementary water amount integrated value (ΣV) obtained by the above equation is the supplementary water amount of the supplementary water supply means .
前記蒸発量演算手段は、前記冷却水ポンプが運転開始してから設定時間内は、前記蒸発量の積算を停止することを特徴とする請求項に記載の冷却塔。 2. The cooling tower according to claim 1 , wherein the evaporation amount calculation unit stops the accumulation of the evaporation amount within a set time after the operation of the cooling water pump is started. 前記水位制御手段は、ボールタップ式自動弁であることを特徴とする請求項に記載の冷却塔。 The cooling tower according to claim 1 , wherein the water level control means is a ball tap type automatic valve. 前記水位制御手段は、前記水槽の水位を検出する水位センサ(31)と、補給水配管に設けられ前記水位センサにより検出された水位に応じて開閉される電磁弁とを備えてなることを特徴とする請求項に記載の冷却塔。 The water level control means includes a water level sensor (31) for detecting the water level of the water tank, and an electromagnetic valve provided in a makeup water pipe and opened and closed according to the water level detected by the water level sensor. The cooling tower according to claim 1 . 前記オーバーフロー配管は、前記開口位置を前記設定範囲の上限よりも、少なくとも前記冷却水ポンプを停止したときに前記散水ノズル、冷却水の戻り配管及び前記冷熱負荷の伝熱コイル等に残っている冷却水が水槽に戻ってくるシステム戻り水の水高を加えた水位に設定されてなることを特徴とする請求項に記載の冷却塔。 The overflow pipe has cooling that remains in the water spray nozzle, the cooling water return pipe, the heat transfer coil of the cooling load, and the like when the cooling water pump is stopped at least when the opening position is higher than the upper limit of the setting range . The cooling tower according to claim 1 , wherein the cooling tower is set to a water level obtained by adding a height of system return water in which water returns to the water tank .
JP2005298346A 2005-10-13 2005-10-13 cooling tower Active JP4437262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298346A JP4437262B2 (en) 2005-10-13 2005-10-13 cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298346A JP4437262B2 (en) 2005-10-13 2005-10-13 cooling tower

Publications (2)

Publication Number Publication Date
JP2007107794A JP2007107794A (en) 2007-04-26
JP4437262B2 true JP4437262B2 (en) 2010-03-24

Family

ID=38033797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298346A Active JP4437262B2 (en) 2005-10-13 2005-10-13 cooling tower

Country Status (1)

Country Link
JP (1) JP4437262B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030936A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Method and device for controlling chemical dosing of cooling water system
JP5551381B2 (en) * 2009-04-15 2014-07-16 水ing株式会社 Cooling water chemical injection control method and apparatus
JP5487907B2 (en) * 2009-11-24 2014-05-14 三浦工業株式会社 Water treatment system
JP6123833B2 (en) * 2015-03-31 2017-05-10 栗田工業株式会社 Wastewater treatment method for incineration plant
CN105040086A (en) * 2015-08-14 2015-11-11 刘世贵 Multifunctional evaporation cold-water membrane cooler
CN105112977B (en) * 2015-08-14 2017-09-12 刘世贵 A kind of aluminaization energy-conservation refrigeration turns moisture film cooling means
JP7407502B2 (en) * 2018-03-30 2024-01-04 三浦工業株式会社 Cooling capacity measuring device
CN111918522A (en) * 2020-06-19 2020-11-10 南方电网科学研究院有限责任公司 Converter station cooling system
CN114264189B (en) * 2021-12-27 2024-01-26 中国建筑设计研究院有限公司 Automatic pollution discharge control device and method for cooling tower

Also Published As

Publication number Publication date
JP2007107794A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4437262B2 (en) cooling tower
CN101680682B (en) Heat pump-type hot-water supply device
JP2011137599A (en) Water quality management method for cooling tower, and the cooling tower using the water quality management method
JP5448521B2 (en) Treatment liquid supply apparatus and treatment liquid supply method
JP4962035B2 (en) Hot water supply device and control device for hot water supply device
US20090090788A1 (en) Control device for conserving energy of a water heater
AU2014359154B2 (en) A domestic hot water installation
JP5699445B2 (en) Water treatment chemical injection management method and apparatus for open circulation cooling water system
JP5463114B2 (en) Operation method of water heater and water heater
JP5551381B2 (en) Cooling water chemical injection control method and apparatus
JP2003130587A (en) Circulating type cooling apparatus for cooling water and water quality controlling method
CN208766103U (en) Concentration detection apparatus, concentration measurement and control device and solar water heater
US5403521A (en) Blow system and a method of use therefor in controlling the quality of recycle cooling water in a cooling tower
JP5323363B2 (en) Neutralizing device, combustion device equipped with neutralizing device, and control method of neutralizing device
JPH0712497A (en) Controlling method for water quality of circulating cooling water of cooling tower
JP4471131B2 (en) PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP7325222B2 (en) fuel cell device
JP2001141269A (en) Indirect steam humidifier
GB2555558A (en) Water quality control for evaporative cooler
JPH11294845A (en) Automatic oil filler
JPH1163746A (en) Device for preventing condensation of cooling water in cooling tower
JP4171664B2 (en) Liquid volume measuring device
JP2535372Y2 (en) Steam generator
JPS63243695A (en) Automatic blow down system for cooling tower
JP4363611B2 (en) Solution concentration management method and solution circulation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4437262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250