JP5044251B2 - Building air conditioning optimum control system and building air conditioning optimum control device - Google Patents

Building air conditioning optimum control system and building air conditioning optimum control device Download PDF

Info

Publication number
JP5044251B2
JP5044251B2 JP2007070923A JP2007070923A JP5044251B2 JP 5044251 B2 JP5044251 B2 JP 5044251B2 JP 2007070923 A JP2007070923 A JP 2007070923A JP 2007070923 A JP2007070923 A JP 2007070923A JP 5044251 B2 JP5044251 B2 JP 5044251B2
Authority
JP
Japan
Prior art keywords
air
air conditioning
temperature
conditioning
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007070923A
Other languages
Japanese (ja)
Other versions
JP2008232507A (en
Inventor
保之 伊藤
康夫 高木
憲造 米沢
好樹 村上
信孝 西村
信行 道念
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2007070923A priority Critical patent/JP5044251B2/en
Publication of JP2008232507A publication Critical patent/JP2008232507A/en
Application granted granted Critical
Publication of JP5044251B2 publication Critical patent/JP5044251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば業務用空調システムに対し、最適な省エネ制御を実行するビル空調最適制御システム及びビル空調最適制御装置に関する。 The present invention relates to a building air conditioning optimum control system and a building air conditioning optimum control device that perform optimum energy saving control, for example, for a commercial air conditioning system.
従来の業務用空調システムの空調制御には、省エネルギーの観点から、数多くの技術が提案されている。   A number of technologies have been proposed for air conditioning control of conventional commercial air conditioning systems from the viewpoint of energy saving.
従来の典型的な空調システムの構成は、ビルの地下階などに大型のチラーや吸収式冷凍機などの中央熱源を設置し、冷房用の冷水や暖房用の温水を製造し、ポンプを介して各階の空調機に送給する。   A typical conventional air conditioning system consists of a central heat source such as a large chiller or absorption chiller on the basement floor of a building, etc., producing cold water for cooling and warm water for heating, via a pump. Supply to air conditioners on each floor.
また、同時に中央熱源で発生された排熱は、冷却水として外部に排出したり、或いは冷却塔から供給された中央熱源で排熱となった冷却水は再び冷却塔に還し、ここで冷却水を冷やして再度中央熱源に供給し、冷房用の冷水を再製造することが行われている。   At the same time, the exhaust heat generated in the central heat source is discharged to the outside as cooling water, or the cooling water exhausted from the central heat source supplied from the cooling tower is returned to the cooling tower and cooled here. Water is cooled and supplied again to the central heat source to re-produce cold water for cooling.
これに対して、空調機による交換熱量は、冷水流量と温度差とに比例することに着目し、中央熱源からの送り冷水の温度と空調機から循環されてくる還り冷水との温度差を、通常の5℃〜7℃まで大きくすることにより、当該交換熱量が同じ熱量としたとき、冷水流量を5/7まで下げることが可能となり、空調用冷水のポンプ動力を大きく削減する大温度差空調技術が提案されている。これにより、流量が速度に比例することから、流量の削減化によってポンプ動力による流速を削減でき、その流量比の3乗の省エネ化を達成することができる(非特許文献1)。   On the other hand, paying attention to the fact that the amount of heat exchanged by the air conditioner is proportional to the cold water flow rate and the temperature difference, the temperature difference between the temperature of the feed cold water from the central heat source and the return cold water circulated from the air conditioner, A large temperature difference air conditioning that greatly reduces the pumping power of chilled water for air conditioning by reducing the chilled water flow rate to 5/7 when the exchange heat quantity is the same calorie by increasing it to the normal 5 ° C to 7 ° C. Technology has been proposed. Thereby, since the flow rate is proportional to the speed, the flow rate by the pump power can be reduced by reducing the flow rate, and the energy saving of the cube of the flow rate ratio can be achieved (Non-Patent Document 1).
また、上記非特許文献1の技術に加えて、中央熱源の排熱である冷却水の流量を必要最小限とすることにより、冷却水ポンプの動力を削減する技術が提案されている。また、空調機から室内へ送り込む空気の温度と室内から取り込む還り空気の温度との温度差を大きくし、空気流量を下げることにより、送風ポンプの動力を削減する工夫もなされている(非特許文献2)。   In addition to the technique of Non-Patent Document 1, a technique for reducing the power of the cooling water pump by minimizing the flow rate of the cooling water, which is the exhaust heat of the central heat source, has been proposed. In addition, a device has been devised to reduce the power of the blower pump by increasing the temperature difference between the temperature of the air fed from the air conditioner into the room and the temperature of the return air taken in from the room, and reducing the air flow rate (Non-Patent Document). 2).
さらに、従来の空調制御システムには、排熱の有効利用、冷水ポンプや送風ポンプの動力の削減等,個別の省エネ化を実現したものが提案されているが、例えば冷却水の温度差を如何なる値にしたとき、最も省エネルギーになるかについて何ら評価しておらず、最適な運用制御がなされていない(非特許文献3)。
事務所建物における省エネルギー改修の実践と実体調査(その1)、 甘利(東京ガス)、野原(日建設計)等、空気調和衛生工学会学術講演論 文集、2001年9月、pp.1021−1024。 排熱投入型吸収冷温水機への冷却水変流量制御の適用とその効果、 川崎(東京ガス)、榎本(三洋電機)等、空気調和衛生工学会学術講演論 文集、2001年9月、pp.1105−1108。 最適温度差空調システムに関する研究、藤井(三菱地所設計)等、 藤井(三菱地所設計)など、空気調和衛生工学会学術講演論文集、 2004年9月、pp.497〜500。
In addition, conventional air-conditioning control systems have been proposed that achieve individual energy savings such as effective use of exhaust heat and reduction of power of chilled water pumps and blower pumps. When the value is set, no evaluation is made as to the most energy saving, and optimal operation control is not performed (Non-Patent Document 3).
Practice and substantive investigation of energy-saving renovation in office buildings (Part 1), Amari (Tokyo Gas), Nohara (Nikken Sekkei), etc., Journal of Air Conditioning Sanitation Engineering Society, 2001, pp. 1021-1024. Application of cooling water flow control to exhaust heat input type absorption chiller / heater and its effect, Kawasaki (Tokyo Gas), Enomoto (Sanyo Electric), etc., Journal of Air Conditioning Sanitation Engineering Society, September 2001, pp . 1105-1108. Research on optimal temperature difference air conditioning system, Fujii (Mitsubishi Estate Design), Fujii (Mitsubishi Estate Design), etc. 497-500.
しかし、以上のような従来の空調制御システムは、前述したようにそれぞれ個別的な省エネ化を実現したものであって、例えば冷却水の温度差が何度になったとき、システム全体として最も省エネルギーになるか等について評価されておらず、最適な運用制御がなされていない。すなわち、冷凍機の特性や冷却塔の特性を無視し、単にポンプ動力だけを考慮し、冷却水温度差、冷風温度差、冷水温度差を決定すると、システム全体から見たときに十分な省エネルギーとはならない。その理由は、例えば冷風用ファンの動力を削減するために、単純に冷風温度差を大きくすれば、冷水の供給温度を下げる必要がある。しかし、当該冷水の供給温度を下げると、中央熱源の効率はその下げた温度に比例して低下する。   However, the conventional air conditioning control system as described above realizes individual energy savings as described above. For example, when the temperature difference between the cooling waters becomes many, the most energy saving of the entire system. It has not been evaluated whether or not, etc., and optimal operation control has not been made. In other words, ignoring the characteristics of the refrigerator and the characteristics of the cooling tower, considering only the pump power, and determining the cooling water temperature difference, the cold air temperature difference, and the cold water temperature difference, sufficient energy saving can be achieved when viewed from the whole system. Must not. The reason is that, for example, in order to reduce the power of the cold air fan, if the cold air temperature difference is simply increased, the supply temperature of the cold water needs to be lowered. However, when the supply temperature of the cold water is lowered, the efficiency of the central heat source decreases in proportion to the lowered temperature.
少なくとも省エネルギーを達成するためには、その時々の負荷状態を考慮しつつ、システム全体から最も省エネとなる運用温度を決めていく必要があるが、その為には次の2つの点を考慮すべきである。   In order to achieve at least energy savings, it is necessary to determine the operating temperature at which the most energy is saved from the entire system, taking into account the load conditions at that time. For this purpose, the following two points should be considered: It is.
その1つは、空調システム内を流れる全ての熱媒体(空気、水、冷媒など)の状態を把握し、各熱媒体の熱・物質移動の平衡状態を求めることにより、所望の室内温熱環境(空調を必要とする部屋の温度、湿度など)を保持し、同時に空調システムの動力が最小となる最適な状態を求めることである。   One is to grasp the state of all the heat media (air, water, refrigerant, etc.) flowing through the air conditioning system, and obtain the equilibrium state of heat and mass transfer of each heat medium, so that the desired indoor thermal environment ( The temperature, humidity, etc. of the room that requires air conditioning is maintained, and at the same time, the optimum state in which the power of the air conditioning system is minimized is obtained.
他の1つは、空調制御システムとしては、与えられた幾つかの制御メカニズムのもとに、空調システム全体が最適な状態を維持できるように制御することである。   The other is that the air conditioning control system is controlled so that the entire air conditioning system can be maintained in an optimal state under some given control mechanism.
そこで、以上のような2つの機能を実現するための空調制御システムを考えると、さらに次のような問題が発生する。   Therefore, when considering an air conditioning control system for realizing the above two functions, the following problem occurs.
空調制御システムとしては、空調システム内の全ての熱・物質移動の平衡状態を推定する必要があるが、その為には各設備機器の熱的特性を把握しなければならない。例えば冷水コイルや冷凍機の直膨コイル/凝縮器について考えると、これら設備機器の熱伝達特性は前述した熱・物質移動の平衡状態を推定する上で重要であるが、これら設備機器に関する設計データや実測データを入手できるとは限らない。   As an air-conditioning control system, it is necessary to estimate the equilibrium state of all heat and mass transfer in the air-conditioning system. For this purpose, it is necessary to grasp the thermal characteristics of each equipment. For example, when considering chilled water coils and direct expansion coils / condensers of refrigerators, the heat transfer characteristics of these equipment are important in estimating the aforementioned equilibrium state of heat and mass transfer. And measured data are not always available.
また、空調制御システムとしては、その時々の負荷状態に合わせて最適制御を実施する必要があるが、最適計算に際し、各負荷、例えば部屋の単位時間当りの熱や水蒸気の発生量やそれら発生熱量の大きさ等が推定できていることが前提となる一方、これら発生量や熱量を直接計測できない問題がある。   As an air conditioning control system, it is necessary to carry out optimal control according to the load conditions at that time. However, in the optimal calculation, the amount of heat and water vapor generated per unit time of each load, for example, the room, and the amount of heat generated. However, there is a problem that the amount of generated heat and the amount of heat cannot be directly measured.
さらに、空調システムの動力を最小化するためには、空調システム各所の制御対象(例えば流量)などの運転条件と、空気、水等の熱媒体を送給したり、循環させるためのファンやポンプ等で必要とする動力との関係を把握しなければならない問題がある。   Furthermore, in order to minimize the power of the air conditioning system, fans and pumps for supplying and circulating operating conditions such as control targets (for example, flow rate) of various parts of the air conditioning system, and heat media such as air and water There is a problem that needs to grasp the relationship with the power required for such as.
本発明は上記事情に鑑みてなされたもので、ビルなどに設置される空調システムに対して、最適な省エネ制御を実現するビル空調最適制御システム及びビル空調最適制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a building air conditioning optimum control system and a building air conditioning optimum control device that realize optimum energy saving control for an air conditioning system installed in a building or the like. To do.
上記課題を解決するために、本発明に係る空調最適制御システムは、冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成される空調システムと当該空調システムの最適化制御を行うビル空調最適制御装置とを有し、
空調システムは、空調の対象となる空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、空調ゾーンの空調制御目標値に基づいて、空調ゾーンの熱量の制御に係る前記空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備え、
ビル空調最適制御装置は、第一の温度/湿度センサ及び第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生熱量を推定する状態量推定用演算手段と、計測される各空気の温度/湿度の物理量と、状態量推定用演算手段で推定された発生熱量と、空調ゾーンの空調条件に関するパラメータとにより、空調システム全体の動力が最小となるよう最適化演算を行い、冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、空調最適化演算手段にて決定した最適物理量になるよう冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えた構成である。
なお、状態量推定用演算手段としては、空調ゾーンの単位時間当たりの発生熱量に代えて、当該空調ゾーンの単位時間当たりの発生水蒸気量を推定してもよい。
In order to solve the above problems, an air conditioning optimum control system according to the present invention includes a cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, An air conditioning system composed of a cold water coil that performs heat exchange between cold water or hot water generated by the central heat source and air that is load heat from an air conditioning zone to be air-conditioned, and a building that performs optimization control of the air conditioning system An air conditioning optimum control device,
The air conditioning system includes a first temperature / humidity sensor that detects the temperature and humidity of air entering an air conditioning zone to be air-conditioned, and a first temperature / humidity sensor that detects the temperature and humidity of air in the air conditioning zone or air leaving the air conditioning zone. Control for controlling the working fluid of cooling water, cold water or hot water, and air flowing through the components of the air conditioning system related to the control of the heat quantity of the air conditioning zone based on the second temperature / humidity sensor and the air conditioning control target value of the air conditioning zone With a mechanism,
The building air conditioning optimum control device uses the physical quantity of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, and the inlet air of the air conditioning zone and the air conditioning zone or air conditioning zone Calculating the amount of heat generated per unit time of the air-conditioning zone, calculating the amount of heat generated per unit time of the air-conditioning zone, the physical quantity of the temperature / humidity of each air and the state quantity Based on the amount of generated heat estimated by the calculation means for estimation and the parameters related to the air conditioning conditions of the air conditioning zone, optimization calculation is performed so that the power of the entire air conditioning system is minimized, and the flow rate and temperature for cooling water, cold water or hot water, flow rate for air, and the air conditioning optimization calculating means for determining an optimal physical quantity of temperature and humidity, the cooling water so as to be optimum physical quantity determined by the air-conditioning optimizing operation means, cold Or hot water, to determine the air conditioning control target value of the physical quantity of the air, a configuration and means for delivering the determined air-conditioning control target value to the control mechanism of the air conditioning system.
Note that, as the state quantity estimation calculating means , instead of the generated heat amount per unit time of the air conditioning zone, the generated water vapor amount per unit time of the air conditioning zone may be estimated.
また、本発明は、冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成されると共に、空調の対象となる空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、空調ゾーンの空調制御目標値に基づいて、空調ゾーンの熱量の制御に係る空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備える空調システムの最適化制御を行う、ビル空調最適制御システムのビル空調最適制御装置において、
第一の温度/湿度センサ及び第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生熱量を推定する状態量推定用演算手段と、計測される各空気の温度/湿度の物理量と、状態量推定用演算手段で推定された発生熱量又は等価な物理量と、前記空調ゾーンの空調条件に関するパラメータとにより、空調システム全体の動力が最小となるよう最適化演算を行い、冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、空調最適化演算手段にて決定した最適物理量になるよう冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えた構成である。
なお、状態量推定用演算手段としては、空調ゾーンの単位時間当たりの発生熱量に代えて、当該空調ゾーンの単位時間当たりの発生水蒸気量を推定してもよい。
The present invention also includes a cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, cold water or hot water generated in the central heat source, and It is composed of a chilled water coil that performs heat exchange with the air that is the load heat from the air-conditioning zone to be air- conditioned, and the first temperature / humidity for detecting the temperature and humidity of the air entering the air-conditioning zone to be air-conditioned Based on the humidity sensor, the second temperature / humidity sensor that detects the temperature and humidity of the air in the air-conditioning zone or the air that exits from the air-conditioning zone, and the control of the amount of heat in the air-conditioning zone based on the air-conditioning control target value of the air-conditioning zone cooling water flowing through the constituent equipment of the air conditioning system, cold water or hot water, to optimize control of the air conditioning system comprising a control mechanism for controlling the air of the working fluid, building air conditioning optimal control system of the building air conditioning optimal control system Oite,
Using the physical quantities of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, enthalpy and air conditioning of the inlet air of the air conditioning zone and the air conditioning zone or the outlet air of the air conditioning zone It is estimated by the state quantity estimation computing means for obtaining the absolute humidity of the zone and estimating the amount of heat generated per unit time of the air conditioning zone, the physical quantity of the temperature / humidity of each air to be measured, and the state quantity estimation computing means. Based on the generated heat quantity or equivalent physical quantity and the parameters related to the air conditioning conditions of the air conditioning zone, optimization calculation is performed to minimize the power of the entire air conditioning system. For cooling water, cold water or hot water, the flow rate, temperature, and air flow rate, and cooling optimization calculating means for determining an optimal physical quantity of temperature and humidity, the cooling water so as to be optimum physical quantity determined by the air-conditioning optimizing operation means, cold water also Hot water, to determine the air-conditioning control target value of the physical quantity of the air, a configuration and means for delivering the determined air-conditioning control target value to the control mechanism of the air conditioning system.
Note that, as the state quantity estimation calculating means , instead of the generated heat amount per unit time of the air conditioning zone, the generated water vapor amount per unit time of the air conditioning zone may be estimated.
本発明によれば、前記各種センサのうち、所要とするセンサで計測される作動流体の物理量から最適化するために必要な空調システムの状態量を推定し、これら作動流体の物理量及び空調システムの状態量を用いて、最適化演算により最適物理量を決定し、空調制御目標値を取得するので、最適な省エネ制御を実現できるビル空調最適制御システム及びビル空調最適制御装置を提供できる。 According to the present invention, among the various sensors, the state quantity of the air conditioning system necessary for optimization is estimated from the physical quantity of the working fluid measured by the required sensor, and the physical quantity of the working fluid and the air conditioning system Since the optimum physical quantity is determined by the optimization calculation using the state quantity and the air conditioning control target value is acquired, it is possible to provide a building air conditioning optimum control system and a building air conditioning optimum control apparatus capable of realizing optimum energy saving control.
以下、本発明に係るビル空調最適制御システムの一実施の形態例について、図1及び図2を参照して説明する。 Hereinafter, an embodiment of a building air conditioning optimum control system according to the present invention will be described with reference to FIGS. 1 and 2.
ビル空調最適制御システムは、典型的な構成を示す制御対象である空調システム1(図1参照)と当該空調システム1を制御するビル空調最適制御装置2(図2参照)とによって構成される。 The building air conditioning optimum control system includes an air conditioning system 1 (see FIG. 1), which is a control target showing a typical configuration, and a building air conditioning optimum control device 2 (see FIG. 2) that controls the air conditioning system 1.
空調システム1は、図1に示すように、冷却塔10から供給される送り冷却水を取り込んで循環させつつ冷房用冷水または暖房用温水を製造する中央熱源(冷凍機)11と、冷水コイル12と、冷凍機13とから成る。   As shown in FIG. 1, the air conditioning system 1 includes a central heat source (refrigerator) 11 that produces cooling water or heating hot water while taking in and circulating the feed cooling water supplied from the cooling tower 10, and a chilled water coil 12. And the refrigerator 13.
冷却塔10は、冷房負荷熱である空気と水との熱交換により冷却水を得た後、中央熱源11に供給する。中央熱源11は、冷却塔11から供給される冷却水との熱交換を行うことにより、所定温度の冷房用冷水または暖房用温水を製造する水冷却装置としての機能を有し、凝縮器11aと直膨コイル(蒸発器に相当する)11bとからなる。中央熱源11で製造された例えば冷水は、冷水用ポンプ及び冷水バルブ(図示せず)を介して冷水コイル12内を循環させた後、冷凍機13を介して中央熱源11に戻される。   The cooling tower 10 obtains cooling water by heat exchange between air and water, which is cooling load heat, and then supplies the cooling water to the central heat source 11. The central heat source 11 has a function as a water cooling device for producing cooling water or heating hot water having a predetermined temperature by exchanging heat with the cooling water supplied from the cooling tower 11, and the condenser 11a It comprises a direct expansion coil (corresponding to an evaporator) 11b. For example, cold water produced by the central heat source 11 is circulated in the cold water coil 12 via a cold water pump and a cold water valve (not shown), and then returned to the central heat source 11 via the refrigerator 13.
冷水コイル12は、冷却器に相当するものであって、中央熱源11から供給される冷水と空調ゾーンとなる部屋14などから戻ってくる冷房負荷熱である空気との熱交換により、冷風を製造して部屋14に戻すことにより、部屋14内を冷房する。また、冷水コイル12は、暖房のとき、中央熱源11から供給される温水と空調ゾーンとなる部屋14などから戻ってくる暖房負荷熱である空気との熱交換により、温風を製造して部屋14に戻すことにより、当該部屋14内を暖房する。なお、ここでは、1つの部屋14の空調ゾーンのみを図示しているが、これは図を簡略化するためであり、実際は多数の空調ゾーンが存在する。   The chilled water coil 12 corresponds to a cooler and produces cold air by heat exchange between the chilled water supplied from the central heat source 11 and the air that is cooling load heat returning from the room 14 serving as an air conditioning zone. Then, the interior of the room 14 is cooled by returning to the room 14. The cold water coil 12 produces hot air by heat exchange between the hot water supplied from the central heat source 11 and air that is heating load heat returning from the room 14 serving as an air conditioning zone during heating. By returning to 14, the room 14 is heated. Here, only the air-conditioning zone of one room 14 is illustrated, but this is for simplifying the drawing, and there are actually many air-conditioning zones.
冷凍機13は、外気を取り込んで冷風を製造するものであって、凝縮器13aと直膨コイル13bとからなる。凝縮器13aは、前述した冷水コイル12内を循環してくる例えば冷水で冷やされた後、中央熱源11に戻す。直膨コイル13bは、部屋14の負荷に見合う冷房容量又は暖房容量のコンプレッサに相当し、外気を取り込んだ後、凝縮器13aを通る冷水と熱交換することにより、外気を冷やして部屋14に供給する。   The refrigerator 13 takes in outside air and produces cold air, and includes a condenser 13a and a direct expansion coil 13b. The condenser 13a is returned to the central heat source 11 after being cooled with, for example, cold water circulating in the cold water coil 12 described above. The direct expansion coil 13b corresponds to a compressor having a cooling capacity or a heating capacity corresponding to the load of the room 14, and after taking outside air, heat is exchanged with cold water passing through the condenser 13a to cool the outside air and supply it to the room 14 To do.
また、空調システム1の各個所には所要のプロセス量を計測する多数のセンサが設置されるが、少なくとも部屋14への空気入口側には入口空気の温度及び湿度を検出する部屋入口温度/湿度センサ15aが設けられ、また、部屋14内には部屋内空気の温度及び湿度を検出する部屋内温度/湿度センサ15bが設けられている。さらに、部屋14の空気出口側には部屋出側の空気の温度及び湿度を検出する部屋出口温度/湿度センサ15c及び流量計16が設けられている。   A number of sensors for measuring the required process amount are installed at each location of the air conditioning system 1, but at least at the air inlet side to the room 14, the temperature and humidity of the room inlet that detects the temperature and humidity of the inlet air. A sensor 15a is provided, and a room temperature / humidity sensor 15b for detecting the temperature and humidity of the room air is provided in the room 14. Furthermore, a room outlet temperature / humidity sensor 15c and a flow meter 16 are provided on the air outlet side of the room 14 to detect the temperature and humidity of the air on the room outlet side.
なお、温度/湿度センサ15a〜15cは、温度センサと湿度センサとを一体的にまとめた計測器としたが、温度と湿度とを別々に計測する対をなすセンサであっても良い。また、図1では、部屋14内に1個の固体としての温度/湿度センサ15bを設置したが、例えば複数個の温度/湿度センサ15b,…を設置し、これら温度/湿度センサ15b,…で検出されたデータの平均値を部屋14内の代表温度及び代表湿度としても良い。   The temperature / humidity sensors 15a to 15c are measuring instruments in which the temperature sensor and the humidity sensor are integrated together, but may be paired sensors that measure temperature and humidity separately. In FIG. 1, the temperature / humidity sensor 15b as a single solid is installed in the room 14. However, for example, a plurality of temperature / humidity sensors 15b,. The average value of the detected data may be used as the representative temperature and the representative humidity in the room 14.
図2は空調最適制御システムの全体構成を示す図であって、空調システム1と空調最適制御装置2とで構成される。   FIG. 2 is a diagram showing the overall configuration of the air conditioning optimal control system, which includes an air conditioning system 1 and an air conditioning optimal control device 2.
空調システム1は、各種センサ17と、空調機器18と、制御機構19とが設けられる。各種センサ17としては、最適制御を実行する上で必要とする図1に示すセンサ15a,15b,15c,16の他、空調システム1を構成する各空調機器18の適宜な個所に取り付けられる消費電力量を計測する電力量計(図示せず)などを含む。 The air conditioning system 1 is provided with various sensors 17, an air conditioner 18, and a control mechanism 19. As the various sensors 17, in addition to the sensors 15a, 15b, 15c, and 16 shown in FIG. 1 that are necessary for executing optimal control, the power consumption that is attached to appropriate portions of the air conditioners 18 that constitute the air conditioning system 1 A watt hour meter (not shown) for measuring the amount is included.
各種センサ17は、空調機器18の各個所の状態、例えば空調用作動流体の温度,流量,湿度等の物理量、空調機器18である例えばポンプ,ファンなどの動力に伴う消費電力量を計測し、各種センサ17の出力データとして空調最適制御装置2に送信する機能を有する。   The various sensors 17 measure the state of each part of the air conditioner 18, for example, physical quantities such as temperature, flow rate, humidity, etc. of the air conditioning working fluid, and power consumption associated with the power of the air conditioner 18 such as pumps and fans, It has the function to transmit to the air conditioning optimal control apparatus 2 as output data of various sensors 17.
空調機器18は、図1に示す各種機器11〜14の他、建物の空調上必要な各種の付属設備,例えばポンプ,ファンその他多くの機器(図示せず)で構成される。   In addition to the various devices 11 to 14 shown in FIG. 1, the air conditioning device 18 includes various accessory equipment necessary for air conditioning of a building, such as a pump, a fan, and many other devices (not shown).
制御機構19は、センサ15a,15b,15c,16を含む各種センサ17から受け取る物理量をもとに、空調最適制御装置2が定めた各種の制御目標値を受信し、当該制御目標値に向けて各個所の状態である物理量を制御する。ここで、制御機構19としては、一例として例えばバルブ開閉装置、ファン回転数制御装置等が挙げられる。   The control mechanism 19 receives various control target values determined by the air conditioning optimal control device 2 based on physical quantities received from the various sensors 17 including the sensors 15a, 15b, 15c, and 16, and is directed toward the control target values. The physical quantity that is the state of each part is controlled. Here, examples of the control mechanism 19 include a valve opening / closing device and a fan rotation speed control device.
空調最適制御装置2は、各センサ17から空調システム1の各個所の物理量を受け取りつつ、多数の部屋14,…を含んだ全体のバランスを取りながら、必要な空調機器18を制御するための制御機構19に制御目標値を出力し、最適制御を実行する。   The air conditioning optimum control device 2 receives the physical quantity of each part of the air conditioning system 1 from each sensor 17, and controls the necessary air conditioning equipment 18 while balancing the whole including the multiple rooms 14,. The control target value is output to the mechanism 19 and optimal control is executed.
空調最適制御装置2は、具体的には、各種センサ17の出力データを受信するセンサデータ受信部21と、このデータ受信部21で受信された各種センサ17の出力データから空調システム1の状態量を推定する状態量推定用演算部22と、各種センサ17の出力データである物理量や状態量推定用演算部22で得られた状態量とを用いて、各種センサ17で得る物理量が所定の値となるような最適な物理量を推定する空調最適化演算部23とが設けられている。   Specifically, the air conditioning optimum control device 2 includes a sensor data receiving unit 21 that receives output data of the various sensors 17, and a state quantity of the air conditioning system 1 from the output data of the various sensors 17 received by the data receiving unit 21. The physical quantity obtained by the various sensors 17 is a predetermined value using the state quantity estimation computing unit 22 for estimating the state quantity and the physical quantity that is output data of the various sensors 17 and the state quantity obtained by the state quantity estimation computing unit 22. And an air conditioning optimization calculation unit 23 that estimates an optimal physical quantity such that
空調最適化演算部23は、部屋の設定温度/湿度、外気の温度/湿度、空調負荷、など空調条件や熱交換器の伝熱特性および、ファン、ポンプ、圧縮機の電力の消費特性を表すモデル式のパラメータを入力することによって、最適化演算を実行し、例えば各空調機器18の動力を最小とする空調システムの熱力学的な諸量(作動流体の温度や流量)の最適平衡解を求めることによって、最適な空調システムの状態を与える物理量(例えば冷水や冷却水の流量やそれらの温度)を推定する。   The air conditioning optimization calculation unit 23 represents air conditioning conditions such as the set temperature / humidity of the room, the temperature / humidity of the outside air, the air conditioning load, the heat transfer characteristics of the heat exchanger, and the power consumption characteristics of the fan, pump, and compressor. By inputting the parameters of the model formula, optimization calculation is executed, for example, the optimal equilibrium solution of the thermodynamic quantities (temperature and flow rate of the working fluid) of the air conditioning system that minimizes the power of each air conditioner 18 is obtained. The physical quantity (for example, the flow volume of cold water or cooling water, or those temperatures) which gives the state of an optimal air conditioning system is estimated by calculating | requiring.
また、 空調最適制御装置2は、各種センサ17の物理量と状態量推定用演算部22で得られた状態量と前記空調最適化演算部23で得られる空調システム1の最適な物理量とに基づいて、空調システム1の各種空調制御目標値を決定する空調制御目標値演算部24と、この演算部24で決定された各種の空調制御目標値を空調システム1の制御機構20に向けて送出する目標値出力部25とが設けられている。   Further, the air conditioning optimum control device 2 is based on the physical quantities of the various sensors 17, the state quantities obtained by the state quantity estimation computing section 22, and the optimum physical quantities of the air conditioning system 1 obtained by the air conditioning optimization computing section 23. The air conditioning control target value calculator 24 for determining various air conditioning control target values of the air conditioning system 1 and the target for sending the various air conditioning control target values determined by the calculator 24 to the control mechanism 20 of the air conditioning system 1. A value output unit 25 is provided.
次に、以上のように構成されたビル空調最適制御システムの動作について説明する。 Next, operation | movement of the building air-conditioning optimal control system comprised as mentioned above is demonstrated.
(1) 状態量推定例1について。 (1) About state quantity estimation example 1.
先ず、空調システム1においては、部屋14内の温熱環境を快適に維持するために出入力空気の温度及び湿度を検出する部屋入口温度/湿度センサ15a及び部屋出口温度/湿度センサ15cにて、空気の部屋入口温度T1及び部屋入口湿度φ1、部屋14から出る空気の部屋出口温度T2及び部屋出口湿度φ2の他、流量計16にて空気の質量流量Maを検出する。   First, in the air conditioning system 1, in order to maintain the thermal environment in the room 14 comfortably, the room inlet temperature / humidity sensor 15a and the room outlet temperature / humidity sensor 15c that detect the temperature and humidity of the input / output air In addition to the room inlet temperature T1 and the room inlet humidity φ1 and the room outlet temperature T2 and the room outlet humidity φ2 of the air coming out of the room 14, the flow meter 16 detects the mass flow rate Ma of the air.
また、部屋14内には部屋内温度/湿度センサ15bが設置され、当該部屋内温度/湿度センサ15bにより部屋内代表温Tm及び部屋内代表湿度φmを計測する。   A room temperature / humidity sensor 15b is installed in the room 14, and the room temperature / humidity sensor 15b measures the room representative temperature Tm and the room representative humidity φm.
そして、空調システム1は、各種センサ17で検出された各種データを所定の周期ごとに空調最適制御装置2に送信する。このとき、所要とする空調機器18に設置される電力量計から消費電力Wi(i=1,2,…)も送信される。   Then, the air conditioning system 1 transmits various data detected by the various sensors 17 to the air conditioning optimal control device 2 at predetermined intervals. At this time, power consumption Wi (i = 1, 2,...) Is also transmitted from the watt-hour meter installed in the required air conditioner 18.
空調最適制御装置2のセンサデータ受信部21は、空調システム1から送信されてくる各種センサ17の出力データを受信し、適宜な記憶手段に格納した後、状態量推定用演算部22に渡す。   The sensor data receiving unit 21 of the air conditioning optimal control device 2 receives the output data of the various sensors 17 transmitted from the air conditioning system 1, stores it in an appropriate storage means, and then passes it to the state quantity estimation calculating unit 22.
ここで、状態量推定用演算部22は、各種センサ17の出力データを受け取り、部屋入側空気の入口温度T1と部屋入口湿度φ1とから部屋入口空気のエンタルピh1及び絶対湿度x1を求め、また、部屋出側空気の出口温度T2と出口湿度φ2とから部屋出口空気のエンタルピh2及び絶対湿度x2を求める。   Here, the state quantity estimation calculation unit 22 receives the output data of the various sensors 17, obtains the enthalpy h1 and absolute humidity x1 of the room entrance air from the entrance temperature T1 of the room entrance air and the room entrance humidity φ1, and The enthalpy h2 and the absolute humidity x2 of the room outlet air are obtained from the outlet temperature T2 of the room outlet side air and the outlet humidity φ2.
また、状態量推定用演算部22は、部屋14内の代表温度Tmと代表湿度φmとから部屋14内の代表エンタルピhm及び代表絶対湿度xmを求めた後、これら代表エンタルピhm及び代表絶対湿度xmにおける単位時間当たりの変分Δhm/Δt及びΔxm/Δtを求める。ここで、Δtは空調システム1の各個所の温度や湿度を測定する時間間隔(周期)、ΔhmやΔxmはその所定時間内のエンタルピhm及び代表絶対湿度xmの変分である。   Further, the state quantity estimation calculation unit 22 obtains the representative enthalpy hm and the representative absolute humidity xm in the room 14 from the representative temperature Tm and the representative humidity φm in the room 14, and then the representative enthalpy hm and the representative absolute humidity xm. Variations Δhm / Δt and Δxm / Δt per unit time are obtained. Here, Δt is a time interval (cycle) for measuring the temperature and humidity of each part of the air conditioning system 1, and Δhm and Δxm are variations of the enthalpy hm and the representative absolute humidity xm within the predetermined time.
状態量推定用演算部22は、以上のようにして各箇所のエンタルピ,絶対湿度及び所定時間内のエンタルピhm及び代表絶対湿度xmの変分Δhm/Δt、Δxm/Δtを用い、例えば以下のような演算式に従って部屋14内の単位時間当たりの発生熱量Sh、発生水蒸気量xhを推定する。   The state quantity estimation calculation unit 22 uses the enthalpy, absolute humidity, enthalpy hm within a predetermined time, and variations Δhm / Δt and Δxm / Δt of the representative absolute humidity xm as described above, for example, as follows. The generated heat amount Sh and the generated water vapor amount xh per unit time in the room 14 are estimated according to a simple arithmetic expression.
ところで、部屋14の体積をVm、空気の密度をρaとすれば、部屋14内エンタルピのバランス式は次の関係式で表すことができる。
(ρaVmΔhm/Δt)=Ma(h1−h2)+Sh …(1)
また、部屋14内絶対湿度のバランス式は次の関係式で表すことができる。
(ρaVmΔxm/Δt)=Ma(x1−x2)+xh …(2)
よって、単位時間当りの発生熱量Shは、前記(1)式を変形することにより、
Sh=(ρaVmΔhm/Δt)+Ma(h2−h1) …(3)
と推定できる。また単位時間当たりの発生水蒸気xhは、前記(2)式を変形することにより、
xh=(ρaVmΔxm/Δt)+Ma(x2−x1) …(4)
と推定できる。
By the way, if the volume of the room 14 is Vm and the density of air is ρa, the balance formula of the enthalpy in the room 14 can be expressed by the following relational expression.
(ΡaVmΔhm / Δt) = Ma (h1−h2) + Sh (1)
Moreover, the balance formula of the absolute humidity in the room 14 can be expressed by the following relational expression.
(ΡaVmΔxm / Δt) = Ma (x1−x2) + xh (2)
Therefore, the amount of generated heat Sh per unit time is obtained by modifying the equation (1).
Sh = (ρaVmΔhm / Δt) + Ma (h2−h1) (3)
Can be estimated. Further, the generated water vapor xh per unit time is obtained by modifying the equation (2).
xh = (ρaVmΔxm / Δt) + Ma (x2−x1) (4)
Can be estimated.
また、部屋14内の空気と部屋出口側の空気は熱的に等しいと考えれば、近似的にhm=h2,xm=x2で表すことができ、これにより部屋出口温度/湿度センサ15cを省略することが可能となる。   If the air in the room 14 and the air on the room outlet side are considered to be thermally equal, they can be approximately represented by hm = h2, xm = x2, thereby omitting the room outlet temperature / humidity sensor 15c. It becomes possible.
従って、以上のような状態量推定用演算部22によれば、部屋14内から流出する空気の質量流量(=部屋14内に流入する空気の質量流)、部屋14内に流入するエンタルピh1と絶対湿度x1、部屋14から流出する空気のエンタルピh2と絶対温度x2、部屋14内のエンタルピhmと絶対温度xmを推定することにより、部屋14で発生する単位時間当たりの発生熱量Shや発生水蒸気量xhを推定することができる。   Therefore, according to the state quantity estimation calculation unit 22 as described above, the mass flow rate of air flowing out from the room 14 (= mass flow of air flowing into the room 14), the enthalpy h1 flowing into the room 14, and By estimating the absolute humidity x1, the enthalpy h2 and the absolute temperature x2 of the air flowing out of the room 14, and the enthalpy hm and the absolute temperature xm in the room 14, the amount of heat Sh and the amount of water vapor generated per unit time generated in the room 14 xh can be estimated.
従って、空調最適化演算部23は、以上のように推定された単位時間当たりの状態量である発生熱量Shや発生水蒸気量xhの推定値と、各種センサ17のうち、温度/湿度センサ15a,15b,15c及び流量計16で計測される物理量とを用い、空調システム1全体の温度,湿度バランスを推定し、空調システム1の各空調機器18の各個所の物理量の一部または全部の最適値を推定し、空調制御目標値演算部24に送出し、空調制御目標値を得るものである。   Therefore, the air conditioning optimization calculation unit 23 calculates the temperature / humidity sensor 15a, the estimated value of the generated heat amount Sh and the generated water vapor amount xh, which are state quantities per unit time estimated as described above, and the various sensors 17. 15b, 15c and the physical quantity measured by the flow meter 16 are used to estimate the temperature / humidity balance of the entire air conditioning system 1 and to optimize some or all of the physical quantities at each location of each air conditioner 18 of the air conditioning system 1. Is sent to the air conditioning control target value calculation unit 24 to obtain the air conditioning control target value.
(2) 状態量推定例2について。 (2) About state quantity estimation example 2.
次に、空調最適化演算部23が最適化制御を実現するために必要とする、状態量推定用演算部22における他の状態量の推定する例について説明する。   Next, an example of estimating other state quantities in the state quantity estimation computing unit 22 required for the air conditioning optimization computing unit 23 to realize the optimization control will be described.
図1に示す冷却塔10、中央熱源11及び冷凍機13に付随する凝縮器11a,13a及び直膨コイル11b,13b、冷水コイル12は、基本的には、全て図3に示す熱交換器に相当する構成となっている。   The cooling tower 10, the central heat source 11 and the condensers 11a and 13a, the direct expansion coils 11b and 13b, and the cold water coil 12 that are associated with the refrigerator 13 are basically all configured as a heat exchanger shown in FIG. It has a corresponding configuration.
例えば冷水コイル12を例に挙げて説明すると、当該冷水コイル12である図3に示す熱交換器30において、作動流体31は部屋14を空気であり、作動流体32は中央熱源11を出た冷水または温水である。このような熱交換器30の性能/特性としては、次式で定義される伝達係数αで表すことができる。ここで、伝達係数とは、単位時間当たりに熱交換器30の伝達面を通過する熱量を、前記熱交換器30に流入し互いに熱交換する2つの作動流体31,32の平均温度差で除して得られる値である。   For example, the cold water coil 12 will be described as an example. In the heat exchanger 30 shown in FIG. 3 that is the cold water coil 12, the working fluid 31 is air in the room 14, and the working fluid 32 is cold water that has exited the central heat source 11. Or warm water. Such performance / characteristics of the heat exchanger 30 can be expressed by a transfer coefficient α defined by the following equation. Here, the transfer coefficient is obtained by dividing the amount of heat passing through the transfer surface of the heat exchanger 30 per unit time by the average temperature difference between the two working fluids 31 and 32 that flow into the heat exchanger 30 and exchange heat with each other. This is the value obtained.
αΔT=Q …(5)
上式において、ΔTは図3に示す作動流体31と作動流体32との平均温度差を表すものであって、算術平均温度差と対数平均温度差とを推定する方法がある。何れの推定方法でも、熱交換器30に入出力する2つの作動流体31,32の出入口温度を計測することにより、容易に推定できる。
αΔT = Q (5)
In the above equation, ΔT represents the average temperature difference between the working fluid 31 and the working fluid 32 shown in FIG. 3, and there is a method of estimating the arithmetic average temperature difference and the logarithmic average temperature difference. Any estimation method can be easily estimated by measuring the inlet / outlet temperatures of the two working fluids 31 and 32 input to and output from the heat exchanger 30.
また、上式において、Qは熱交換器30内で作動流体31から作動流体32に移動する熱量であって、作動流体31,32の出入口エンタルピの差と質量流量の積で求めることができる。   In the above equation, Q is the amount of heat transferred from the working fluid 31 to the working fluid 32 in the heat exchanger 30 and can be obtained by the product of the difference between the inlet and outlet enthalpies of the working fluids 31 and 32 and the mass flow rate.
従って、作動流体31と作動流体32との平均温度差を推定するためには、熱交換器30に入出力する2つの作動流体31及び作動流体32のそれぞれの出入口流路に温度を検出する温度センサ33i,33o、34i,34oを設ける必要がある。   Therefore, in order to estimate the average temperature difference between the working fluid 31 and the working fluid 32, the temperatures of the two working fluids 31 that are input to and output from the heat exchanger 30 and the temperatures at which the temperatures of the respective working fluid 32 are detected. It is necessary to provide the sensors 33i, 33o, 34i, 34o.
また、作動流体31,32の出入口エンタルピの差と質量流量の積で求めるためには、前記センサ33i,33o、34i,34oの他に、作動流体31及び作動流体32の入り側流路にそれぞれ流量計35,36を設ける必要がある。   In addition, in order to obtain the product of the difference between the inlet and outlet enthalpies of the working fluids 31 and 32 and the mass flow rate, in addition to the sensors 33 i, 33 o, 34 i and 34 o, respectively, It is necessary to provide flow meters 35 and 36.
そこで、空調機器である冷却塔10、中央熱源11及び冷凍機13に付随する凝縮器11a,13a及び直膨コイル11b,13b、冷水コイル12をそれぞれ熱交換器30と考え、図3に示すように温度センサ33i,33o、34i,34o及び流量計35,36を設置し、前述した空調システム1の各種センサ17の出力データとして送信し、空調最適制御装置2のセンサデータ受信部21を介して状態量推定用演算部22に渡す。   Therefore, the condensers 11a and 13a, the direct expansion coils 11b and 13b, and the cold water coil 12 associated with the cooling tower 10, the central heat source 11 and the refrigerator 13 which are air conditioners are considered as the heat exchanger 30, and as shown in FIG. Temperature sensors 33i, 33o, 34i, 34o and flow meters 35, 36 are installed and transmitted as output data of the various sensors 17 of the air conditioning system 1 described above, via the sensor data receiving unit 21 of the air conditioning optimum control device 2. It is passed to the state quantity estimation calculation unit 22.
ここで、状態量推定用演算部22は、温度センサ33i,33o、34i,34o及び流量計35,36から得られた出力データを用いて、ΔT及びQを求めることにより、前記(5)式に基づいて各熱交換器30,…の伝達係数αを推定することができる。   Here, the state quantity estimation calculation unit 22 obtains ΔT and Q by using the output data obtained from the temperature sensors 33i, 33o, 34i, 34o and the flow meters 35, 36, thereby obtaining the equation (5). Can be used to estimate the transfer coefficient α of each heat exchanger 30,.
よって、空調最適化演算部23は、以上のように推定された各熱交換器30,…の伝達係数αの推定値に基づき、空調システム1全体の温度,湿度バランスを推定し、空調システム1の各空調機器18の物理量の一部または全部の最適値の推定を行うことができる。なお、図示されていないが作動流体が空気の場合には、熱量Qを求めるために、各熱交換器30,…の出入口温度だけでなく、出入口湿度を測定するセンサを設けてもよい。   Therefore, the air conditioning optimization computing unit 23 estimates the temperature and humidity balance of the entire air conditioning system 1 based on the estimated value of the transfer coefficient α of each heat exchanger 30,. The optimum values of some or all of the physical quantities of the air conditioners 18 can be estimated. Although not shown, when the working fluid is air, in order to obtain the heat quantity Q, a sensor for measuring not only the inlet / outlet temperature of each heat exchanger 30, but also the inlet / outlet humidity may be provided.
(3) 状態量推定例3について。 (3) About state quantity estimation example 3.
さらに、空調最適化演算部23が最適化制御を実現するために必要とする、状態量推定用演算部22における、さらに他の状態量の推定する例について説明する。   Furthermore, an example of estimating another state quantity in the state quantity estimation computing unit 22 that is required for the air conditioning optimization computing unit 23 to realize the optimization control will be described.
空調システム1においては、空気を搬送するファン、水を送流するポンプ、中央熱源11である冷凍機や冷凍機13に付属するコンプレッサなどの空調機器18が設置されている。このため、前述した各種センサ17の中には、各空調機器18であるファン、ポンプ、コンプレッサなどの電力値を計測する電力量計が設置され、図2に示すように各電力量計で計測されたファン電力値、ポンプ電力値、コンプレッサ電力値が所定の周期ごとに空調最適制御装置2に送信される。   In the air conditioning system 1, an air conditioner 18 such as a fan that conveys air, a pump that feeds water, a refrigerator that is the central heat source 11, and a compressor that is attached to the refrigerator 13 is installed. For this reason, in the various sensors 17 described above, watt hour meters for measuring the power values of the fans, pumps, compressors, etc., which are the air conditioners 18 are installed, and each watt hour meter measures as shown in FIG. The fan power value, the pump power value, and the compressor power value thus transmitted are transmitted to the air conditioning optimum control device 2 at predetermined intervals.
空調最適制御装置2のデータ受信部21は、空調システム1から送信されてくるファン電力値、ポンプ電力値、コンプレッサ電力値を受信し、状態量推定用演算部22に送出する。   The data receiving unit 21 of the air conditioning optimum control device 2 receives the fan power value, the pump power value, and the compressor power value transmitted from the air conditioning system 1 and sends them to the state quantity estimation calculating unit 22.
状態量推定用演算部22は、各電力量計の電力値に対し、他のセンサ(例えば流量計など)の出力データとの関係式で定める係数に基づき、所要電力推定モデルのパラメータを推定する。因みに、ファンやポンプの動作に必要な電力は、これらファンやポンプが搬送する作動流体の流量の3乗に比例すると仮定し、その比例係数をモデルパラメータとして推定する。   The state quantity estimation calculation unit 22 estimates the parameter of the required power estimation model based on the coefficient determined by the relational expression with the output value of another sensor (for example, a flow meter) with respect to the power value of each watt-hour meter. . Incidentally, it is assumed that the electric power necessary for the operation of the fan or pump is proportional to the cube of the flow rate of the working fluid conveyed by the fan or pump, and the proportionality coefficient is estimated as a model parameter.
また、状態量推定用演算部22は、予め複数の各種センサ17の出力値と前述した各電力量計の電力値との関係を関数として定めておけば、回帰分析等によって自動的にモデルパラメータを求めることが可能である。   In addition, the state quantity estimation calculation unit 22 automatically determines model parameters by regression analysis or the like if the relationship between the output values of the various sensors 17 and the power values of the watt-hour meters described above is determined in advance. Can be obtained.
従って、空調最適化演算部23は、各種センサ17の出力値と各設備機器18の電力値との関係が分れば、空調システム全体の温度、湿度バランスを維持するための所要動力を計算することができ、その所要動力を最小にするように空調システム1の状態量の一部または全部の最適値を推定することができる。   Therefore, if the relationship between the output values of the various sensors 17 and the power values of the respective equipment devices 18 is known, the air conditioning optimization calculation unit 23 calculates the required power for maintaining the temperature and humidity balance of the entire air conditioning system. It is possible to estimate an optimum value of a part or all of the state quantity of the air conditioning system 1 so as to minimize the required power.
従って、以上のような実施の形態によれば、従来は空調制御装置が各種センサの出力値のみを用いて、空調システム1の各個所の状態量を制御することから、最適な制御を実現できなかったが、本発明システムでは、空調最適制御装置2に状態量推定用演算部22を設け、ここで各種センサ17の出力値から空調最適化に必要な状態量,例えば部屋内発生熱量、部屋内発生水蒸気量等,より高度な状態量や物理量を推定し、空調最適化演算部23に提供することにより、空調システム1全体を見通した最適な制御が可能となり、空調システム1の大幅な省エネを実現することができる。   Therefore, according to the embodiment as described above, conventionally, the air conditioning control device controls the state quantity of each part of the air conditioning system 1 using only the output values of various sensors, so that optimal control can be realized. However, in the system according to the present invention, the air conditioning optimum control device 2 is provided with the state quantity estimating calculation unit 22, where the state quantity required for air conditioning optimization, for example, the amount of heat generated in the room, the room, etc. from the output values of the various sensors 17. Estimating more advanced state quantities and physical quantities, such as the amount of water vapor generated in the interior, and providing it to the air conditioning optimization calculation unit 23 enables optimal control over the entire air conditioning system 1 and greatly reduces the energy consumption of the air conditioning system 1. Can be realized.
(その他の実施の形態)
図1に示す部屋入口温度/湿度センサ15a及び部屋出口温度/湿度センサ15cとしては、空調システム1の部屋入口及び部屋出口の温度/湿度を計測し、空調最適制御装置2に送信する構成としたが、例えば各温度/湿度センサ15a,15cの内部に、計測した温度及び湿度からエンタルピと絶対湿度を演算する機能を備えた構成であってもよい。
(Other embodiments)
The room entrance temperature / humidity sensor 15a and the room exit temperature / humidity sensor 15c shown in FIG. 1 are configured to measure the temperature / humidity of the room entrance and the room exit of the air conditioning system 1 and transmit them to the air conditioning optimum control device 2. However, for example, the temperature / humidity sensors 15a and 15c may have a function of calculating enthalpy and absolute humidity from the measured temperature and humidity.
また、部屋内温度/湿度センサ15bとしては、部屋内のエンタルピや絶対湿度の時間微分を求める機能を持たせ、所定時間ごとに温度、湿度を計測し、この計測した温度及び湿度からエンタルピ及び絶対湿度を求めた後、それらエンタルピ及び絶対湿度の時間微分値を計算し、出力する構成であってもよい。   In addition, the room temperature / humidity sensor 15b has a function of obtaining time derivation of enthalpy and absolute humidity in the room, measures temperature and humidity at predetermined time intervals, and enthalpy and absolute from the measured temperature and humidity. After obtaining the humidity, it may be configured to calculate and output the time differential values of the enthalpy and absolute humidity.
その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
本発明に係るビル空調最適制御システムを適用する一般的な空調システムの構成図。The block diagram of the general air conditioning system which applies the building air-conditioning optimal control system which concerns on this invention. 本発明に係るビル空調最適制御システムの一実施の形態を示す全体構成図。1 is an overall configuration diagram showing an embodiment of a building air conditioning optimum control system according to the present invention. 空調機器である熱交換器の伝達係数を推定するために、当該熱交換器の入出力する2つの作動流体の流路に設置される温度センサ及び流量計の設置例を示す図。The figure which shows the installation example of the temperature sensor and flow meter which are installed in the flow path of the two working fluids which the said heat exchanger inputs and outputs in order to estimate the transmission coefficient of the heat exchanger which is an air conditioner.
符号の説明Explanation of symbols
1…空調システム、2…空調最適制御装置、10…冷却塔、11…中央熱源、11a…凝縮器、11b…直膨コイル、12…冷水コイル、13…冷凍機、13a…凝縮器、13b…直膨コイル、14…部屋(空調ゾーン)、15a…部屋入口温度・湿度センサ、15b…部屋内温度/湿度センサ、15c…部屋出口温度/湿度センサ、16…流量計、17…各種センサ、18…空調機器、19…制御機構、21…センサデータ受信部、22…状態量推定用演算部、23…空調最適化演算部、24…空調制御目標値演算部、25…目標値出力部、30…熱交換器、31,32…作動流体、33i,33o…温度センサ、34i,34o…温度センサ、35,36…流量計。   DESCRIPTION OF SYMBOLS 1 ... Air conditioning system, 2 ... Air conditioning optimal control apparatus, 10 ... Cooling tower, 11 ... Central heat source, 11a ... Condenser, 11b ... Direct expansion coil, 12 ... Cold water coil, 13 ... Refrigerator, 13a ... Condenser, 13b ... Direct expansion coil, 14 ... room (air conditioning zone), 15a ... room inlet temperature / humidity sensor, 15b ... room temperature / humidity sensor, 15c ... room outlet temperature / humidity sensor, 16 ... flow meter, 17 ... various sensors, 18 DESCRIPTION OF SYMBOLS ... Air conditioning apparatus, 19 ... Control mechanism, 21 ... Sensor data receiving part, 22 ... State quantity estimation calculating part, 23 ... Air conditioning optimization calculating part, 24 ... Air conditioning control target value calculating part, 25 ... Target value output part, 30 ... heat exchanger, 31, 32 ... working fluid, 33i, 33o ... temperature sensor, 34i, 34o ... temperature sensor, 35, 36 ... flow meter.

Claims (4)

  1. 冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成される空調システムと当該空調システムの最適化制御を行うビル空調最適制御装置とを有するビル空調最適制御システムにおいて、
    前記空調システムは、
    前記空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、
    前記空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、
    前記空調ゾーンの空調制御目標値に基づいて、前記空調ゾーンの熱量の制御に係る前記空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備え、
    前記ビル空調最適制御装置は、
    前記第一の温度/湿度センサ及び前記第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、前記空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び前記空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生熱量を推定する状態量推定用演算手段と、
    計測される前記各空気の温度/湿度の物理量と、前記状態量推定用演算手段で推定された発生熱量と、前記空調ゾーンの空調条件に関するパラメータとにより、前記空調システム全体の動力が最小となるよう最適化演算を行い、前記冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、
    前記空調最適化演算手段にて決定した最適物理量になるよう前記冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えたことを特徴とするビル空調最適制御システム。
    A cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, an air conditioning zone that is subject to air conditioning with the cold water or hot water generated in the central heat source In a building air conditioning optimum control system having an air conditioning system composed of a cold water coil for exchanging heat with air that is a load heat from the building and a building air conditioning optimum control device that performs optimization control of the air conditioning system,
    The air conditioning system
    A first temperature / humidity sensor for detecting the temperature and humidity of the air entering the air conditioning zone;
    A second temperature / humidity sensor for detecting the temperature and humidity of the air in the air conditioning zone or the air exiting from the air conditioning zone;
    Based on the air conditioning control target value of the air conditioning zone, a control mechanism for controlling the working fluid of cooling water, cold water or hot water, air flowing through the components of the air conditioning system related to the control of the amount of heat of the air conditioning zone,
    The building air conditioning optimum control device is:
    Using the physical quantities of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, the air-conditioning zone inlet air and the air-conditioning zone or air-conditioning zone outlet air Calculating the enthalpy and the absolute humidity of the air-conditioning zone, and calculating the state quantity estimating means for estimating the amount of heat generated per unit time of the air-conditioning zone;
    The power of the entire air conditioning system is minimized by the measured physical quantity of the temperature / humidity of each air, the amount of generated heat estimated by the state quantity estimation computing means, and the parameters relating to the air conditioning conditions of the air conditioning zone. Air conditioning optimization calculating means for determining the optimum physical quantity of flow rate, temperature and humidity for the cooling water, cold water or hot water, and for air ,
    An air conditioning control target value related to the physical quantity of the cooling water, cold water, hot water, or air is determined so as to be the optimum physical quantity determined by the air conditioning optimization calculating means, and the determined air conditioning control target value is controlled by the air conditioning system. A building air conditioning optimum control system comprising means for sending to a mechanism.
  2. 冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成される空調システムと当該空調システムの最適化制御を行うビル空調最適制御装置とを有するビル空調最適制御システムにおいて、
    前記空調システムは、
    空調の対象となる空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、
    前記空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、
    前記空調ゾーンの空調制御目標値に基づいて、前記空調ゾーンの水蒸気量の制御に係る前記空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備え、
    前記ビル空調最適制御装置は、
    前記第一の温度/湿度センサ及び前記第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、前記空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び前記空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生水蒸気量を推定する状態量推定用演算手段と、
    計測される前記各空気の温度/湿度の物理量と、前記状態量推定用演算手段で推定された発生水蒸気量と、前記空調ゾーンの空調条件に関するパラメータとにより、前記空調システム全体の動力が最小となるよう最適化演算を行い、前記冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、
    前記空調最適化演算手段にて決定した最適物理量になるよう前記冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えたことを特徴とするビル空調最適制御システム。
    A cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, an air conditioning zone that is subject to air conditioning with the cold water or hot water generated in the central heat source In a building air conditioning optimum control system having an air conditioning system composed of a cold water coil for exchanging heat with air that is a load heat from the building and a building air conditioning optimum control device that performs optimization control of the air conditioning system,
    The air conditioning system
    A first temperature / humidity sensor for detecting the temperature and humidity of the air entering the air-conditioning zone to be air-conditioned;
    A second temperature / humidity sensor for detecting the temperature and humidity of the air in the air conditioning zone or the air exiting from the air conditioning zone;
    Based on the air conditioning control target value of the air conditioning zone, a control mechanism for controlling the working fluid of cooling water, cold water or hot water, air flowing through the components of the air conditioning system related to the control of the water vapor amount of the air conditioning zone,
    The building air conditioning optimum control device is:
    Using the physical quantities of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, the air-conditioning zone inlet air and the air-conditioning zone or air-conditioning zone outlet air Calculating the enthalpy and the absolute humidity of the air-conditioning zone, and calculating the state quantity estimating means for estimating the amount of water vapor generated per unit time of the air-conditioning zone;
    The power of the entire air conditioning system is minimized by the measured physical quantity of the temperature / humidity of each air, the amount of water vapor estimated by the state quantity estimation computing means, and the parameters relating to the air conditioning conditions of the air conditioning zone. An air conditioning optimization calculating means for determining an optimal physical quantity of flow rate, temperature and humidity for the cooling water, cold water or hot water, and for air ,
    An air conditioning control target value related to the physical quantity of the cooling water, cold water, hot water, or air is determined so as to be the optimum physical quantity determined by the air conditioning optimization calculating means, and the determined air conditioning control target value is controlled by the air conditioning system. A building air conditioning optimum control system comprising means for sending to a mechanism.
  3. 冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成されると共に、前記空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、前記空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、前記空調ゾーンの空調制御目標値に基づいて、前記空調ゾーンの熱量の制御に係る前記空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備える空調システムの最適化制御を行う、ビル空調最適制御システムのビル空調最適制御装置において、
    前記第一の温度/湿度センサ及び前記第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、前記空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び前記空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生熱量を推定する状態量推定用演算手段と、
    計測される前記各空気の温度/湿度の物理量と、前記状態量推定用演算手段で推定された発生熱量と、前記空調ゾーンの空調条件に関するパラメータとにより、前記空調システム全体の動力が最小となるよう最適化演算を行い、前記冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、
    前記空調最適化演算手段にて決定した最適物理量になるよう前記冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えたことを特徴とするビル空調最適制御装置。
    A cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, an air conditioning zone that is subject to air conditioning with the cold water or hot water generated in the central heat source together constituted by chilled water coils for heat exchange with air as a load heat from a first temperature / humidity sensor for detecting the temperature and humidity of the air entering the conditioning zone, the air of the air conditioning zone, or A second temperature / humidity sensor for detecting the temperature and humidity of the air coming out of the air-conditioning zone, and a component of the air-conditioning system for controlling the amount of heat in the air-conditioning zone based on the air-conditioning control target value of the air-conditioning zone In the building air conditioning optimum control system of the building air conditioning optimum control system, which performs the optimization control of the air conditioning system including the flowing cooling water, the cold water or hot water, and the control mechanism for controlling the working fluid of the air ,
    Using the physical quantities of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, the air-conditioning zone inlet air and the air-conditioning zone or air-conditioning zone outlet air Calculating the enthalpy and the absolute humidity of the air-conditioning zone, and calculating the state quantity estimating means for estimating the amount of heat generated per unit time of the air-conditioning zone;
    The power of the entire air conditioning system is minimized by the measured physical quantity of the temperature / humidity of each air, the amount of generated heat estimated by the state quantity estimation computing means, and the parameters relating to the air conditioning conditions of the air conditioning zone. Air conditioning optimization calculating means for determining the optimum physical quantity of flow rate, temperature and humidity for the cooling water, cold water or hot water, and for air ,
    An air conditioning control target value related to the physical quantity of the cooling water, cold water, hot water, or air is determined so as to be the optimum physical quantity determined by the air conditioning optimization calculating means, and the determined air conditioning control target value is controlled by the air conditioning system. A building air conditioning optimum control device comprising means for sending to a mechanism.
  4. 冷却水を生成する冷却塔、当該冷却塔にて生成された冷却水との熱交換により冷水又は温水を生成する中央熱源、当該中央熱源にて生成された冷水又は温水と空調対象となる空調ゾーンからの負荷熱である空気との熱交換を行う冷水コイルで構成されると共に、前記空調ゾーンに入る空気の温度と湿度とを検出する第一の温度/湿度センサと、前記空調ゾーンの空気又は空調ゾーンから出る空気の温度と湿度とを検出する第二の温度/湿度センサと、前記空調ゾーンの空調制御目標値に基づいて、前記空調ゾーンの水蒸気量の制御に係る前記空調システムの構成機器を流れる冷却水,冷水又は温水,空気の作動流体を制御する制御機構とを備える空調システムの最適化制御を行う、ビル空調最適制御システムのビル空調最適制御装置において、
    前記第一の温度/湿度センサ及び前記第二の温度/湿度センサにて計測される各空気の温度及び湿度の物理量を用いて、前記空調ゾーンの入口空気と空調ゾーン又は空調ゾーンの出口空気のエンタルピ及び前記空調ゾーンの絶対湿度を求め、当該空調ゾーンの単位時間当たりの発生水蒸気量を推定する状態量推定用演算手段と、
    計測される前記各空気の温度/湿度の物理量と、前記状態量推定用演算手段で推定された発生水蒸気量と、前記空調ゾーンの空調条件に関するパラメータとにより、前記空調システム全体の動力が最小となるよう最適化演算を行い、前記冷却水,冷水又は温水については流量及び温度、空気については流量、温度及び湿度の最適物理量を決定する空調最適化演算手段と、
    前記空調最適化演算手段にて決定した最適物理量になるよう前記冷却水,冷水又は温水,空気の物理量に係る空調制御目標値を決定し、この決定された空調制御目標値を前記空調システムの制御機構に送出する手段とを備えたことを特徴とするビル空調最適制御装置。
    A cooling tower that generates cooling water, a central heat source that generates cold water or hot water by heat exchange with the cooling water generated in the cooling tower, an air conditioning zone that is subject to air conditioning with the cold water or hot water generated in the central heat source together constituted by chilled water coils for heat exchange with air as a load heat from a first temperature / humidity sensor for detecting the temperature and humidity of the air entering the conditioning zone, the air of the air conditioning zone, or A second temperature / humidity sensor for detecting the temperature and humidity of the air exiting from the air conditioning zone, and the components of the air conditioning system related to the control of the water vapor amount in the air conditioning zone based on the air conditioning control target value of the air conditioning zone cooling water flowing through the cold water or hot water, to optimize control of the air conditioning system comprising a control mechanism for controlling the air of the working fluid, in building air conditioning optimal control system of the building air conditioning optimal control system
    Using the physical quantities of the temperature and humidity of each air measured by the first temperature / humidity sensor and the second temperature / humidity sensor, the air-conditioning zone inlet air and the air-conditioning zone or air-conditioning zone outlet air Calculating the enthalpy and the absolute humidity of the air-conditioning zone, and calculating the state quantity estimating means for estimating the amount of water vapor generated per unit time of the air-conditioning zone;
    The power of the entire air conditioning system is minimized by the measured physical quantity of the temperature / humidity of each air, the amount of water vapor estimated by the state quantity estimation computing means, and the parameters relating to the air conditioning conditions of the air conditioning zone. An air conditioning optimization calculating means for determining an optimal physical quantity of flow rate, temperature and humidity for the cooling water, cold water or hot water, and for air ,
    An air conditioning control target value related to the physical quantity of the cooling water, cold water, hot water, or air is determined so as to be the optimum physical quantity determined by the air conditioning optimization calculating means, and the determined air conditioning control target value is controlled by the air conditioning system. A building air conditioning optimum control device comprising means for sending to a mechanism.
JP2007070923A 2007-03-19 2007-03-19 Building air conditioning optimum control system and building air conditioning optimum control device Expired - Fee Related JP5044251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070923A JP5044251B2 (en) 2007-03-19 2007-03-19 Building air conditioning optimum control system and building air conditioning optimum control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070923A JP5044251B2 (en) 2007-03-19 2007-03-19 Building air conditioning optimum control system and building air conditioning optimum control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011126606A Division JP2011169588A (en) 2011-06-06 2011-06-06 Air conditioning optimal control system

Publications (2)

Publication Number Publication Date
JP2008232507A JP2008232507A (en) 2008-10-02
JP5044251B2 true JP5044251B2 (en) 2012-10-10

Family

ID=39905514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070923A Expired - Fee Related JP5044251B2 (en) 2007-03-19 2007-03-19 Building air conditioning optimum control system and building air conditioning optimum control device

Country Status (1)

Country Link
JP (1) JP5044251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198971A1 (en) * 2019-03-29 2020-10-08 亿可能源科技(上海)有限公司 Management method and system, and control method and system for air conditioning system, and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132334B2 (en) 2008-01-28 2013-01-30 株式会社東芝 Air conditioning control device and air conditioning control system using the same
JP4703692B2 (en) 2008-07-11 2011-06-15 株式会社東芝 Air conditioning control system, air supply switching controller used therefor, and air conditioning control method
CN101782258B (en) * 2009-01-19 2012-08-15 中华电信股份有限公司 Energy-saving method for air conditioner
JP5691655B2 (en) * 2011-03-03 2015-04-01 富士電機株式会社 Air conditioning system and its control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108287A (en) * 1992-09-30 1994-04-19 Nippon Zeon Co Ltd Heat exchanger
JP3220286B2 (en) * 1993-05-17 2001-10-22 高砂熱学工業株式会社 Operating method of heat source system for environmental test room
JP2982588B2 (en) * 1993-12-10 1999-11-22 三菱電機株式会社 Refrigerant cycle device and control method thereof
JP3783859B2 (en) * 2002-07-19 2006-06-07 日立プラント建設株式会社 Air conditioning equipment and control method thereof
JP2004324973A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Air conditioner and operating method of air conditioner
JP4385738B2 (en) * 2003-11-21 2009-12-16 株式会社日立プラントテクノロジー Air conditioning equipment
JP2004301505A (en) * 2004-07-30 2004-10-28 Matsushita Electric Ind Co Ltd Air-conditioning controller
JP2006275509A (en) * 2006-07-07 2006-10-12 Mitsubishi Electric Corp Control method of air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198971A1 (en) * 2019-03-29 2020-10-08 亿可能源科技(上海)有限公司 Management method and system, and control method and system for air conditioning system, and storage medium

Also Published As

Publication number Publication date
JP2008232507A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4936961B2 (en) Air conditioning system controller
CN102770718B (en) Air conditioning system and method of controlling air conditioning system
JP5178841B2 (en) Air conditioner
JP2011169588A (en) Air conditioning optimal control system
US8660702B2 (en) Central cooling and circulation energy management control system
JP5669402B2 (en) Heat pump and heat medium flow rate calculation method for heat pump
JP5044251B2 (en) Building air conditioning optimum control system and building air conditioning optimum control device
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
CN102734905B (en) Air conditioning system and air conditioning method
CN105579795B (en) Pasta detection means and the refrigerating air conditioning device for being equipped with the pasta detection means
JP6570746B2 (en) Heat medium circulation system
CN103958977A (en) Air conditioning device
CN107429930A (en) Air-conditioning system control device
JP5501179B2 (en) Medium temperature source system with free cooling
JP2007127321A (en) Cold water load factor controller for refrigerator
JP6017374B2 (en) Heat source system
JP2008075978A (en) Air-conditioning control system
JP4477914B2 (en) Air conditioning system
JP2014035090A (en) Air conditioning system
JP2010270967A (en) Air conditioning system, and method and device of controlling air conditioning system
JP4834503B2 (en) Commercial air conditioning control system
KR101450063B1 (en) Active type energy management system for building
JPWO2017009955A1 (en) Refrigeration system
JP2013092282A (en) Surface temperature estimating device, surface temperature estimating method, and dew condensation determination device
JP2014035091A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R151 Written notification of patent or utility model registration

Ref document number: 5044251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees