JP7407502B2 - Cooling capacity measuring device - Google Patents

Cooling capacity measuring device Download PDF

Info

Publication number
JP7407502B2
JP7407502B2 JP2018066412A JP2018066412A JP7407502B2 JP 7407502 B2 JP7407502 B2 JP 7407502B2 JP 2018066412 A JP2018066412 A JP 2018066412A JP 2018066412 A JP2018066412 A JP 2018066412A JP 7407502 B2 JP7407502 B2 JP 7407502B2
Authority
JP
Japan
Prior art keywords
water
temperature
cold
flow rate
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066412A
Other languages
Japanese (ja)
Other versions
JP2019178790A (en
Inventor
記章 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2018066412A priority Critical patent/JP7407502B2/en
Publication of JP2019178790A publication Critical patent/JP2019178790A/en
Application granted granted Critical
Publication of JP7407502B2 publication Critical patent/JP7407502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍機を用いて製造した冷水を冷水負荷へ供給する冷水システムにおいて、冷凍機による冷却エネルギ量としての冷熱量を算出する冷却能力測定装置に関するものである。 The present invention relates to a cooling capacity measuring device that calculates the amount of cooling energy as the amount of cooling energy by a refrigerator in a chilled water system that supplies chilled water produced using a refrigerator to a chilled water load.

冷凍機を用いて冷水タンク内の水を冷却し、その冷水を冷水負荷(冷水使用設備)へ供給する冷水システムが知られている。冷水システムとして、循環仕様と流水仕様とがある。循環仕様では、冷水タンク内の水は、冷水負荷との間で循環されて冷熱を利用され(間接用途)、流水仕様では、冷水タンク内の水は、冷水負荷で使い捨てられる(直接用途)。 BACKGROUND ART A chilled water system is known that uses a refrigerator to cool water in a cold water tank and supplies the chilled water to a chilled water load (facility using chilled water). There are two types of chilled water systems: circulation specifications and flowing water specifications. In the circulating specification, the water in the cold water tank is circulated between the chilled water load and used for cooling (indirect use), and in the flowing water specification, the water in the chilled water tank is disposed of by the chilled water load (direct use).

このような冷水システムにおいて、冷凍機による冷却エネルギ量としての冷熱量を知りたい場合がある。たとえば、冷水システムを新たなものに更新しようとする場合、現状のシステムで冷却負荷がどの程度であるのか知りたい場合がある。 In such a chilled water system, there are cases where it is desired to know the amount of cooling energy as the amount of cooling energy produced by the refrigerator . For example, if you are planning to update your chilled water system to a new one, you may want to know how much the cooling load is on the current system.

従来、下記特許文献1に開示されるように、冷凍機ではなく冷却塔を用いたシステムについて、冷却エネルギ量算出装置が提案されている。この装置は、冷却塔(1)と熱交換部(3)とを備えた冷却水循環路(2)と、上記熱交換部(3)を介して上記冷却水循環路(2)の冷却水で冷却される冷却対象(4,A)と、演算手段(9)とを備え、この演算手段(9)は、上記熱交換部(3)を境にしたその前後における冷却水の温度差(T1,T2)と、上記冷却水循環路(2)の冷却水流量(Q1)とから、冷却エネルギ量(E1)を算出する。 Conventionally, as disclosed in Patent Document 1 below, a cooling energy amount calculation device has been proposed for a system using a cooling tower instead of a refrigerator. This device includes a cooling water circulation path (2) comprising a cooling tower (1) and a heat exchange section (3), and cooling water in the cooling water circulation path (2) via the heat exchange section (3). The calculation means (9) calculates the temperature difference (T1, T2) and the cooling water flow rate (Q1) of the cooling water circulation path (2), the cooling energy amount (E1) is calculated.

冷却塔を用いた冷水システムの場合、基本的には、水は冷却塔と冷水負荷との間で循環される。一方、冷凍機を用いた冷水システムの場合、前述したとおり、循環仕様だけでなく、流水仕様の他、両者の複合仕様もある。しかも、冷水タンクから冷水負荷へ冷水が供給されるタイミングと、冷水タンクに補給水が供給されるタイミングとは、必ずしも一致しない。従って、これらの事情に対処しなければ、冷凍機を用いた冷水システムにおいて、冷凍機による冷却エネルギ量としての冷熱量を、容易に算出することはできない。 In a chilled water system using a cooling tower, water is basically circulated between the cooling tower and the chilled water load. On the other hand, in the case of a chilled water system using a refrigerator, as mentioned above, there are not only circulation specifications but also running water specifications and a combination of both specifications. Furthermore, the timing at which cold water is supplied from the cold water tank to the chilled water load and the timing at which makeup water is supplied to the cold water tank do not necessarily coincide. Therefore, unless these circumstances are addressed, in a chilled water system using a refrigerator, the amount of cold heat as the amount of cooling energy by the refrigerator cannot be easily calculated.

特開2003-83818号公報(請求項1、段落0014-0015)JP2003-83818A (Claim 1, Paragraph 0014-0015)

本発明が解決しようとする課題は、冷凍機を用いて製造した冷水を冷水負荷へ供給する冷水システムにおいて、冷凍機による冷却エネルギ量としての冷熱量を、容易に算出できる冷却能力測定装置を提供することにある。 The problem to be solved by the present invention is to provide a cooling capacity measuring device that can easily calculate the amount of cold energy as the amount of cooling energy produced by the refrigerator in a chilled water system that supplies chilled water produced using a refrigerator to a chilled water load. It's about doing.

なお、冷凍機による冷却エネルギ量としての冷熱量を知るために、水温の検出が必要となる。ところが、水温を検出するために、配管の保温材を取り外して管内に温度センサを挿入することは、作業に手間とコストを要するだけでなく、温度センサ取付作業中は冷水システムを停止させる必要もある。そこで、本発明では、冷水システムを停止させることなく、水温を検出して冷熱量を算出可能とすることも課題とする。 In addition, in order to know the amount of cold heat as the amount of cooling energy by the refrigerator , it is necessary to detect the water temperature. However, in order to detect water temperature, removing the insulation from the piping and inserting a temperature sensor inside the pipe not only requires time and effort, but also requires stopping the chilled water system while the temperature sensor is being installed. be. Therefore, an object of the present invention is to detect the water temperature and make it possible to calculate the amount of cold energy without stopping the cold water system.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、水を貯留する冷水タンクと、この冷水タンク内の貯留水を冷却する冷凍機と、前記冷水タンクから冷水負荷へ送水すると共に送水停止中に配管の周辺温度との関係で管内水温が変動し得る送水路と、前記冷水タンクへの入水路とを備えた冷水システムに適用され、前記送水路の水温を検出する第一温度センサと、前記入水路の水温を検出する第二温度センサと、前記送水路に通水中の前記第一温度センサの検出温度と、前記入水路に通水中の前記第二温度センサの検出温度と、前記送水路および/または前記入水路の通水流量に基づき、前記冷凍機による冷却エネルギ量としての冷熱量を算出する冷熱量算出部と、を備え、前記冷熱量算出部は、前記各温度センサによる検出温度として、通水開始から所定時間経過後の温度を用いて、前記冷熱量を算出する冷却能力測定装置であって、前記冷水タンクから前記送水路を介して冷水負荷に送られる冷水は、前記冷水タンクに戻されず、前記冷水タンク内の水位を設定範囲に維持するように、前記入水路を介して前記冷水タンクに補給水が供給可能とされ、前記送水路および/または前記入水路に、流量センサが設けられ、前記冷凍機は、前記入水路から供給されて前記冷水タンクに貯留される水を、前記第二温度センサの検出温度よりも低くなるよう冷却し、前記冷熱量算出部は、前記送水路に通水中の前記第一温度センサの検出温度と、前記入水路に通水中の前記第二温度センサの検出温度と、前記流量センサの検出流量に基づき、前記冷熱量を算出することを特徴とする冷却能力測定装置である。 The present invention has been made to solve the above problem, and the invention according to claim 1 includes a cold water tank for storing water, a refrigerator for cooling the water stored in the cold water tank, and the cold water tank. It is applied to a chilled water system comprising a water supply channel that supplies water from the water to the chilled water load and whose water temperature inside the pipe can fluctuate in relation to the ambient temperature of the pipe while the water supply is stopped, and an inlet channel to the cold water tank. a first temperature sensor that detects water temperature; a second temperature sensor that detects the water temperature of the inlet waterway; a temperature detected by the first temperature sensor while water is flowing through the water supply channel; a cold energy amount calculation unit that calculates the amount of cold energy as the amount of cooling energy by the refrigerator based on the temperature detected by the two temperature sensors and the water flow rate of the water supply channel and/or the inlet water channel; The calculation unit is a cooling capacity measuring device that calculates the amount of cooling energy using the temperature after a predetermined time has elapsed from the start of water flow as the temperature detected by each of the temperature sensors, The cold water sent to the cold water load is not returned to the cold water tank, and make-up water can be supplied to the cold water tank via the water inlet so as to maintain the water level in the cold water tank within a set range, and A flow rate sensor is provided in the water supply channel and/or the inlet channel, and the refrigerator controls the water supplied from the inlet channel and stored in the cold water tank to a temperature lower than the temperature detected by the second temperature sensor. The cooling energy amount calculation unit calculates the temperature detected by the first temperature sensor while water is flowing through the water supply channel, the temperature detected by the second temperature sensor while water is flowing through the water supply channel, and the temperature detected by the flow rate sensor. The cooling capacity measuring device is characterized in that the amount of cooling energy is calculated based on the flow rate .

請求項1に記載の発明によれば、送水路に通水中の冷水負荷への水温と、入水路に通水中の冷水タンクへの水温と、送水路および/または入水路の通水流量とに基づき、冷凍機による冷却エネルギ量としての冷熱量を算出する。各流路に通水中の水温に基づき算出することで、流水仕様(直接用途)であっても、冷熱量を容易に算出することができる。 According to the invention described in claim 1, the temperature of the water to the cold water load flowing through the water supply channel, the temperature of the water flowing to the cold water tank while flowing through the inlet channel, and the water flow rate of the water supply channel and/or the inlet channel. Based on this, the amount of cold energy as the amount of cooling energy by the refrigerator is calculated. By calculating based on the temperature of water flowing through each flow path , the amount of cooling heat can be easily calculated even in a running water specification (direct application).

請求項1に記載の発明によれば、冷水タンクから送水路を介して冷水負荷に送られる冷水は、冷水タンクに戻されないが、冷水タンク内の水位を設定範囲に維持するように、入水路を介して冷水タンクに補給水が供給可能とされる。この場合、冷水タンクから冷水負荷へ冷水が供給されるタイミングと、冷水タンクに補給水が供給されるタイミングとは、必ずしも一致しない。ところが、送水路に通水中の冷水負荷への水温と、入水路に通水中の冷水タンクへの水温と、送水路および/または入水路の通水流量とに基づき、冷凍機による冷却エネルギ量としての冷熱量を、容易に算出することができる。つまり、流水仕様であっても、冷熱量を容易に算出することができる。 According to the invention described in claim 1 , the cold water sent from the cold water tank to the cold water load via the water supply channel is not returned to the cold water tank, but the inlet channel is Make-up water can be supplied to the cold water tank via. In this case, the timing at which cold water is supplied from the cold water tank to the chilled water load and the timing at which makeup water is supplied to the cold water tank do not necessarily coincide. However, based on the water temperature to the cold water load flowing through the water supply channel, the water temperature to the cold water tank while flowing through the inlet channel, and the water flow rate of the water supply channel and/or the inlet channel, the amount of cooling energy by the refrigerator is The amount of cooling energy can be easily calculated. In other words, even with running water specifications, the amount of cooling heat can be easily calculated.

請求項2に記載の発明は、前記各温度センサは、配管外面の温度を検出することを特徴とする請求項1に記載の冷却能力測定装置である。 The invention according to claim 2 is the cooling capacity measuring device according to claim 1 , wherein each of the temperature sensors detects the temperature of the outer surface of the pipe.

請求項2に記載の発明によれば、配管外面の温度から水温を把握することができる。従って、配管内に温度センサを挿入する必要がない。また、配管に保温材が取り付けられていても、保温材の隙間から温度センサを挿入すれば、保温材を大掛かりに取り外す必要もない。さらに、温度センサの取付けのために、冷水システムを停止させる必要もない。 According to the second aspect of the invention , the water temperature can be determined from the temperature of the outer surface of the pipe. Therefore, there is no need to insert a temperature sensor into the pipe. Furthermore, even if a heat insulating material is attached to the pipe, if the temperature sensor is inserted through the gap in the heat insulating material, there is no need to remove the heat insulating material on a large scale. Furthermore, there is no need to shut down the chilled water system for the installation of the temperature sensor.

請求項3に記載の発明は、前記送水路に設けたポンプまたは弁の作動の有無により、前記送水路の通水の有無を判定し、前記入水路に設けたポンプまたは弁の作動の有無により、前記入水路の通水の有無を判定することを特徴とする請求項1または請求項2に記載の冷却能力測定装置である。 The invention according to claim 3 determines whether or not water flows through the water supply channel based on whether or not a pump or valve provided in the water supply channel is operated; 3. The cooling capacity measuring device according to claim 1 or 2, wherein the cooling capacity measuring device determines whether or not water is flowing through the inlet waterway.

請求項3に記載の発明によれば、送水路や入水路における通水の有無を、ポンプまたは弁の作動の有無により判定して、冷熱量の算出を容易に行うことができる。 According to the third aspect of the invention , the amount of cold heat can be easily calculated by determining whether or not water is flowing in the water supply channel or the inlet channel based on whether or not the pump or valve is operating.

請求項4に記載の発明は、前記送水路および前記入水路について、各通水中における所定時間ごとの水温とその間に流れた流量とに基づき、流量を重みとした加重平均により、冷水負荷への平均給水温度と、冷水タンクへの平均給水温度とを算出し、これに基づき前記冷熱量を算出することを特徴とする請求項1~3のいずれか1項に記載の冷却能力測定装置である。 The invention according to claim 4 provides a method for calculating the load on cold water by using a weighted average weighted with the flow rate, based on the water temperature at each predetermined time during each water flow and the flow rate flowing during that time for the water supply channel and the inlet channel. 4. The cooling capacity measuring device according to claim 1, wherein the cooling capacity measuring device calculates an average water supply temperature and an average water supply temperature to a cold water tank, and calculates the amount of cold energy based on the calculated average water supply temperature. .

請求項4に記載の発明によれば、流量を考慮した加重平均により水温を求めることで、流量変化が大きい場合でも流量の変化を加味して正確に冷熱量を算出することができる。 According to the fourth aspect of the invention , by calculating the water temperature by a weighted average taking into account the flow rate, even when the change in flow rate is large, it is possible to accurately calculate the amount of cooling heat taking into account the change in flow rate.

さらに、請求項5に記載の発明は、前記冷凍機または前記冷水システムの使用電力量を監視し、所定時間内の前記冷熱量と前記使用電力量とにより、前記冷水システムの成績係数を算出することを特徴とする請求項1~4のいずれか1項に記載の冷却能力測定装置である。 Furthermore, the invention according to claim 5 monitors the amount of power used by the refrigerator or the chilled water system, and calculates the coefficient of performance of the chilled water system based on the amount of cold heat and the amount of power used within a predetermined time. The cooling capacity measuring device according to any one of claims 1 to 4, characterized in that:

請求項5に記載の発明によれば、所定時間内の冷熱量と使用電力量とにより、冷水システムの成績係数を算出することができる。 According to the invention set forth in claim 5 , the coefficient of performance of the chilled water system can be calculated based on the amount of cooling heat and the amount of power used within a predetermined time.

本発明の冷却能力測定装置によれば、冷凍機を用いて製造した冷水を冷水負荷へ供給する冷水システムにおいて、冷凍機による冷却エネルギ量としての冷熱量を、容易に算出することができる。また、手間とコストを抑えると共に、冷水システムを停止させることなく、水温を検出して冷熱量を算出することも可能となる。 According to the cooling capacity measuring device of the present invention, in a chilled water system that supplies chilled water produced using a chiller to a chilled water load, the amount of cold heat as the amount of cooling energy by the chiller can be easily calculated. Furthermore, it is possible to reduce labor and cost, and also to detect the water temperature and calculate the amount of cold energy without stopping the cold water system.

本発明の一実施例の冷却能力測定装置が適用された冷水システムの一例を示す概略図である。1 is a schematic diagram showing an example of a chilled water system to which a cooling capacity measuring device according to an embodiment of the present invention is applied.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の冷却能力測定装置1が適用された冷水システム2の一例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 is a schematic diagram showing an example of a chilled water system 2 to which a cooling capacity measuring device 1 according to an embodiment of the present invention is applied.

本実施例の冷水システム2は、水を貯留する冷水タンク3と、冷水タンク3内の貯留水を冷却する冷凍機4と、冷水タンク3から冷水負荷(冷水使用設備)5(5A,5B)への送水路6と、冷水タンク3への入水路7とを備える。 The cold water system 2 of this embodiment includes a cold water tank 3 that stores water, a refrigerator 4 that cools the water stored in the cold water tank 3, and a cold water load (chilled water usage equipment) 5 (5A, 5B) from the cold water tank 3. A water supply channel 6 to the cold water tank 3 and an inlet channel 7 to the cold water tank 3 are provided.

冷水タンク3は、水を貯留するタンクである。冷水タンク3には、水位センサ8が設けられ、冷水タンク3内の水位を検出可能とされる。 The cold water tank 3 is a tank that stores water. The cold water tank 3 is provided with a water level sensor 8, which is capable of detecting the water level within the cold water tank 3.

冷凍機4は、図示例では、蒸発器4aが冷水タンク3内に設置される。蒸発器4aにおいて冷媒と水とが熱交換されて、冷水タンク3内の水が冷却可能とされる。但し、冷水タンク3内の水が、冷水タンク3外の蒸発器4aとの間で循環して冷却可能とされてもよい。 In the illustrated example, the refrigerator 4 has an evaporator 4a installed in the cold water tank 3. The refrigerant and water exchange heat in the evaporator 4a, allowing the water in the cold water tank 3 to be cooled. However, the water in the cold water tank 3 may be circulated between the evaporator 4a outside the cold water tank 3 and cooled.

送水路6には送水ポンプ9が設けられている。送水ポンプ9の発停を制御することで、冷水負荷5への給水の有無を制御することができる。但し、場合により、送水ポンプ9の回転数を制御したり、送水路6に設けた送水弁の開度を調整したりして、冷水負荷5への給水流量を調整可能としてもよい。 A water pump 9 is provided in the water supply channel 6 . By controlling the start and stop of the water pump 9, it is possible to control whether or not water is supplied to the cold water load 5. However, depending on the case, the flow rate of water supplied to the cold water load 5 may be adjustable by controlling the rotation speed of the water pump 9 or adjusting the opening degree of the water supply valve provided in the water supply channel 6.

入水路7には、入水弁10が設けられている。入水弁10の開閉を制御することで、冷水タンク3への給水の有無を制御することができる。但し、場合により、入水弁10の開度を調整して、冷水タンク3への給水流量を調整可能としてもよい。また、入水弁10に代えてまたはこれに加えて、入水ポンプを設置して、その発停または回転数を制御してもよい。後述するように、水位センサ8の検出信号に基づき入水弁10(および/または入水ポンプ)を制御することで、冷水タンク3内は設定水位に維持されるが、水位センサ8と入水弁10に代えて、場合により、ボールタップを用いることもできる。 The inlet waterway 7 is provided with a water inlet valve 10. By controlling the opening and closing of the water inlet valve 10, it is possible to control whether or not water is supplied to the cold water tank 3. However, depending on the case, the opening degree of the water inlet valve 10 may be adjusted to adjust the flow rate of water supplied to the cold water tank 3. Furthermore, instead of or in addition to the water inlet valve 10, a water inlet pump may be installed and its start/stop or rotation speed may be controlled. As will be described later, by controlling the water inlet valve 10 (and/or the water inlet pump) based on the detection signal of the water level sensor 8, the water level inside the cold water tank 3 is maintained at the set level. Alternatively, a ball tap may be used, depending on the case.

冷水システム2は、さらに制御器11を備える。制御器11は、送水ポンプ9、入水弁10、水位センサ8などに接続されている。制御器11は、水位センサ8の検出信号に基づき入水弁10を制御して、冷水タンク3内の水位を設定水位(設定範囲)に維持する。また、冷水負荷5からの冷水要求信号に基づき送水ポンプ9を制御して、冷水タンク3内の冷水を冷水負荷5へ供給可能とされる。但し、冷水負荷5からの冷水要求信号に基づき送水ポンプ9を制御する以外に、送水ポンプ9から冷水負荷5への送水路6の圧力に基づき送水ポンプ9を制御してもよい。つまり、冷水負荷5で冷水が使用されると、送水ポンプ9よりも下流の送水路6の圧力が低下するので、その圧力変化に基づき送水ポンプ9を制御してもよい。なお、冷水タンク3内の貯留水は、冷凍機4により、設定温度(設定範囲)に維持される。 The chilled water system 2 further includes a controller 11 . The controller 11 is connected to the water pump 9, the water inlet valve 10, the water level sensor 8, and the like. The controller 11 controls the water inlet valve 10 based on the detection signal of the water level sensor 8 to maintain the water level in the cold water tank 3 at a set water level (set range). Further, the water supply pump 9 is controlled based on the cold water request signal from the cold water load 5, so that the cold water in the cold water tank 3 can be supplied to the cold water load 5. However, in addition to controlling the water pump 9 based on the cold water request signal from the cold water load 5, the water pump 9 may be controlled based on the pressure of the water channel 6 from the water pump 9 to the cold water load 5. That is, when cold water is used in the cold water load 5, the pressure in the water supply channel 6 downstream of the water pump 9 decreases, so the water pump 9 may be controlled based on the pressure change. Note that the water stored in the cold water tank 3 is maintained at a set temperature (set range) by the refrigerator 4.

図1において、実線で示す送水路6は、流水仕様(直接用途)の場合を示している。この場合、冷水タンク3内の冷水は、送水路6を介して冷水負荷5Aへ供給され、冷水タンク3へは戻されず、使い捨てられる。 In FIG. 1, the water supply channel 6 shown by a solid line shows the case of running water specifications (direct use). In this case, the cold water in the cold water tank 3 is supplied to the cold water load 5A via the water supply channel 6, is not returned to the cold water tank 3, and is disposed of.

図1において、二点鎖線で示す還流路12を付加した構成(冷水負荷は5Aの代わりに5Bとした構成)は、循環仕様(間接用途)の場合を示している。この場合、冷水タンク3内の冷水は、送水路6を介して冷水負荷5Bに供給され、冷水負荷5Bにて冷熱を利用(つまり被冷却物と冷水とを熱交換して被冷却物を冷却し冷水は昇温)された後、冷水タンク3へ戻される。循環仕様の場合、還流路12は入水路7として機能する。 In FIG. 1, the configuration in which a recirculation path 12 is added (the cold water load is 5B instead of 5A) shown by the two-dot chain line indicates a case of circulation specifications (indirect use). In this case, the cold water in the cold water tank 3 is supplied to the cold water load 5B via the water conduit 6, and the cold water load 5B uses the cold energy (that is, exchanges heat between the object to be cooled and the cold water to cool the object. After the cold water is heated (temperature raised), it is returned to the cold water tank 3. In the case of circulation specification, the return flow path 12 functions as the inlet waterway 7.

図1において、二点鎖線で示す還流路12に加えて、一点鎖線で示す送水路13も付加した構成は、流水仕様と循環仕様との複合仕様の場合を示している。この場合、冷水タンク3内の冷水は、送水路6を介した後、一部が還流路12を介して冷水タンク3へ戻され、残部が送水路13を介して冷水負荷5Aで使い捨てられる。使い捨てられた分と対応した量の補給水が、適宜、入水弁10を開けて、入水路7から補給される。 In FIG. 1, in addition to the return flow path 12 shown by the two-dot chain line, the configuration in which the water supply channel 13 shown by the one-dot chain line is also added indicates a case of a combined specification of flowing water specification and circulation specification. In this case, after the cold water in the cold water tank 3 passes through the water supply channel 6, a part of it is returned to the cold water tank 3 via the reflux channel 12, and the remaining part is disposed of via the water supply channel 13 as a cold water load 5A. An amount of make-up water corresponding to the amount that has been discarded is replenished from the inlet waterway 7 by opening the water inlet valve 10 as appropriate.

なお、図示例では、冷水負荷5Bからの還流路12は、入水弁10よりも下流の入水路7に接続されているが、冷水タンク3に接続されてもよい。つまり、図示例では、還流路12と入水路7とは冷水タンク3側で共通管路とされているが、別個に冷水タンク3に接続されてもよい。言い換えれば、入水路7を介した冷水タンク3への補給水は、還流路12を介して冷水タンク3へ供給されてもよいし、還流路12を介さずに冷水タンク3へ供給されてもよい。 In the illustrated example, the return flow path 12 from the cold water load 5B is connected to the inlet waterway 7 downstream of the water inlet valve 10, but it may be connected to the cold water tank 3. That is, in the illustrated example, the return flow path 12 and the inlet waterway 7 are made into a common pipe line on the cold water tank 3 side, but they may be connected to the cold water tank 3 separately. In other words, the make-up water to the cold water tank 3 via the inlet channel 7 may be supplied to the cold water tank 3 via the return route 12 or may be supplied to the cold water tank 3 without going through the return route 12. good.

次に、本実施例の冷却能力測定装置1について、具体的に説明する。
冷却能力測定装置1は、冷水負荷5(5A,5B)のための冷凍機4による冷却エネルギ量としての冷熱量を算出する冷熱量算出手段(冷熱量算出部)14を備える。また、冷水システム2には、後述する各種センサが設けられる。そして、冷熱量算出手段14は、各センサの検出信号や経過時間などに基づき、冷水負荷5のための冷凍機4による冷却エネルギ量としての冷熱量を算出する。
Next, the cooling capacity measuring device 1 of this embodiment will be specifically explained.
The cooling capacity measuring device 1 includes a cooling energy amount calculation means (cooling energy amount calculation unit) 14 that calculates the amount of cooling energy as the amount of cooling energy by the refrigerator 4 for the chilled water load 5 (5A, 5B). Moreover, the chilled water system 2 is provided with various sensors described below. Then, the cooling energy amount calculation means 14 calculates the amount of cooling energy as the amount of cooling energy by the refrigerator 4 for the chilled water load 5 based on the detection signals of each sensor, elapsed time, and the like.

冷熱量算出手段14は、図示しないが、各種入力や設定などを行う入力部と、各センサからの検出情報を日時(または経過時間)などと共に登録する記憶部と、予め設定されたプログラムに従って前記記憶部の内容に基づき後述する各種演算を行う演算部と、演算結果を出力する出力部とを備える。 Although not shown, the cooling energy calculation means 14 includes an input section for performing various inputs and settings, a storage section for registering detection information from each sensor along with date and time (or elapsed time), and a storage section for registering the detection information from each sensor along with the date and time (or elapsed time), etc. It includes a calculation section that performs various calculations described later based on the contents of the storage section, and an output section that outputs the calculation results.

冷熱量算出手段14は、図示例のように、冷水システム2の制御器11を含む形で構成(あるいは冷水システム2の制御器11に含まれる形で構成)されてもよいが、冷水システム2の制御器11とは別に構成されてもよい。たとえば、パーソナルコンピュータまたはタブレットなどの各種端末から構成されてもよい。その場合において、各センサからの信号などを一旦、記録手段(たとえばデータロガー)に登録し、その記録手段の記録情報を、情報記録媒体や有線もしくは無線で、前記記憶部に取り込んで処理してもよい。以下、冷熱量算出手段14による演算例について、説明する。 The cooling energy amount calculating means 14 may be configured to include the controller 11 of the chilled water system 2 (or configured to be included in the controller 11 of the chilled water system 2) as shown in the illustrated example; The controller 11 may be configured separately. For example, it may be configured from various terminals such as a personal computer or a tablet. In that case, the signals etc. from each sensor are once registered in a recording means (for example, a data logger), and the recorded information of the recording means is imported into the storage section via an information recording medium, wired or wireless, and processed. Good too. Hereinafter, an example of calculation by the cooling energy amount calculating means 14 will be explained.

≪(a)循環仕様の場合≫
循環仕様の冷水システム2では、前述したとおり、冷水タンク3からの冷水は、送水路6を介して冷水負荷5Bへ送られ、冷熱を放出した後、還流路12を介して冷水タンク3へ戻される。この場合において、冷水タンク3への還流路12は、冷水タンク3への入水路7となる。また、送水路6の通水中は、還流路12の通水中でもある。
≪(a) Circulation specification≫
In the circulating cold water system 2, as described above, the cold water from the cold water tank 3 is sent to the cold water load 5B via the water supply channel 6, and after releasing cold heat, is returned to the cold water tank 3 via the reflux channel 12. It will be done. In this case, the return flow path 12 to the cold water tank 3 becomes the inlet water channel 7 to the cold water tank 3. Furthermore, while water is flowing through the water supply channel 6, water is also flowing through the return flow channel 12.

循環仕様の冷水システム2では、送水路6に第一温度センサ15が設けられる一方、還流路12に第二温度センサ16が設けられる。第一温度センサ15は、送水路6を介して冷水負荷5Bへ供給される冷水の温度を検出し、第二温度センサ16は、還流路12を介して冷水タンク3へ戻される冷水の温度を検出する。冷水負荷5Bで冷熱が使用される関係上、第二温度センサ16の検出温度T2は、第一温度センサ15の検出温度T1よりも高くなる(T2>T1)。 In the circulating cold water system 2, the first temperature sensor 15 is provided in the water supply channel 6, and the second temperature sensor 16 is provided in the return flow channel 12. The first temperature sensor 15 detects the temperature of cold water supplied to the cold water load 5B via the water supply channel 6, and the second temperature sensor 16 detects the temperature of the cold water returned to the cold water tank 3 via the return channel 12. To detect. Since cold water is used in the cold water load 5B, the temperature T2 detected by the second temperature sensor 16 is higher than the temperature T1 detected by the first temperature sensor 15 (T2>T1).

循環仕様の冷水システム2では、送水路6には、第一流量センサ17が設けられる。但し、送水路6を介した給水は全量、還流路12を介して冷水タンク3へ戻されるので、第一流量センサ17は、送水路6ではなく還流路12に設けてもよい。 In the circulating cold water system 2, the water supply channel 6 is provided with a first flow rate sensor 17. However, since the entire amount of water supplied via the water supply channel 6 is returned to the cold water tank 3 via the reflux channel 12, the first flow rate sensor 17 may be provided in the reflux channel 12 instead of the water supply channel 6.

冷水システム2の運転中、所定の計測期間において、送水路6に通水中の第一温度センサ15の検出温度T1と、還流路12(ここでは前述したとおり入水路7ともいえる)に通水中の第二温度センサ16の検出温度T2と、当該期間内の第一流量センサ17による通水流量Q1とを求め、これら情報は冷熱量算出手段14の記憶部に登録される。そして、入力部の指示により、演算部では、次式に基づき、冷水負荷5Bで使用される冷熱量E1を算出する。冷水負荷5Bで使用される冷熱量E1は、冷凍機4による冷却エネルギ量ということもできる。 During operation of the chilled water system 2, during a predetermined measurement period, the temperature T1 detected by the first temperature sensor 15 while water is flowing through the water supply channel 6, and the temperature T1 detected by the first temperature sensor 15 when water is flowing through the return channel 12 (here, it can be said to be the inlet channel 7 as described above). The temperature T2 detected by the second temperature sensor 16 and the water flow rate Q1 detected by the first flow rate sensor 17 during the period are determined, and these pieces of information are registered in the storage section of the cooling energy amount calculating means 14. Then, based on the instruction from the input section, the calculation section calculates the amount of cooling energy E1 used by the chilled water load 5B based on the following equation. The amount of cold energy E1 used by the cold water load 5B can also be said to be the amount of cooling energy by the refrigerator 4.

なお、送水路6(ひいては還流路12)に常時通水されない場合、通水時の水温T1,T2に基づき演算される。通水中であるか否かは、第一流量センサ17により検知できる他、たとえば、送水ポンプ9(または送水弁)の稼働信号を収集して検知することもできる。そして、送水路6および還流路12の水温や前記稼働信号等を好ましくは連続的に計測して、通水中の水温の平均温度を算出することで(言い換えれば冷水使用時のみの平均温度を求めて)、冷熱量E1を適切に算出できる。なお、通水開始直後は、配管内の水や配管壁面の温度が室温(周辺温度)に近づいているため、通水開始直後の水温変動を除いて(具体的には通水開始から所定の待機時間経過後の水温で)、通水中の水温の平均温度を算出するのが望ましい。 In addition, when water is not constantly flowing through the water supply channel 6 (and by extension, the return flow channel 12), the calculation is performed based on the water temperatures T1 and T2 at the time of water flow. Whether or not water is flowing can be detected not only by the first flow rate sensor 17 but also by collecting operation signals of the water pump 9 (or water valve), for example. Then, by preferably continuously measuring the water temperature of the water supply channel 6 and the return channel 12, the operation signal, etc., and calculating the average temperature of the water during water flow (in other words, the average temperature only when cold water is used). ), the cooling energy amount E1 can be appropriately calculated. Immediately after water flow starts, the water inside the pipe and the temperature of the pipe wall are close to room temperature (ambient temperature). It is desirable to calculate the average water temperature during water flow (based on the water temperature after the standby time has elapsed).

[数1] E1=(T2-T1)×Q1 [Math 1] E1=(T2-T1)×Q1

但し、通水流量や水温が時々刻々と変化し得ることを考慮して、通水中における所定時間ごとの水温とその間に流れた流量とに基づき、流量を重みとした加重平均により、送水路6を介した冷水負荷5Bへの平均給水温度T1´と、還流路12を介した冷水負荷5Bからの平均還水温度(冷水タンク3への平均給水温度)T2´とを算出し、これらに基づき冷熱量E1を算出するのが好ましい。 However, considering that the water flow rate and water temperature may change from moment to moment, the water supply channel 6 Calculate the average water supply temperature T1' to the cold water load 5B via the recirculation path 12 and the average return water temperature T2' (average water supply temperature to the cold water tank 3) from the chilled water load 5B via the return path 12, and based on these It is preferable to calculate the amount of cooling energy E1.

具体的には、前記計測期間を所定時間ごとに分割(n等分)し、所定時間ごとの第一流量センサ17による検出流量(所定時間内の通水流量)が、第一送水流量Q11、第二送水流量Q12、第三送水流量Q13、…第n送水流量Q1nであり、各所定時間内の所定時(たとえば各所定時間の開始時または終了時)または所定時間内の平均の第一温度センサ15の検出温度が、第一送水温度T11、第二送水温度T12、第三送水温度T13、…第n送水温度T1nであり、第二温度センサ16の検出温度が、第一入水温度(還水温度)T21、第二入水温度T22、第三入水温度T23、…第n入水温度T2nである場合、送水路6の平均給水温度T1´と、還流路12の平均還水温度(冷水タンク3への平均給水温度)T2´とは、それぞれ次のとおり算出される。そして、前記数式1において、T1の代わりにT1´を用い、T2の代わりにT2´を用いて、冷熱量E1を算出すればよい。その際、Q1は、計測期間全体での通水流量の合算値である(Q1=Q11+Q12+…Q1n)。 Specifically, the measurement period is divided into predetermined time intervals (n equal parts), and the flow rate detected by the first flow rate sensor 17 for each predetermined time period (water flow rate within the predetermined time period) is the first water flow rate Q11, The second water supply flow rate Q12, the third water supply flow rate Q13, ... the nth water supply flow rate Q1n, and the first temperature at a predetermined time within each predetermined time (for example, at the start or end of each predetermined time) or the average first temperature within the predetermined time. The temperature detected by the sensor 15 is the first water supply temperature T11, the second water supply temperature T12, the third water supply temperature T13, ... the nth water supply temperature T1n, and the temperature detected by the second temperature sensor 16 is the first water supply temperature (return water temperature). water temperature) T21, second inlet water temperature T22, third inlet water temperature T23, ... nth inlet water temperature T2n, the average water supply temperature T1' of the water supply channel 6 and the average return water temperature of the return channel 12 (cold water tank 3 The average water supply temperature) T2' is calculated as follows. In Equation 1, the amount of cooling energy E1 may be calculated by using T1' instead of T1 and using T2' instead of T2. At this time, Q1 is the total value of the water flow rate during the entire measurement period (Q1=Q11+Q12+...Q1n).

なお、流量センサには、瞬時流量(一定時間当たりの流量)を求めるものと、積算流量(これまでの累積流量)とを求めるものとがある。第一流量センサ17として、瞬時流量センサを用いる場合、センサ検出値自体により所定時間当たりの通水流量を把握できるか、センサ検出値に時間を乗算して所定時間当たりの通水流量を把握できる。一方、積算流量センサを用いる場合、前記「所定時間ごとの第一流量センサ17による検出流量」とは、各所定時間について、その所定時間の開始時と終了時とのセンサ検出値の差(つまり積算流量の差)として、前記各送水流量Q11~Q1nを求めればよい。このことは、後述する第二流量センサによる検出流量(各入水流量Q21~Q2n)や、第三流量センサによる検出流量(各還水流量Q31~Q3n)などについても同様である。要は、各所定時間において、その所定時間に流れる流量を求めればよい。 Note that there are flow rate sensors that measure instantaneous flow rate (flow rate per fixed time) and those that measure cumulative flow rate (accumulated flow rate up to now). When using an instantaneous flow rate sensor as the first flow rate sensor 17, the water flow rate per predetermined time can be determined by the sensor detection value itself, or the water flow rate per predetermined time can be determined by multiplying the sensor detection value by time. . On the other hand, when using an integrated flow rate sensor, the "flow rate detected by the first flow rate sensor 17 at each predetermined time period" refers to the difference in sensor detection value between the start and end of the predetermined time period (i.e., Each of the water supply flow rates Q11 to Q1n may be calculated as the difference in the cumulative flow rate. This also applies to the flow rate detected by the second flow rate sensor (each of the inlet water flow rates Q21 to Q2n), the flow rate detected by the third flow rate sensor (each of the return water flow rates Q31 to Q3n), etc., which will be described later. In short, the flow rate flowing during each predetermined time period may be determined.

[数2] T1´=(T11×Q11+T12×Q12+…T1n×Q1n)/(Q11+Q12+…Q1n) [Math 2] T1'=(T11×Q11+T12×Q12+...T1n×Q1n)/(Q11+Q12+...Q1n)

[数3] T2´=(T21×Q11+T22×Q12+…T2n×Q1n)/(Q11+Q12+…Q1n) [Math 3] T2'=(T21×Q11+T22×Q12+...T2n×Q1n)/(Q11+Q12+...Q1n)

≪(b)流水仕様の場合≫
流水仕様の冷水システム2では、前述したとおり、冷水タンク3からの冷水は、送水路6,13を介して冷水負荷5Aへ送られ、使い捨てられる。この場合、還流路12の設置は不要である。また、冷水タンク3から送水路6を介した流出分と対応して、冷水タンク3には入水路7を介して補給水が補給される。但し、冷水タンク3から冷水負荷5Aへ冷水が供給されるタイミングと、冷水タンク3に補給水が供給されるタイミングとは、必ずしも一致しない。
≪(b) For running water specification≫
In the cold water system 2 with flowing water specifications, as described above, the cold water from the cold water tank 3 is sent to the cold water load 5A via the water supply channels 6 and 13, and is disposed of. In this case, installation of the reflux path 12 is unnecessary. Furthermore, the cold water tank 3 is replenished with make-up water via the inlet channel 7 in correspondence with the outflow from the cold water tank 3 via the water supply channel 6 . However, the timing at which cold water is supplied from the cold water tank 3 to the cold water load 5A and the timing at which makeup water is supplied to the cold water tank 3 do not necessarily coincide.

流水仕様の冷水システム2では、送水路6(13)に第一温度センサ15が設けられる一方、入水路7に第二温度センサ16が設けられる。第一温度センサ15は、送水路6を介して冷水負荷5Aへ供給される冷水の温度を検出し、第二温度センサ16は、入水路7を介して冷水タンク3へ供給される補給水の温度を検出する。入水路7から補給された水は、冷凍機4により冷却されるので、第一温度センサ15の検出温度T1は、第二温度センサ16の検出温度T2よりも低くなる(T2>T1)。 In the cold water system 2 with flowing water specifications, the first temperature sensor 15 is provided in the water supply channel 6 (13), and the second temperature sensor 16 is provided in the inlet channel 7. The first temperature sensor 15 detects the temperature of the cold water supplied to the cold water load 5A via the water supply channel 6, and the second temperature sensor 16 detects the temperature of the make-up water supplied to the cold water tank 3 via the inlet channel 7. Detect temperature. Since the water replenished from the inlet channel 7 is cooled by the refrigerator 4, the temperature T1 detected by the first temperature sensor 15 becomes lower than the temperature T2 detected by the second temperature sensor 16 (T2>T1).

流水仕様の冷水システム2では、送水路6(13)には、第一流量センサ17が設けられる。送水路6からの流出分は入水路7から補給されるので、第一流量センサ17の設置に代えてまたはこれに加えて、入水路7に第二流量センサ(図示省略)を設けてもよい。冷水タンク3に対する出水と入水とのタイミングはずれるが、比較的長い所定の計測期間で見た場合、第一流量センサ17による流量Q1と第二流量センサによる流量Q2とは略同一となる(Q1≒Q2)。但し、より正確な計測を図るためには(特に各流路6,7の水温が変化し得る場合)、第一流量センサ17と第二流量センサとの双方を備えて、後述のように加重平均値の温度を採用するのが好ましい。 In the cold water system 2 with flowing water specifications, the first flow rate sensor 17 is provided in the water supply channel 6 (13). Since the outflow from the water supply channel 6 is replenished from the inlet channel 7, a second flow rate sensor (not shown) may be provided in the inlet channel 7 instead of or in addition to installing the first flow rate sensor 17. . Although the timing of water outflow and water inflow to the cold water tank 3 is different, when viewed over a relatively long predetermined measurement period, the flow rate Q1 measured by the first flow rate sensor 17 and the flow rate Q2 measured by the second flow rate sensor are approximately the same (Q1≒ Q2). However, in order to achieve more accurate measurement (particularly when the water temperature in each flow path 6, 7 may change), both the first flow rate sensor 17 and the second flow rate sensor are provided, and the weight is applied as described below. Preferably, the average temperature is used.

流水仕様の場合も、循環仕様の場合と同様に処理できる。すなわち、冷水システム2の運転中、所定の計測期間において、送水路6(13)に通水中の第一温度センサ15の検出温度T1と、入水路7に通水中の第二温度センサ16の検出温度T2と、当該期間内の第一流量センサ17による通水流量Q1(および/または第二流量センサによる通水流量Q2)とを求め、前記数式1に基づき、冷水負荷5Aのための冷凍機4による冷却エネルギ量としての冷熱量E1を算出する。 In the case of running water specifications, processing can be performed in the same way as in the case of circulation specifications. That is, during operation of the chilled water system 2, during a predetermined measurement period, the temperature T1 detected by the first temperature sensor 15 while water is flowing through the water supply channel 6 (13), and the detection temperature T1 by the second temperature sensor 16 while water is flowing through the inlet channel 7. The temperature T2 and the water flow rate Q1 by the first flow rate sensor 17 (and/or the water flow rate Q2 by the second flow rate sensor) within the period are determined, and based on the above formula 1, the chiller for a cold water load of 5A is calculated. The amount of cooling energy E1 as the amount of cooling energy based on 4 is calculated.

なお、送水路6および入水路7に常時通水されない場合、通水時の水温T1,T2に基づき演算される。通水中であるか否かは、第一流量センサ17などにより検知できる他、たとえば、送水路6については、送水ポンプ9(または送水弁)の稼働信号を収集して検知でき、入水路7については、入水弁10(または入水ポンプ)の稼働信号を収集して検知することもできる。そして、送水路6および入水路7の水温や前記稼働信号等を好ましくは連続的に計測して、各流路6,7について、通水中の水温の平均温度を算出することで、冷熱量E1を適切に算出できる。 Note that when water is not constantly flowing through the water supply channel 6 and the inlet channel 7, the calculation is performed based on the water temperatures T1 and T2 at the time of water flow. Whether or not water is flowing can be detected by the first flow rate sensor 17 or the like.For example, for the water supply channel 6, it can be detected by collecting the operating signal of the water pump 9 (or water supply valve), and for the inlet channel 7, it can be detected by collecting the operation signal of the water supply pump 9 (or water supply valve). It is also possible to collect and detect operation signals of the water inlet valve 10 (or water inlet pump). Then, by preferably continuously measuring the water temperature of the water supply channel 6 and the inlet channel 7, the operation signal, etc., and calculating the average temperature of the water flowing through each channel 6, 7, the amount of cooling energy E1 is calculated. can be calculated appropriately.

また、循環仕様の場合と同様、通水流量や水温が時々刻々と変化し得ることを考慮して、通水中における所定時間ごとの水温とその間に流れた流量とに基づき、流量を重みとした加重平均により、送水路6(13)を介した冷水負荷5Aへの平均給水温度T1´と、入水路7を介した冷水タンク3への平均給水温度T2´とを算出し、これらに基づき冷熱量E1を算出するのが好ましい。 In addition, as in the case of circulation specifications, considering that the water flow rate and water temperature can change from moment to moment, the flow rate is weighted based on the water temperature at each predetermined time during water flow and the flow rate during that time. The average water supply temperature T1' to the cold water load 5A via the water supply channel 6 (13) and the average water supply temperature T2' to the cold water tank 3 via the inlet channel 7 are calculated by weighted averaging, and based on these, the temperature of the cold water is Preferably, the quantity E1 is calculated.

具体的には、循環仕様の場合と同様にして、前記数式2や数式3に基づき算出できる。但し、第一流量センサ17に加えて、第二流量センサも設ける場合、数式3に代えて、次式が用いられる。つまり、所定時間ごとの第二流量センサによる検出流量(所定時間内の通水流量)が、第一入水流量Q21、第二入水流量Q22、第三入水流量Q23、…第n入水流量Q2nであり、各所定時間内の所定時(たとえば各所定時間の開始時または終了時)または所定時間内の平均の第二温度センサ16の検出温度が、第一入水温度T21、第二入水温度T22、第三入水温度T23、…第n入水温度T2nである場合、入水路7を介した冷水タンク3への平均給水温度T2´は、次のとおり算出される。 Specifically, it can be calculated based on Equation 2 and Equation 3 as in the case of the circulation specification. However, when a second flow rate sensor is provided in addition to the first flow rate sensor 17, the following expression is used instead of Equation 3. In other words, the flow rate detected by the second flow rate sensor at each predetermined time (water flow rate within a predetermined time) is the first water inflow flow rate Q21, the second water inflow flow rate Q22, the third water inflow flow rate Q23, ... the nth water inflow flow rate Q2n. , the temperature detected by the second temperature sensor 16 at a predetermined time within each predetermined time (for example, at the start or end of each predetermined time) or the average temperature detected within the predetermined time is the first water inlet temperature T21, the second water inlet temperature T22, and the second water inlet temperature T22. When the third inlet water temperature T23, .

[数3´] T2´=(T21×Q21+T22×Q22+…T2n×Q2n)/(Q21+Q22+…Q2n) [Math 3'] T2'=(T21×Q21+T22×Q22+...T2n×Q2n)/(Q21+Q22+...Q2n)

≪(c)複合仕様の場合≫
複合仕様の冷水システム2では、前述したとおり、冷水タンク3からの冷水は、送水路6を介して冷水負荷5Bへ送られ、一部が還流路12を介して冷水タンク3へ戻され、残部が送水路13を介して冷水負荷5Aで使い捨てられる。
≪(c) For composite specifications≫
In the combined specification chilled water system 2, as described above, the chilled water from the chilled water tank 3 is sent to the chilled water load 5B via the water supply channel 6, a portion is returned to the chilled water tank 3 via the return channel 12, and the remainder is is disposed of via the water supply channel 13 with a cold water load of 5A.

複合仕様の冷水システム2では、送水路6に第一温度センサ15が設けられ、入水路7に第二温度センサ16が設けられ、還流路12に第三温度センサ18が設けられる。この場合、図1において、入水路7と還流路12との合流部よりも上流側において、入水路7に第二温度センサ16が設けられ(つまり第二温度センサ16の位置が図とは異なる)、還流路12に第三温度センサ18が設けられる。第一温度センサ15は、送水路6を介して冷水負荷5(5A,5B)へ供給される冷水の温度を検出し、第二温度センサ16は、入水路7を介して冷水タンク3へ供給される補給水の温度を検出し、第三温度センサ18は、還流路12を介して冷水タンク3へ戻される冷水の温度を検出する。なお、第二温度センサ16の検出温度T2は、第一温度センサ15の検出温度T1よりも高く(T2>T1)、第三温度センサ18の検出温度T3は、第一温度センサ15の検出温度T1よりも高い(T3>T1)。 In the combined cold water system 2, a first temperature sensor 15 is provided in the water supply channel 6, a second temperature sensor 16 is provided in the inlet channel 7, and a third temperature sensor 18 is provided in the return channel 12. In this case, in FIG. 1, the second temperature sensor 16 is provided in the inlet channel 7 on the upstream side of the confluence of the inlet channel 7 and the return channel 12 (that is, the position of the second temperature sensor 16 is different from that shown in the figure). ), a third temperature sensor 18 is provided in the reflux path 12 . The first temperature sensor 15 detects the temperature of cold water supplied to the cold water loads 5 (5A, 5B) via the water supply channel 6, and the second temperature sensor 16 detects the temperature of the cold water supplied to the cold water tank 3 via the inlet channel 7. The third temperature sensor 18 detects the temperature of the cold water returned to the cold water tank 3 via the recirculation path 12. Note that the detected temperature T2 of the second temperature sensor 16 is higher than the detected temperature T1 of the first temperature sensor 15 (T2>T1), and the detected temperature T3 of the third temperature sensor 18 is higher than the detected temperature T1 of the first temperature sensor 15. higher than T1 (T3>T1).

複合仕様の冷水システム2では、送水路6には、第一流量センサ17が設けられ、送水路13および/または入水路7には、第二流量センサ(図示省略)が設けられ、還流路12には、第三流量センサ(図示省略)が設けられる。但し、送水路6の流量=送水路13の流量(≒入水路7の流量)+還流路12の流量であるから、第一流量センサ17、第二流量センサおよび第三流量センサの内、少なくとも二つの流量センサを備えれば、すべての流路の流量(送水路6の流量Q1、送水路13または入水路7の流量Q2、還流路12の流量Q3)を算出可能となる。 In the combined cold water system 2, the water supply channel 6 is provided with a first flow rate sensor 17, the water supply channel 13 and/or the inlet channel 7 is provided with a second flow rate sensor (not shown), and the return channel 12 is provided with a second flow rate sensor (not shown). is provided with a third flow rate sensor (not shown). However, since the flow rate of the water supply channel 6 = the flow rate of the water supply channel 13 (≒ the flow rate of the inlet channel 7) + the flow rate of the return flow channel 12, at least one of the first flow rate sensor 17, the second flow rate sensor, and the third flow rate sensor If two flow rate sensors are provided, it becomes possible to calculate the flow rates of all channels (flow rate Q1 of water supply channel 6, flow rate Q2 of water supply channel 13 or inlet channel 7, flow rate Q3 of return channel 12).

複合仕様の場合、循環仕様および流水仕様の場合と同様に処理できる。具体的には、送水路6と還流路12との関係では、循環仕様と同様に処理でき、送水路13と入水路7との関係では、流水仕様と同様に処理できる。すなわち、冷水システム2の運転中、所定の計測期間において、送水路6に通水中の第一温度センサ15の検出温度T1と、入水路7に通水中の第二温度センサ16の検出温度T2と、還流路12に通水中の第三温度センサ18の検出温度T3とを求める。また、当該期間内の送水路6、送水路13(または入水路7)および還流路12の内、少なくとも二つの流路に流量センサを設置して、通水流量Q1,Q2,Q3を求める。そして、間接用途の冷水負荷5Bのための冷凍機4による冷却エネルギ量としての冷熱量E1aと、直接用途の冷水負荷5Aのための冷凍機4による冷却エネルギ量としての冷熱量E1bとを求め、各冷水負荷5A,5Bのための冷凍機4による冷却エネルギ量としての全体の冷熱量E1を算出する。この際、循環仕様および流水仕様の場合と同様に、流量センサ、またはポンプや弁の稼働信号を用いて、通水時の水温T1~T3が採用されるのがよい。 In the case of composite specifications, processing can be done in the same way as in the case of circulation specifications and running water specifications. Specifically, the relationship between the water supply channel 6 and the return channel 12 can be treated in the same manner as in the circulation specification, and the relationship between the water supply channel 13 and the inlet channel 7 can be treated in the same manner as in the flowing water specification. That is, during operation of the chilled water system 2, during a predetermined measurement period, the temperature T1 detected by the first temperature sensor 15 while water is flowing through the water supply channel 6, and the temperature T2 detected by the second temperature sensor 16 while water is flowing through the inlet channel 7. , the temperature T3 detected by the third temperature sensor 18 while water is flowing through the reflux path 12 is determined. Furthermore, flow rate sensors are installed in at least two of the water supply channel 6, water supply channel 13 (or inlet channel 7), and return flow channel 12 within the period, and water flow rates Q1, Q2, and Q3 are determined. Then, find the amount of cold energy E1a as the amount of cooling energy by the refrigerator 4 for the cold water load 5B of indirect use, and the amount of cold energy E1b as the amount of cooling energy by the refrigerator 4 for the cold water load 5A of direct use, The total amount of cooling energy E1 as the amount of cooling energy by the refrigerator 4 for each cold water load 5A, 5B is calculated. At this time, as in the case of the circulation specification and the flowing water specification, it is preferable to use the flow rate sensor or the operation signal of the pump or valve to adopt the water temperatures T1 to T3 during water flow.

[数4] E1a=(T3-T1)×Q3 [Math. 4] E1a=(T3-T1)×Q3

[数5] E1b=(T2-T1)×Q2 [Math 5] E1b=(T2-T1)×Q2

[数6] E1=E1a+E1b [Math 6] E1=E1a+E1b

但し、循環仕様や流水仕様の場合と同様、通水流量や水温が時々刻々と変化し得ることを考慮して、通水中における所定時間ごとの水温とその間に流れた流量とに基づき、流量を重みとした加重平均により、送水路6を介した平均給水温度T1´と、送水路13(または入水路7)を介した平均給水温度T2´と、還流路12を介した平均給水温度T3´とを算出し、これらに基づき冷熱量E1a,E1b、ひいてはE1を算出するのが好ましい。 However, as in the case of circulation specifications and flowing water specifications, taking into consideration that the water flow rate and water temperature can change from moment to moment, the flow rate is calculated based on the water temperature at each predetermined time during water flow and the flow rate during that time. The average water supply temperature T1' via the water supply channel 6, the average water supply temperature T2' via the water supply channel 13 (or the inlet channel 7), and the average water supply temperature T3' via the return channel 12 are determined by the weighted average. It is preferable to calculate the amounts of cooling energy E1a, E1b, and eventually E1 based on these.

具体的には、所定時間ごとの第一流量センサ17による検出流量が、第一送水流量Q11、第二送水流量Q12、第三送水流量Q13、…第n送水流量Q1nであり、第二流量センサによる検出流量が、第一入水流量Q21、第二入水流量Q22、第三入水流量Q23、…第n入水流量Q2nであり、第三流量センサによる検出流量が、第一還水流量Q31、第二還水流量Q32、第三還水流量Q33、…第n還水流量Q3nであるとする。また、各所定時間内の所定時または所定時間内の平均の第一温度センサ15の検出温度が、第一送水温度T11、第二送水温度T12、第三送水温度T13、…第n送水温度T1nであり、第二温度センサ16の検出温度が、第一入水温度T21、第二入水温度T22、第三入水温度T23、…第n入水温度T2nであり、第三温度センサ18の検出温度が、第一還水温度T31、第二還水温度T32、第三還水温度T33、…第n還水温度T3nであるとする。この場合、送水路6の平均給水温度T1´と、入水路7の平均入水温度T2´と、還流路12の平均還水温度T3´とは、それぞれ次のとおり算出される。そして、前記数式4および数式5において、T1の代わりにT1´を、T2の代わりにT2´を、T3の代わりにT3´を用いて、冷熱量E1a,E1bを算出すればよい。 Specifically, the flow rates detected by the first flow rate sensor 17 at predetermined time intervals are the first water supply flow rate Q11, the second water supply flow rate Q12, the third water supply flow rate Q13, ... the nth water supply flow rate Q1n, and the second flow rate sensor The detected flow rates are the first incoming water flow rate Q21, the second incoming water flow rate Q22, the third incoming water flow rate Q23, ... the nth incoming water flow rate Q2n, and the detected flow rates by the third flow rate sensor are the first return water flow rate Q31, the second incoming water flow rate Q31, It is assumed that the return water flow rate Q32, the third return water flow rate Q33, . . . the n-th return water flow rate Q3n. Further, the temperatures detected by the first temperature sensor 15 at a predetermined time within each predetermined time or on an average within a predetermined time are the first water supply temperature T11, the second water supply temperature T12, the third water supply temperature T13, ... the nth water supply temperature T1n. The temperatures detected by the second temperature sensor 16 are the first water inlet temperature T21, the second water inlet temperature T22, the third water inlet temperature T23, ... the nth inlet water temperature T2n, and the temperature detected by the third temperature sensor 18 is, It is assumed that the first returned water temperature T31, the second returned water temperature T32, the third returned water temperature T33, . . . the nth returned water temperature T3n. In this case, the average water supply temperature T1' of the water supply channel 6, the average inlet water temperature T2' of the inlet channel 7, and the average return water temperature T3' of the return channel 12 are calculated as follows. In Equations 4 and 5, the amounts of cooling energy E1a and E1b may be calculated by using T1' instead of T1, T2' instead of T2, and T3' instead of T3.

[数7] T1´=(T11×Q11+T12×Q12+…T1n×Q1n)/(Q11+Q12+…Q1n) [Math. 7] T1'=(T11×Q11+T12×Q12+...T1n×Q1n)/(Q11+Q12+...Q1n)

[数8] T2´=(T21×Q21+T22×Q22+…T2n×Q2n)/(Q21+Q22+…Q2n) [Math. 8] T2'=(T21×Q21+T22×Q22+...T2n×Q2n)/(Q21+Q22+...Q2n)

[数9] T3´=(T31×Q31+T32×Q32+…T3n×Q3n)/(Q31+Q32+…Q3n) [Math. 9] T3'=(T31×Q31+T32×Q32+...T3n×Q3n)/(Q31+Q32+...Q3n)

以上から明らかなとおり、本実施例の冷却能力測定装置1によれば、送水路6、入水路7および還流路12に通水中の水温と、前記各流路の通水流量とに基づき、冷水負荷5(5A,5B)のための冷凍機4による冷却エネルギ量としての冷熱量を算出できる。各流路に通水中の水温に基づき算出することで、循環仕様(間接用途)であっても、流水仕様(直接用途)であっても、あるいはこれらの複合仕様であっても、冷熱量を容易に算出することができる。 As is clear from the above, according to the cooling capacity measuring device 1 of the present embodiment, the cold water The amount of cooling energy as the amount of cooling energy by the refrigerator 4 for the load 5 (5A, 5B) can be calculated. By calculating based on the water temperature flowing through each flow path, the amount of cooling energy can be calculated regardless of whether it is a circulation specification (indirect application), a flowing water specification (direct application), or a combination of these specifications. It can be easily calculated.

ところで、前記実施例において、各温度センサ15,16,18は、検知部を配管内に挿入して配管内の水温を直接に検出する以外に、配管外面の温度を検出することで間接的に水温を検出(推定)するようにしてもよい。その場合、配管内に温度センサ15,16,18を挿入する必要がない。また、配管に保温材が取り付けられていても、配管の保温材の隙間から温度センサ15,16,18を挿入すれば、保温材を大掛かりに取り外す必要もない。さらに、温度センサ15,16,18の取付けのために、冷水システム2を停止させる必要もない。 By the way, in the above embodiment, each temperature sensor 15, 16, 18 not only directly detects the water temperature in the pipe by inserting the detection part into the pipe, but also indirectly detects the temperature on the outside surface of the pipe. The water temperature may also be detected (estimated). In that case, there is no need to insert temperature sensors 15, 16, 18 into the pipes. Further, even if a heat insulating material is attached to the pipe, if the temperature sensors 15, 16, and 18 are inserted through the gap between the heat insulating material of the pipe, there is no need to remove the heat insulating material on a large scale. Furthermore, there is no need to stop the chilled water system 2 in order to attach the temperature sensors 15, 16, 18.

また、前記実施例において、前記各流路が通水中か否かは、フローセンサや流量計を設ける以外に、次のようにして検知してもよい。すなわち、前述したとおり、送水路6に設けた送水ポンプ9または送水弁の作動の有無により、送水路6の通水の有無を判定したり、入水路7に設けた入水ポンプまたは入水弁10の作動の有無により、入水路7の通水の有無を判定したりしてもよい。還流路12についても同様であるが、循環仕様の場合、送水ポンプ9または送水弁の作動の有無で、還流路12の通水の有無を判定することができる。なお、前述した加重平均により各温度を算出する場合、流量を重みに算出する関係上、ポンプや弁の作動の有無を検知しなくても、通水中の平均温度を算出可能となる。 Furthermore, in the embodiment described above, whether or not water is flowing through each of the channels may be detected in the following manner instead of providing a flow sensor or a flow meter. That is, as described above, the presence or absence of water flow through the water supply channel 6 can be determined based on whether or not the water supply pump 9 or the water supply valve provided in the water supply channel 6 is in operation, or whether the water inlet pump or water inlet valve 10 provided in the water supply channel 7 is activated or not. Depending on the presence or absence of operation, it may be determined whether or not water is flowing through the inlet channel 7. The same applies to the reflux path 12, but in the case of circulation specifications, whether or not water is flowing through the reflux path 12 can be determined based on whether or not the water pump 9 or the water valve is operated. Note that when each temperature is calculated using the weighted average described above, the average temperature during water flow can be calculated without detecting whether or not the pump or valve is in operation, since the flow rate is used as a weight in the calculation.

さらに、冷却能力測定装置1は、冷凍機4または冷水システム2の使用電力量を求めて、所定時間内の冷熱量と使用電力量とにより、冷水システム2の成績係数を算出する機能を有していてもよい。成績係数COPは、次式で求められる。 Furthermore, the cooling capacity measuring device 1 has a function of determining the amount of power used by the refrigerator 4 or the chilled water system 2, and calculating the coefficient of performance of the chilled water system 2 based on the amount of cooling heat and the amount of power used within a predetermined time. You can leave it there. The coefficient of performance COP is calculated using the following formula.

[数10] 成績係数COP=冷熱(kW)/入熱(kW)=流量×ΔT(出口温度-入口温度)/入力電力 [Math. 10] Coefficient of performance COP = Cold heat (kW) / Heat input (kW) = Flow rate x ΔT (outlet temperature - inlet temperature) / input power

たとえば、流水仕様(循環仕様などでも同様)において、冷水量(送水量であり入水量でもある)と、冷水タンク3に対する平均出口水温(送水路6の水温)および平均入口水温(入水路7の水温)が、前述したとおり算出できる。特に、平均出口水温や平均入口水温は、単純な算術平均よりも、前述した加重平均として求めるのが好ましい。そして、所定の計測期間(たとえば1週間(7日×24h))内における必要熱量(J/期間)は、冷水量×(平均入口温度-平均出口温度)×水の比熱、で算出できる。これから、平均必要熱量(kj/h、さらにはkWの単位で)を算出できる。一方、冷水システム2全体(または電力消費の要部である冷凍機4(および送水ポンプ9))の稼働中平均電力(kW)は、たとえば、冷凍機4の電流値(好ましくはさらに電圧値)、送水ポンプ9の電流値(好ましくはさらに電圧値)を計測することで求められる。そして、稼働中平均電力と前記平均必要熱量とから、次式に基づき成績係数COPを算出することができる。なお、ここでは、計測期間として1週間を例に挙げたが、計測期間は、これよりも長くてもよいし短くてもよい。たとえば、数時間または1日の冷熱量やCOPを求めるようにしてもよい。その場合、冷熱負荷が急増するピーク時の冷熱量やCOPを知ることができる。 For example, in a flowing water specification (the same applies to circulation specifications, etc.), the amount of cold water (both the water supply amount and the incoming water amount), the average outlet water temperature (the water temperature of the water supply channel 6) and the average inlet water temperature (the water temperature of the inlet channel 7) for the cold water tank 3, water temperature) can be calculated as described above. In particular, it is preferable to obtain the average outlet water temperature and the average inlet water temperature as the aforementioned weighted average rather than a simple arithmetic average. The required amount of heat (J/period) within a predetermined measurement period (for example, one week (7 days x 24 hours)) can be calculated as: amount of cold water x (average inlet temperature - average outlet temperature) x specific heat of water. From this, the average required amount of heat (in kj/h or even kW) can be calculated. On the other hand, the average power (kW) during operation of the entire chilled water system 2 (or the refrigerator 4 (and water pump 9) which is the main part of power consumption) is determined by the current value (preferably further voltage value) of the refrigerator 4, for example. , is determined by measuring the current value (preferably further voltage value) of the water pump 9. Then, the coefficient of performance COP can be calculated from the average power during operation and the average required heat amount based on the following formula. Note that here, one week is taken as an example of the measurement period, but the measurement period may be longer or shorter than this. For example, the amount of cooling energy or COP for several hours or one day may be determined. In that case, it is possible to know the amount of cooling energy and COP at the peak time when the cooling load rapidly increases.

[数11] COP=平均必要熱量/稼働中平均電力 [Math. 11] COP = average required heat amount / average power during operation

本発明の冷却能力測定装置1は、前記実施例の構成(制御を含む)に限らず適宜変更可能である。特に、水を貯留する冷水タンク3と、この冷水タンク3内の貯留水を冷却する冷凍機4と、冷水タンク3から冷水負荷5への送水路6と、冷水タンク3への入水路7とを備えた冷水システム2に適用され、(a)送水路6の水温を検出する第一温度センサ15と、(b)入水路7の水温を検出する第二温度センサ16と、(c)送水路6に通水中の第一温度センサ15の検出温度と、入水路7に通水中の第二温度センサ16の検出温度と、送水路6および/または入水路7の通水流量に基づき、冷水負荷5のための冷凍機4による冷却エネルギ量としての冷熱量を算出する冷熱量算出部14とを備えるのであれば、その他の構成は適宜に変更可能である。 The cooling capacity measuring device 1 of the present invention is not limited to the configuration (including control) of the embodiment described above, and can be modified as appropriate. In particular, a cold water tank 3 that stores water, a refrigerator 4 that cools the water stored in the cold water tank 3, a water supply channel 6 from the cold water tank 3 to the cold water load 5, and an inlet channel 7 to the cold water tank 3. (a) a first temperature sensor 15 that detects the water temperature of the water supply channel 6; (b) a second temperature sensor 16 that detects the water temperature of the inlet channel 7; and (c) a Based on the temperature detected by the first temperature sensor 15 while water is flowing through the waterway 6, the temperature detected by the second temperature sensor 16 while water is flowing through the inlet waterway 7, and the flow rate of water through the waterway 6 and/or the inlet waterway 7, cold water is cooled. As long as it includes a cold energy amount calculation unit 14 that calculates the amount of cold energy as the amount of cooling energy by the refrigerator 4 for the load 5, other configurations can be changed as appropriate.

たとえば、前記実施例において、冷水タンク3内の貯留水は、冷凍機4の蒸発器4aとの間を循環可能であると共に、冷水負荷5への送水時には、蒸発器4aを介して送出されるように構成されてもよい。その場合も、冷水負荷5へ供給される水の温度や流量を監視することで、同様に制御可能である。 For example, in the embodiment described above, the water stored in the cold water tank 3 can be circulated between the water and the evaporator 4a of the refrigerator 4, and when water is sent to the cold water load 5, it is sent out through the evaporator 4a. It may be configured as follows. In that case, the same control is possible by monitoring the temperature and flow rate of water supplied to the cold water load 5.

また、前記実施例において、第一温度センサ15は、送水ポンプ9の閉切り運転時に軸動力の入熱による配管温度の上昇のない位置に備えられるのが好ましい。 Further, in the embodiment described above, it is preferable that the first temperature sensor 15 is provided at a position where the pipe temperature does not rise due to heat input from the shaft power when the water pump 9 is in closed/closed operation.

1 冷却能力測定装置
2 冷水システム
3 冷水タンク
4 冷凍機(4a:蒸発器)
5(5A,5B) 冷水負荷
6 送水路
7 入水路
8 水位センサ
9 送水ポンプ
10 入水弁
11 制御器
12 還流路
13 送水路
14 冷熱量算出手段
15 第一温度センサ
16 第二温度センサ
17 第一流量センサ
18 第三温度センサ
1 Cooling capacity measuring device 2 Chilled water system 3 Chilled water tank 4 Freezer (4a: evaporator)
5 (5A, 5B) Chilled water load 6 Water supply channel 7 Inlet channel 8 Water level sensor 9 Water pump 10 Water inlet valve 11 Controller 12 Return path 13 Water supply channel 14 Cold heat amount calculation means 15 First temperature sensor 16 Second temperature sensor 17 First Flow rate sensor 18 Third temperature sensor

Claims (5)

水を貯留する冷水タンクと、この冷水タンク内の貯留水を冷却する冷凍機と、前記冷水タンクから冷水負荷へ送水すると共に送水停止中に配管の周辺温度との関係で管内水温が変動し得る送水路と、前記冷水タンクへの入水路とを備えた冷水システムに適用され、
前記送水路の水温を検出する第一温度センサと、
前記入水路の水温を検出する第二温度センサと、
前記送水路に通水中の前記第一温度センサの検出温度と、前記入水路に通水中の前記第二温度センサの検出温度と、前記送水路および/または前記入水路の通水流量に基づき、前記冷凍機による冷却エネルギ量としての冷熱量を算出する冷熱量算出部と、を備え、
前記冷熱量算出部は、前記各温度センサによる検出温度として、通水開始から所定時間経過後の温度を用いて、前記冷熱量を算出する冷却能力測定装置であって、
前記冷水タンクから前記送水路を介して冷水負荷に送られる冷水は、前記冷水タンクに戻されず、
前記冷水タンク内の水位を設定範囲に維持するように、前記入水路を介して前記冷水タンクに補給水が供給可能とされ、
前記送水路および/または前記入水路に、流量センサが設けられ、
前記冷凍機は、前記入水路から供給されて前記冷水タンクに貯留される水を、前記第二温度センサの検出温度よりも低くなるよう冷却し、
前記冷熱量算出部は、前記送水路に通水中の前記第一温度センサの検出温度と、前記入水路に通水中の前記第二温度センサの検出温度と、前記流量センサの検出流量に基づき、前記冷熱量を算出する
ことを特徴とする冷却能力測定装置。
A cold water tank that stores water, a refrigerator that cools the water stored in this cold water tank, water is sent from the cold water tank to the cold water load, and the water temperature inside the pipe may fluctuate depending on the ambient temperature of the pipe while the water supply is stopped. applied to a cold water system comprising a water supply channel and an inlet channel to the cold water tank;
a first temperature sensor that detects the water temperature of the water supply channel;
a second temperature sensor that detects the water temperature of the inlet waterway;
Based on the temperature detected by the first temperature sensor while water is flowing through the water supply channel, the temperature detected by the second temperature sensor while water is flowing through the water supply channel, and the flow rate of water through the water supply channel and/or the water supply channel, A cold energy amount calculation unit that calculates a cold energy amount as a cooling energy amount by the refrigerator,
The cooling energy amount calculation unit is a cooling capacity measuring device that calculates the cooling energy amount using a temperature after a predetermined time has elapsed from the start of water flow as the temperature detected by each of the temperature sensors,
The cold water sent from the cold water tank to the cold water load via the water supply channel is not returned to the cold water tank,
Makeup water can be supplied to the cold water tank via the inlet water channel so as to maintain the water level in the cold water tank within a set range,
A flow rate sensor is provided in the water supply channel and/or the inlet channel,
The refrigerator cools water supplied from the water inlet and stored in the cold water tank to a temperature lower than the temperature detected by the second temperature sensor,
The cooling energy amount calculation unit is based on the temperature detected by the first temperature sensor while water is flowing through the water supply channel, the temperature detected by the second temperature sensor while water is flowing through the water supply channel, and the flow rate detected by the flow rate sensor, Calculate the amount of cold heat
A cooling capacity measuring device characterized by:
前記各温度センサは、配管外面の温度を検出する
ことを特徴とする請求項1に記載の冷却能力測定装置。
The cooling capacity measuring device according to claim 1 , wherein each of the temperature sensors detects the temperature of the outer surface of the pipe.
前記送水路に設けたポンプまたは弁の作動の有無により、前記送水路の通水の有無を判定し、
前記入水路に設けたポンプまたは弁の作動の有無により、前記入水路の通水の有無を判定する
ことを特徴とする請求項1または請求項2に記載の冷却能力測定装置。
Determining whether or not water flows through the water supply channel based on whether or not a pump or valve provided in the water supply channel operates;
The cooling capacity measuring device according to claim 1 or 2, wherein whether or not water is flowing through the inlet waterway is determined based on whether or not a pump or a valve provided in the inlet waterway is operated.
前記送水路および前記入水路について、各通水中における所定時間ごとの水温とその間に流れた流量とに基づき、流量を重みとした加重平均により、冷水負荷への平均給水温度と、冷水タンクへの平均給水温度とを算出し、これに基づき前記冷熱量を算出する
ことを特徴とする請求項1~3のいずれか1項に記載の冷却能力測定装置。
Regarding the water supply channel and the inlet channel, the average temperature of the water supplied to the chilled water load and the temperature of the water to the chilled water tank are determined by a weighted average weighted by the flow rate, based on the water temperature at each predetermined time during each water flow and the flow rate during that time. The cooling capacity measuring device according to any one of claims 1 to 3, wherein the cooling capacity measuring device calculates an average water supply temperature and calculates the amount of cooling energy based on this.
前記冷凍機または前記冷水システムの使用電力量を監視し、
所定時間内の前記冷熱量と前記使用電力量とにより、前記冷水システムの成績係数を算出する
ことを特徴とする請求項1~4のいずれか1項に記載の冷却能力測定装置。
Monitoring the amount of electricity used by the refrigerator or the chilled water system,
The cooling capacity measuring device according to any one of claims 1 to 4, wherein a coefficient of performance of the chilled water system is calculated based on the amount of cooling heat and the amount of electricity used within a predetermined time.
JP2018066412A 2018-03-30 2018-03-30 Cooling capacity measuring device Active JP7407502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066412A JP7407502B2 (en) 2018-03-30 2018-03-30 Cooling capacity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066412A JP7407502B2 (en) 2018-03-30 2018-03-30 Cooling capacity measuring device

Publications (2)

Publication Number Publication Date
JP2019178790A JP2019178790A (en) 2019-10-17
JP7407502B2 true JP7407502B2 (en) 2024-01-04

Family

ID=68278396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066412A Active JP7407502B2 (en) 2018-03-30 2018-03-30 Cooling capacity measuring device

Country Status (1)

Country Link
JP (1) JP7407502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967150B (en) * 2020-08-05 2023-12-29 江苏华电昆山热电有限公司 Cooling capacity calculation method, device, computer equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263761A (en) 2000-03-21 2001-09-26 Oki Electric Ind Co Ltd Method for controlling thermal storage of thermal storage tank
JP2003166752A (en) 2001-11-30 2003-06-13 Tokyo Gas Co Ltd Control method and device for heat exchange heat storage device
JP2007107794A (en) 2005-10-13 2007-04-26 Yazaki Corp Water quality management method of cooling tower and cooling tower using the water quality management method
JP2008215782A (en) 2007-03-08 2008-09-18 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system, its control method and control program
JP2008281255A (en) 2007-05-09 2008-11-20 Takasago Thermal Eng Co Ltd Refrigerant flow rate measuring method, method of obtaining cooling/heating capacity of refrigerating device, and refrigerant flow rate measuring device
JP2012111063A (en) 2010-11-22 2012-06-14 Eidai Co Ltd Method of manufacturing wood fiberboard, and wood fiberboard
JP2012159260A (en) 2011-02-02 2012-08-23 Orion Machinery Co Ltd Temperature adjusting device
JP2013137141A (en) 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
US20140260376A1 (en) 2013-03-15 2014-09-18 Johnson Controls Technology Company Subcooling system with thermal storage
WO2016125583A1 (en) 2015-02-04 2016-08-11 株式会社日立製作所 Heat source system operation management device, heat source system operation management method, and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493567A (en) * 1990-08-10 1992-03-26 Toshiba Corp Device for diagnosing performance of freezer
JP2003083818A (en) * 2001-09-14 2003-03-19 Kurita Water Ind Ltd Cooling energy quantity calculation device and cooling energy quantity calculation method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263761A (en) 2000-03-21 2001-09-26 Oki Electric Ind Co Ltd Method for controlling thermal storage of thermal storage tank
JP2003166752A (en) 2001-11-30 2003-06-13 Tokyo Gas Co Ltd Control method and device for heat exchange heat storage device
JP2007107794A (en) 2005-10-13 2007-04-26 Yazaki Corp Water quality management method of cooling tower and cooling tower using the water quality management method
JP2008215782A (en) 2007-03-08 2008-09-18 Toshiba Fuel Cell Power Systems Corp Fuel cell cogeneration system, its control method and control program
JP2008281255A (en) 2007-05-09 2008-11-20 Takasago Thermal Eng Co Ltd Refrigerant flow rate measuring method, method of obtaining cooling/heating capacity of refrigerating device, and refrigerant flow rate measuring device
JP2012111063A (en) 2010-11-22 2012-06-14 Eidai Co Ltd Method of manufacturing wood fiberboard, and wood fiberboard
JP2012159260A (en) 2011-02-02 2012-08-23 Orion Machinery Co Ltd Temperature adjusting device
JP2013137141A (en) 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
US20140260376A1 (en) 2013-03-15 2014-09-18 Johnson Controls Technology Company Subcooling system with thermal storage
WO2016125583A1 (en) 2015-02-04 2016-08-11 株式会社日立製作所 Heat source system operation management device, heat source system operation management method, and computer program

Also Published As

Publication number Publication date
JP2019178790A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US10635120B2 (en) Method for operating and/or monitoring an HVAC system
JP6570746B2 (en) Heat medium circulation system
KR100363823B1 (en) Ice heat storage cooling unit
JP4505498B2 (en) Heat source performance evaluation system for air conditioning
JP7028191B2 (en) Valve control device, cooling device and valve control method
JP2013170753A (en) Refrigerator system
JP7407502B2 (en) Cooling capacity measuring device
CN106403175B (en) The control method and water cooler of water cooler
JP2011169588A (en) Air conditioning optimal control system
KR101147829B1 (en) Hybrid Control Device and Hybrid Control Method for Heating and Cooling with Measured Data from Heat Meter
EP3779302B1 (en) Air conditioning system
JP5044251B2 (en) Building air conditioning optimum control system and building air conditioning optimum control device
JP2007147094A (en) Method of operating air conditioning equipment
JP4986701B2 (en) Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device
JP5286479B2 (en) Cold water circulation system
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP5195696B2 (en) Cold water circulation system
JP2010270967A (en) Air conditioning system, and method and device of controlling air conditioning system
JPH10300163A (en) Method for operating air conditioner and air conditioner
CN110726272B (en) Cold station performance prediction system and method
JP3542314B2 (en) District heating / cooling operation system and its operation method
JP4512947B2 (en) Thermal storage refrigeration system
JP2009092294A (en) Hot water storage type water heater
JP2001099467A (en) Control unit for thermal storage device
JP2013170810A (en) Temperature regulator abnormality detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7407502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150