JP2008281255A - Refrigerant flow rate measuring method, method of obtaining cooling/heating capacity of refrigerating device, and refrigerant flow rate measuring device - Google Patents
Refrigerant flow rate measuring method, method of obtaining cooling/heating capacity of refrigerating device, and refrigerant flow rate measuring device Download PDFInfo
- Publication number
- JP2008281255A JP2008281255A JP2007124461A JP2007124461A JP2008281255A JP 2008281255 A JP2008281255 A JP 2008281255A JP 2007124461 A JP2007124461 A JP 2007124461A JP 2007124461 A JP2007124461 A JP 2007124461A JP 2008281255 A JP2008281255 A JP 2008281255A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cooling
- flow rate
- pipe
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 207
- 238000001816 cooling Methods 0.000 title claims abstract description 126
- 238000010438 heat treatment Methods 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims description 24
- 239000007788 liquid Substances 0.000 claims abstract description 68
- 238000005259 measurement Methods 0.000 claims abstract description 48
- 239000012071 phase Substances 0.000 claims abstract description 24
- 239000007791 liquid phase Substances 0.000 claims abstract description 22
- 238000005057 refrigeration Methods 0.000 claims description 43
- 230000006835 compression Effects 0.000 claims description 13
- 238000007906 compression Methods 0.000 claims description 13
- 230000005484 gravity Effects 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 230000020169 heat generation Effects 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000004378 air conditioning Methods 0.000 description 15
- 239000002826 coolant Substances 0.000 description 13
- 239000011555 saturated liquid Substances 0.000 description 12
- 239000012267 brine Substances 0.000 description 9
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、冷媒流量の計測方法、冷凍機をはじめとする冷凍装置の冷房/暖房能力を求める方法および冷媒流量計測装置に関するものであり、特にビル用マルチ空調システムなど蒸発圧縮式冷凍サイクルで冷房能力や暖房能力を計測するため、設備の運転に支障なく、かつ高精度に冷媒の流量を計測するのに適したものである。 The present invention relates to a method for measuring a refrigerant flow rate, a method for obtaining cooling / heating capacity of a refrigeration apparatus such as a refrigerator, and a refrigerant flow measurement apparatus, and in particular, cooling in an evaporative compression refrigeration cycle such as a multi air conditioning system for buildings. Since the capacity and heating capacity are measured, it is suitable for measuring the flow rate of the refrigerant with high accuracy without any trouble in the operation of the facility.
ビル用マルチ空調システムは、低価格や設計施工、個別制御、操作の容易さから、業務用建物の空調システムの約7割に使用されている。また最近は大容量化や省エネ化の進展に伴って大規模建物にも市場を拡大している。いわゆる省エネ法改正後、省エネルギー対策のため、稼動中建物での既設設備の性能評価に対する顧客の要望が強まる一方で、現地でビル用マルチ空調システムの冷暖房能力測定は困難な状況である。この理由は、能力計測の一つの方法として冷媒流量と冷媒状態(エンタルピー)を用いた冷媒側からの計測方法が考えられるが、当該計測方法を実施する際に必要な冷媒流量を、現地の後付けで確実に計測できる方法がないためである。 Multi air conditioning systems for buildings are used in about 70% of commercial building air conditioning systems because of their low cost, design and construction, individual control, and ease of operation. Recently, the market has been expanded to large-scale buildings with the progress of large capacity and energy saving. After the revision of the so-called Energy Conservation Law, customer demand for the performance evaluation of existing facilities in an operating building has been strengthened for energy conservation measures, but it is difficult to measure the heating and cooling capacity of multi-air conditioning systems for buildings locally. The reason for this may be a measurement method from the refrigerant side using the refrigerant flow rate and refrigerant state (enthalpy) as one method of capacity measurement. This is because there is no method that can be reliably measured.
ビル用マルチ空調システムは室内機の台数も多く(室外機1台に対して室内機1台〜数台)、居室(客室や業務空間)に設置されるなど、性能計測の実務上の制約が多いことから、室外機での計測が検討されている。 Multi-air conditioning systems for buildings have a large number of indoor units (1 to several indoor units for each outdoor unit) and are installed in living rooms (such as guest rooms and business spaces). Because there are many, measurement with an outdoor unit is being studied.
室外機での計測によって冷暖房能力を推定する一つの方法としてコンプレッサーカーブ法が提案されている。これは、コンプレッサー入口の冷媒状態(冷媒温度、圧力)とコンプレッサーの周波数、およびメーカが保有する代表試験機の運転特性データを用いて冷凍サイクルにおける冷媒流量を推定するものである。そしてこの冷媒流量に冷凍サイクル内の各状態点でのエンタルピーを用いて冷暖房能力を推定する方法である。 A compressor curve method has been proposed as one method for estimating the cooling and heating capacity by measuring with an outdoor unit. This is to estimate the refrigerant flow rate in the refrigeration cycle using the refrigerant state (refrigerant temperature and pressure) at the compressor inlet, the compressor frequency, and the operation characteristic data of the representative tester owned by the manufacturer. And it is the method of estimating an air-conditioning capability using the enthalpy in each state point in a refrigerating cycle to this refrigerant | coolant flow rate.
しかしながら、かかる方法は特定メーカの製品のみを対象とした推定方法であり、さらにシステムの新旧にも制約があるため、汎用性に欠ける。また機器の製造上や設置上の個体差があるために、性能計測の精度にも欠けている。 However, this method is an estimation method for only a specific manufacturer's product, and further lacks in versatility because there are restrictions on new and old systems. In addition, due to individual differences in manufacturing and installation of equipment, performance measurement accuracy is also lacking.
ところで、蒸発圧縮式冷凍サイクルにおいては、冷房能力は冷媒の蒸発器出入口エンタルピー差に、暖房能力は凝縮器出入口エンタルピー差に、各々冷媒流量を乗じて求めることになるが、実運転中の蒸発圧縮式冷凍サイクルで、室外機の冷媒側から冷暖房能力を実測する場合には、配管(液管)を流れる冷媒流量の計測が必要となる。 By the way, in the evaporative compression refrigeration cycle, the cooling capacity is obtained by multiplying the refrigerant inlet / outlet enthalpy difference, and the heating capacity is obtained by multiplying the condenser inlet / outlet enthalpy difference by the refrigerant flow rate. When actually measuring the cooling / heating capacity from the refrigerant side of the outdoor unit in the refrigeration cycle, it is necessary to measure the flow rate of the refrigerant flowing through the pipe (liquid pipe).
かかる場合、冷媒が非導電性であるため電磁流量計が使用できないことから、コリオリ式の質量流量計を使用している。しかしながら、質量流量計は配管路中に設置するため、設備を停止して配管を切断しなければならない。さらに冷媒の抜き出し、注入といった作業も発生するため、実稼動中の建物においての実施は困難である。 In such a case, since the electromagnetic flow meter cannot be used because the refrigerant is non-conductive, a Coriolis type mass flow meter is used. However, since the mass flow meter is installed in the pipeline, the equipment must be stopped and the piping must be cut. Furthermore, since operations such as extracting and injecting refrigerant also occur, it is difficult to implement in a building in actual operation.
一般に、稼動中建物で配管を切らずに配管外表面からの流量計測を行う方法として、超音波流量計による方法があり、20A(外径約20mm)以上の口径が大半の空調用冷温水配管においては、伝播時間差式の超音波流量計が利用できる。また冷媒配管(液管)のように、外径約6mm程度までの細い配管用についても市販の超音波流量計が存在する。 In general, there is a method using an ultrasonic flowmeter to measure the flow rate from the outer surface of the pipe without cutting the pipe in the building in operation, and the cold / hot water pipe for air conditioning that has a diameter of 20A (outer diameter of about 20 mm) or more. In, a propagation time difference type ultrasonic flowmeter can be used. Also, commercially available ultrasonic flowmeters exist for thin pipes having an outer diameter of about 6 mm, such as refrigerant pipes (liquid pipes).
そして冷媒流量を超音波流量計で計測し、冷媒状態の計測と併せて能力計測を行うことが提案されていた(特許文献1)。しかしながら、超音波流量計は配管内に気泡が存在すると流量を正確に計測できない。これは配管内を液体とともに気泡が流れることで配管内における超音波の伝播が妨げられ、信号の受信強度が得られずに計測不能となるからである。なおドップラー式の超音波流量計については、流体とともに流れる気泡や微粒子にあたってはね返る超音波反射波の周波数のずれから流速の変化量を計測するものであって、流量の絶対値を計測するには基準となる流量(流速)が必要であるため、そのままでは適用することができない。すなわち、基準となる流量計を別途設けなければならない。 And it was proposed to measure a refrigerant | coolant flow volume with an ultrasonic flowmeter, and to perform capacity | capacitance measurement with the measurement of a refrigerant | coolant state (patent document 1). However, the ultrasonic flowmeter cannot accurately measure the flow rate if bubbles are present in the pipe. This is because air bubbles flow along with the liquid in the pipe to prevent the propagation of ultrasonic waves in the pipe, and the signal reception intensity cannot be obtained, making measurement impossible. The Doppler type ultrasonic flowmeter measures the amount of change in the flow velocity from the deviation of the frequency of the reflected ultrasonic waves that bounce off the bubbles and fine particles that flow with the fluid, and is the standard for measuring the absolute value of the flow rate. Therefore, it cannot be applied as it is. That is, a reference flow meter must be provided separately.
一方、気化しやすく、結果的に気液二相化しやすい冷媒や液化ガスの流量を測定する際に、流量測定前にこれら冷媒や液化ガスを冷却して、気化を抑えるようにした技術も提案されている(特許文献2、3)。
On the other hand, when measuring the flow rate of refrigerant and liquefied gas, which is easy to vaporize and consequently gas-liquid two-phase, we also propose a technology that suppresses vaporization by cooling these refrigerant and liquefied gas before measuring the flow rate (
しかしながら、特許文献2は、LPG、LNG等の燃料系の液化ガスについてのものであり、これらはその後ガス燃料として用いられるものであるから、液相段階で流量を計測した後は、その後気化して気相になっても何ら問題はないので、流量を計測した後の手当てについては何ら提示されておらず、またその必要もないものであった。一方特許文献2についても、対象となる冷媒は電力ケーブルの冷却用の冷媒であり、冷媒の流量の気化を抑えて計測した後は、その後当該冷媒がどのようになっていても冷却能力自体を具備していれば問題ではなく、したがって、流量を計測した後の手当てについては、何ら開示するところはなかった。
However, since
このような特許文献2、3の技術では、圧縮冷凍サイクルを有する冷凍装置の冷媒の流量測定はできない。なぜなら冷却して液相のままその後に冷媒を循環させると、運転に支障をきたしたり、本来の能力を発揮できなくなるおそれがあるからである。たとえば特許文献2に開示の技術を冷凍サイクルに適用して、冷却した後にそのまま冷媒を循環させると、能力が過多になり、通常の運転とはならない。発明者らの知見によれば2割の誤差が生ずると考えられる。したがって、このような冷凍サイクル中の冷媒を測定しても、本来の能力を正しく計測することができない。同様に、特許文献3の技術のように、冷却した後にバイパスして気液二相化しても、定常の運転状態を再現することが難しく、正しい計測を行なえないばかりか、運転自体に支障をきたすおそれがある。
With the techniques of
これをより詳述する。図13は、凝縮器、膨張弁、圧縮機、蒸発器を持った蒸気圧縮冷凍装置の通常時のサイクルと、冷却を加えたときの冷媒サイクル(モリエル線図)を示している。この図において、凝縮器から出た冷媒を冷却すると、膨張側の冷媒状態が変化(エンタルピーが低下)する。これにより、蒸発側のエンタルピー差(冷凍効果)が拡大する。したがって、通常運転時のエンタルピーh0と比べると、冷媒冷却した際のエンタルピーh1との差が大きくなってしまう。また室外機から室内機の膨張弁までの配管内が液状態となるため冷媒液管の圧損が減少する。このような理由により、計測しようとしている運転状態が、機器性能が向上する側に変わってしまう。また冷凍効果が拡大することで、負荷一定の場合には圧縮機の発停回数が増えたり、冷媒流量が減少することで、実際の性能と異なったものになってしまうのである。 This will be described in more detail. FIG. 13 shows a normal cycle of a vapor compression refrigeration apparatus having a condenser, an expansion valve, a compressor, and an evaporator, and a refrigerant cycle (Mollier diagram) when cooling is applied. In this figure, when the refrigerant discharged from the condenser is cooled, the refrigerant state on the expansion side changes (the enthalpy decreases). Thereby, the enthalpy difference (refrigeration effect) on the evaporation side is expanded. Therefore, the difference from the enthalpy h1 when the refrigerant is cooled is greater than the enthalpy h0 during normal operation. Moreover, since the inside of the pipe from the outdoor unit to the expansion valve of the indoor unit is in a liquid state, the pressure loss of the refrigerant liquid pipe is reduced. For these reasons, the operating state to be measured changes to the side where the device performance is improved. In addition, due to the expansion of the refrigeration effect, when the load is constant, the number of times of starting and stopping the compressor increases or the refrigerant flow rate decreases, resulting in a difference from the actual performance.
以上に述べたことから、結局のところビル用マルチ空調システムの室外機については、当該室外機の液管(液化した後の冷媒が流れる配管)は、メーカ、機種、運転条件、外気条件にもよるが、気泡が混入している事実があるため、前記した従来技術では、いずれもビル用マルチ空調システムの冷媒流量計測は困難であった。 From the above, after all, for outdoor units of multi-air conditioning systems for buildings, the liquid pipe of the outdoor unit (the piping through which the refrigerant flows after liquefaction) can be used for manufacturers, models, operating conditions, and outdoor conditions. However, since there is a fact that air bubbles are mixed, it is difficult to measure the refrigerant flow rate of the multi-air conditioning system for buildings with the above-described conventional technologies.
本発明はかかる点に鑑みてなされたものであり、蒸気圧縮式冷凍サイクルの下で循環する冷媒であっても、その流量を超音波流量計によって計測することができ、かつ計測した後も適切に処理して、当該冷凍サイクルを利用した設備機器の運転に支障が出ないようにすることを目的としている。 The present invention has been made in view of the above points, and even if the refrigerant circulates under the vapor compression refrigeration cycle, the flow rate thereof can be measured with an ultrasonic flowmeter and is appropriate even after the measurement. The purpose is to prevent the operation of equipment using the refrigeration cycle from being hindered.
前記目的を達成するため,本発明は蒸気圧縮式冷凍サイクルの下で循環する冷媒の流量を計測する方法であって、前記冷凍サイクルにおいて液化した後の冷媒が流れる配管において、気液二相状態の冷媒を液相状態にまで冷却し、前記液相状態となった後の冷媒の流量を超音波流量計によって計測し、前記計測が終わった後の冷媒を、冷却前の気液二相状態にまで加熱することを特徴としている。 In order to achieve the above object, the present invention is a method for measuring the flow rate of a refrigerant circulating under a vapor compression refrigeration cycle, in a gas-liquid two-phase state in a pipe through which the refrigerant after being liquefied in the refrigeration cycle flows. The refrigerant is cooled to a liquid phase state, and the flow rate of the refrigerant after being in the liquid phase state is measured by an ultrasonic flowmeter, and the refrigerant after the measurement is finished in a gas-liquid two-phase state before cooling. It is characterized by heating up to.
本発明によれば,冷凍サイクルにおいて液化した後の冷媒が流れる配管において、気液二相状態の冷媒を液相状態、つまり配管内を液で満たす満液状態にまで冷却し、当該液相状態となった後の冷媒の流量を超音波流量計によって計測するので、当該満液状態における冷媒中には気泡が殆ど無く、後述の実験例でも示したように、正確に冷媒の流量(体積流量)を計測することができる。そして、前記計測が終わった後の冷媒については、冷却前の気液二相状態にまで加熱するようにしたので、当該冷凍サイクルの運転能力に影響を与えず、運転にも支障をきたさない。 According to the present invention, in the pipe through which the refrigerant after liquefaction in the refrigeration cycle flows, the refrigerant in the gas-liquid two-phase state is cooled to the liquid phase state, that is, the full liquid state in which the inside of the pipe is filled with the liquid. Since the refrigerant flow rate is measured with an ultrasonic flowmeter, the refrigerant in the full liquid state has almost no bubbles, and as shown in the experimental example described later, the refrigerant flow rate (volume flow rate) is accurately measured. ) Can be measured. Since the refrigerant after the measurement is heated to the gas-liquid two-phase state before cooling, the operation capacity of the refrigeration cycle is not affected and the operation is not hindered.
これを図1に基づいて説明すると、図1は冷媒を冷却してその後加熱して冷媒状態を気液二相状態に戻す場合の冷媒サイクル(モリエル線図)を示しており、凝縮器から出る冷媒を冷却して液相状態(満液)にする。そして満液状態で流量計測を行ったのち、冷却した熱量以上の加熱を冷媒に対して行い、冷媒状態を気液二相状態に戻す。これにより、冷凍サイクルの運転状態を大きく変えずに、超音波流量計による流量計測ができる。なお冷却熱量に対して加熱量を大きくし過ぎると、液管の気相が多くなって圧損が増大するため運転効率の低下(運転状態の変化)が考えられる。加熱量に対して冷却熱量を大きくし過ぎると、もともと気液二相で液管を流れていた冷媒が液相かつ過冷却した状態になるため、液管の圧損は低減かつ冷凍効果が増大するため、運転効率の向上(運転状態の大きな変化)が考えられるから、冷媒の冷却熱量と加熱量が等しいのが好ましく、またこのときに、最も精度の良い運転性能の計測が可能になる。 This will be described with reference to FIG. 1. FIG. 1 shows a refrigerant cycle (Mollier diagram) in the case where the refrigerant is cooled and then heated to return the refrigerant state to the gas-liquid two-phase state. The refrigerant is cooled to a liquid phase state (full liquid). Then, after the flow rate is measured in the full liquid state, the refrigerant is heated to a heat amount equal to or higher than the cooled amount of heat to return the refrigerant state to the gas-liquid two-phase state. As a result, the flow rate can be measured by the ultrasonic flowmeter without greatly changing the operating state of the refrigeration cycle. If the heating amount is excessively increased with respect to the cooling heat amount, the gas phase of the liquid pipe increases and the pressure loss increases, so that the operating efficiency may be lowered (change in operating state). If the amount of heat of cooling is made too large relative to the amount of heating, the refrigerant that was originally flowing in the liquid pipe in the gas-liquid two-phase becomes a liquid phase and supercooled state, so the pressure loss of the liquid pipe is reduced and the refrigeration effect is increased. Therefore, since improvement in operating efficiency (a large change in the operating state) can be considered, it is preferable that the cooling heat amount and the heating amount of the refrigerant are equal, and at this time, it is possible to measure the driving performance with the highest accuracy.
なお気液二相状態の冷媒が配管内を液で満たす満液状態にまで冷却したかどういかの確認については、例えば以下のようにして行なえばよい。 Note that whether or not the refrigerant in the gas-liquid two-phase state has cooled to a full liquid state that fills the inside of the pipe with the liquid may be performed as follows, for example.
まず超音波流量計の指示値の変動の仕方から予想することができる。すなわち、(1)液相の場合は指示値の変動は小さく安定しているが、気液二相の場合には、指示値が早い周期で大きく揺れることや、異常値(たとえば考えられないほど大きい値やマイナスの値)が出力される。
(2)計測区間の上流(冷却している部位の下流)で計測する冷媒の温度と室外機で計測した圧力で求めた冷媒エンタルピーと、室外機で計測した圧力での飽和液エンタルピーを比較し、冷媒エンタルピーが飽和液エンタルピーより低いこと、すなわち、
冷媒の温度と圧力の計測値から求めたエンタルピー<計測圧力での飽和液エンタルピー、
の条件を満たせば、「液」になったと確認できる。
(3)また温度を用いても基本的には同じである。
すなわち、計測区間の上流(冷却している部位の下流)で計測する冷媒温度と、室外機で計測した圧力での飽和液温度とを比較し、冷媒温度が飽和液温度より低いこと、すなわち、
冷媒の計測温度<計測圧力における飽和液温度
の条件を満たせば、「液」になったと確認できる。
なお以上の場合、圧力の測定は、メンテナンス用タッピングを用いて計測することができる。また配管の表面温度から、冷媒温度を計測することができる。
First, it can be predicted from how the indicated value of the ultrasonic flowmeter fluctuates. That is, (1) In the case of the liquid phase, the fluctuation of the indicated value is small and stable, but in the case of the gas-liquid two phase, the indicated value greatly fluctuates in an early cycle or an abnormal value (for example, unthinkable Large or negative value) is output.
(2) Compare the refrigerant enthalpy calculated from the temperature of the refrigerant measured upstream of the measurement section (downstream of the part being cooled) and the pressure measured by the outdoor unit, and the saturated liquid enthalpy at the pressure measured by the outdoor unit. The refrigerant enthalpy is lower than the saturated liquid enthalpy, i.e.
Enthalpy obtained from measured values of refrigerant temperature and pressure <saturated liquid enthalpy at the measured pressure,
If the above condition is satisfied, it can be confirmed that the liquid has been formed.
(3) The temperature is basically the same even when temperature is used.
That is, the refrigerant temperature measured upstream of the measurement section (downstream of the part being cooled) is compared with the saturated liquid temperature at the pressure measured by the outdoor unit, and the refrigerant temperature is lower than the saturated liquid temperature,
If the condition of the measured temperature of the refrigerant <the temperature of the saturated liquid at the measured pressure is satisfied, it can be confirmed that the liquid has been formed.
In the above case, the pressure can be measured using maintenance tapping. The refrigerant temperature can be measured from the surface temperature of the pipe.
なお水分や不純物の混入により、冷媒が液相化しないことも考えられるが、かかる場合には、さらに冷却することで対処できる。発明者らの考えでは、例えば定格冷媒流量で「飽和液温度−5K」程度に冷却できる冷却熱量とすればよい。また後述するが、室外機から計測区間までの配管長が長い場合には、室外機出口圧力から計測区間までの配管(液管)の圧損(推算値)を減じた圧力における飽和液温度から、さらに5K程度下げる冷却熱量とすれば良いと考える。 Although it is conceivable that the refrigerant does not turn into a liquid phase due to mixing of moisture and impurities, such a case can be dealt with by further cooling. For example, the inventors may consider the amount of cooling heat that can be cooled to about “saturated liquid temperature −5 K” at the rated refrigerant flow rate. As will be described later, when the pipe length from the outdoor unit to the measurement section is long, from the saturated liquid temperature at the pressure obtained by subtracting the pressure loss (estimated value) of the pipe (liquid pipe) from the outdoor unit outlet pressure to the measurement section, It is considered that the amount of cooling heat may be further reduced by about 5K.
このようにして計測した冷媒流量に基づいて、前記蒸気圧縮式冷凍サイクルを利用した冷凍装置の冷暖房能力を求めることができる。すなわち、
冷房時/暖房時の能力:A[kW]
前記冷媒流量:F[L/h]
冷媒の比重:S[kg/L]
ガス冷媒エンタルピー:GP[kJ/kg]
液体冷媒エンタルピー:LP[kJ/kg]
冷凍装置の消費電力:W[kW]
冷媒を加熱した際の加熱量:H[kW]
冷媒を冷却した際の冷却熱量:C[kW]
としたとき、次式によって冷凍装置の冷暖房能力求めることが可能である。
A=F×S/3600[sec/h]×{(GP−LP)−(H−C)÷(F×S/3600[sec/h])}
Based on the refrigerant flow rate thus measured, the cooling / heating capacity of the refrigeration apparatus using the vapor compression refrigeration cycle can be obtained. That is,
Cooling / heating capacity: A [kW]
Refrigerant flow rate: F [L / h]
Specific gravity of refrigerant: S [kg / L]
Gas refrigerant enthalpy: GP [kJ / kg]
Liquid refrigerant enthalpy: LP [kJ / kg]
Power consumption of refrigeration equipment: W [kW]
Heating amount when the refrigerant is heated: H [kW]
Heat of cooling when the refrigerant is cooled: C [kW]
In this case, the cooling / heating capacity of the refrigeration apparatus can be obtained by the following equation.
A = F * S / 3600 [sec / h] * {(GP-LP)-(HC) / (F * S / 3600 [sec / h])}
なおそのようにして求めた冷暖房能力を冷凍装置の消費電力で除することによって、当該冷凍装置の成績係数(COP)を求めることができる。 In addition, the coefficient of performance (COP) of the said refrigeration apparatus can be calculated | required by remove | dividing the air-conditioning capacity calculated | required in this way by the power consumption of a refrigeration apparatus.
ところで室外機での能力計測は、室内機が冷房機として機能する場合、図2に示したように、室外機1から室内機2に向かう配管3と、室内機2から室外機1に戻る配管4での熱ロスによって、室内機2側冷媒で計測した場合と比べて、差異が生ずる。しかしながら配管3が液管の場合には、細くて管径は小さく冷媒温度が環境温度に比較的近いため、その影響は小さい。なおこの例では、室外機1に凝縮器5、圧縮機6が設けられ、一方室内機2が蒸発器として機能する。また室外機1で冷媒エンタルピーを算出する場合、配管3における室外機1側の箇所に設けた温度計11、圧力計12、並びに配管4における室外機1側の箇所に設けた温度計13、圧力計14の測定結果が使用される。したがって、配管3が液管として機能する際の室外機1側冷媒エンタルピー21、配管4がガス管として機能する際の室外機1側冷媒エンタルピー22と、各々の室内機2側の冷媒エンタルピー23、24とでは、当該熱ロス分の差が生じている。
By the way, in the capacity measurement in the outdoor unit, when the indoor unit functions as a cooling unit, as shown in FIG. 2, the piping 3 from the
一方配管4がガス管の場合には、これとは逆に太くて管径は大きく表面積が大きいために熱ロスの影響を受けやすいものの、一般的には結露防止のために保温材によって十分な断熱処理がなされている。したがって熱ロスは冷房能力に比べて極めて小さく、無視できるものと考えられる。それゆえ、通常の室外機、室内機の配置では問題にはならない。
On the other hand, when the
しかしながら冷媒配管が極端に長い場合や、冷媒配管の周囲温度が高温と見込まれる場合には、単位長さあたりの冷媒配管、保温材の熱損失に配管長を乗じて熱ロス分を算定し、冷房能力を補正することが好ましい。したがって、このような場合には、冷媒配管の単位長さ当たりの保温材からの熱損失:LO[kW/m]
冷媒配管の配管長:L[m]、としたとき、
次式によって求めることが好ましい。
A=F×S/3600[sec/h]×{(GP−LP)−(H−C)÷(F×S/3600[sec/h])}+L×LO
However, when the refrigerant pipe is extremely long or when the ambient temperature of the refrigerant pipe is expected to be high, the heat loss is calculated by multiplying the heat loss of the refrigerant pipe and heat insulating material per unit length by the pipe length, It is preferable to correct the cooling capacity. Therefore, in such a case, heat loss from the heat insulating material per unit length of the refrigerant pipe: LO [kW / m]
When the refrigerant pipe length is L [m],
It is preferable to obtain by the following formula.
A = F * S / 3600 [sec / h] * {(GP-LP)-(HC) / (F * S / 3600 [sec / h])} + L * LO
なおより厳密に言えば、配管3が液管、配管4がガス管の場合、配管3が放熱側に、ガス管4で受熱側になるので、LOの内訳は、冷房時/暖房時の能力Aを増加する側を+(プラス側)とすれば、
L×LO= L×Lo(液管放熱分)−L×Lo(ガス管受熱分)となり、
Lが共通とすると、
L×LO=L×{Lo(液管放熱分)−Lo(ガス管受熱分)}から、結局、
LO=Lo(液管放熱分)−Lo(ガス管受熱分)となる。
More strictly speaking, when the
L × LO = L × Lo (liquid pipe heat radiation) −L × Lo (gas pipe heat reception)
If L is common,
From L × LO = L × {Lo (liquid pipe heat dissipation) −Lo (gas pipe heat receiving)},
LO = Lo (liquid pipe heat radiation) −Lo (gas pipe heat reception).
本発明の冷媒流量の計測方法を実施するための装置としては、次のようなものを提案できる。
すなわち、前記冷凍サイクルにおいて液化した後の冷媒が流れる配管内の流体の流量を測定する超音波流量計と、前記超音波流量計のトランスデューサを前記配管に取り付ける位置の上流側に設置されて、配管内の冷媒を冷却する冷却装置と、前記トランスデューサを前記配管に取り付ける位置の下流側に設置されて、配管内の冷媒を加熱する加熱装置と、を有することを特徴とする、冷媒流量計測装置である。
The following can be proposed as an apparatus for carrying out the refrigerant flow rate measuring method of the present invention.
That is, an ultrasonic flowmeter that measures the flow rate of the fluid in the pipe through which the refrigerant that has been liquefied in the refrigeration cycle flows, and a pipe that is installed upstream of the position where the transducer of the ultrasonic flowmeter is attached to the pipe A refrigerant flow rate measuring device comprising: a cooling device that cools the refrigerant in the pipe; and a heating device that is installed downstream of the position where the transducer is attached to the pipe and heats the refrigerant in the pipe. is there.
かかる冷媒流量計測装置を使用すれば、本発明の冷媒流量の計測方法を好適に実施することが可能である。また加熱装置、冷却装置は、冷媒配管の外付けとすることができるから、超音波流量計を含めて、冷媒流量計測装置全体をユニット化することが可能である。したがって、既設の設備に取り付けて計測することができ、また計測後は撤去して持ち去ることができる。もちろん新築時の試運転調整時においても使用することができ、また汎用性もある。 If this refrigerant | coolant flow measuring device is used, it is possible to implement suitably the measuring method of the refrigerant | coolant flow volume of this invention. In addition, since the heating device and the cooling device can be externally attached to the refrigerant pipe, the entire refrigerant flow measuring device including the ultrasonic flowmeter can be unitized. Therefore, it can be attached to existing equipment and measured, and after measurement, it can be removed and taken away. Of course, it can be used for trial operation adjustment at the time of new construction, and is versatile.
加熱装置としては、例えば電気ヒータ、温水を循環させる温水ジャケットを用いることができ、冷却装置としては、ブラインを循環させる冷却ジャケットを用いることができるが、いずれの場合であっても加熱装置、冷却装置を同時に運転させることが必要である。かかる場合、既述したように、冷却熱量と加熱量との関係は、冷媒の冷却熱量と加熱量が等しいときが、最も精度の良い運転性能の計測が可能になることから、加熱、冷却を同時に実施し、また双方の熱量を等しくするという観点から、冷却装置としてペルチェ素子の吸熱側を用い、該ペルチェ素子の発熱側を加熱装置として用いることが提案できる。かかる構成の加熱装置、冷却装置を使用することで、電力の投入によって吸熱と発熱(放熱)が同時に生じるため、冷却部と加熱部の連動の機構を改めて設ける必要がない。また素子内の電気抵抗の発熱分を、例えば素子冷却液等で調整することで、適正な加熱量に調整でき、冷却熱量と加熱量の相互間での制御が容易である。 As the heating device, for example, an electric heater, a hot water jacket that circulates hot water can be used, and as the cooling device, a cooling jacket that circulates brine can be used. It is necessary to operate the device simultaneously. In such a case, as described above, the relationship between the amount of cooling heat and the amount of heating is such that when the amount of cooling heat and the amount of heating of the refrigerant are equal, the most accurate operation performance can be measured. From the viewpoint of carrying out at the same time and equalizing the amount of heat of both, it can be proposed to use the heat absorption side of the Peltier element as the cooling device and use the heat generation side of the Peltier element as the heating device. By using the heating device and the cooling device having such a configuration, heat absorption and heat generation (heat radiation) are generated simultaneously by the application of electric power, so that there is no need to newly provide a mechanism for interlocking the cooling unit and the heating unit. Further, by adjusting the amount of heat generated by the electrical resistance in the element with, for example, an element coolant, the heating amount can be adjusted to an appropriate amount, and the amount of cooling heat and the amount of heating can be easily controlled.
本発明によれば、蒸気圧縮式冷凍サイクルの下で循環する冷媒の流量を、運転状態に大きな影響を与えず、超音波流量計によって精度よく計測することが可能である。 According to the present invention, it is possible to accurately measure the flow rate of the refrigerant circulating under the vapor compression refrigeration cycle with an ultrasonic flowmeter without greatly affecting the operation state.
以下、好ましい実施の形態について説明すると、図3は本実施の形態にかかる冷媒流量計測装置を用いて冷媒の流量を計測しようとする、蒸気圧縮式冷凍サイクルを持った空調機の概略を示しており、この例では図2と同様、冷房運転時においては、室外機1の凝縮器5で凝縮されて液化された冷媒は、配管3を通じて室内機2へと送られ、蒸発器として機能する室内機2によって気化した後の冷媒は、配管4を通じて、圧縮機6へと戻されるようになっている。
Hereinafter, a preferred embodiment will be described. FIG. 3 shows an outline of an air conditioner having a vapor compression refrigeration cycle which attempts to measure the flow rate of the refrigerant using the refrigerant flow rate measuring device according to the present embodiment. In this example, as in FIG. 2, during cooling operation, the refrigerant condensed and liquefied by the
本実施の形態は、そのような冷凍サイクルにおける液化した後の冷媒が流れる配管3内の冷媒を測定するための超音波流量計31を有している。この超音波流量計31は、配管3の表面に上流側と下流側に位置を変えて2箇所に取り付けられる1対の超音波を送信、受信するセンサとしてのトランスデューサ32、33を備えており、トランスデューサ32、33間で相互に送受信した際の超音波を受信した時間を測定し、これに基づいて配管3内を流れる流体(この例では液化した冷媒)流量を求めるものである。
The present embodiment has an
そしてこれらトランスデューサ32、33が取り付けられる領域(計測区間)の上流側の配管3の表面には、配管3内の冷媒を冷却する冷却装置41が設けられ、またトランスデューサ32、33が取り付けられる領域(計測区間)の下流側の配管3の表面には、配管3内の冷媒を加熱する加熱装置42が設けられている。冷却装置41と加熱装置42は、例えば配管に巻き回すシート状の部材を用い、配管に対して着脱自在に構成されている。冷却装置41による冷却熱量は、冷房能力の1割程度(1〜数kW程)であり、また加熱装置42による加熱量は、冷却装置41による冷却熱量以上となるように設定されている。これは、冷却熱量が加熱量よりも大きい場合、気液二相が液相まで変化してしまうと液管の圧損が小さくなるため計測しようとする能力や効率に大きな変化を与えてしまうと考えられるが、逆に加熱量が冷却熱量より大きい場合は気液二相の状態は元と変わらないことから、前者に比べると影響は小さいと考えられるからである。
And the cooling
この実施の形態にかかる冷媒流量計測装置を使用すれば、冷却装置41によって、配管3内の冷媒を冷却して気液二相状態にあった冷媒を液相状態(満液状態)にさせることができ、また加熱装置42によって冷媒を加熱して、液相状態(満液状態)の冷媒を再び冷却前の気液二相状態に戻すことができる。したがってトランスデューサ32、33が取り付けられる領域(計測区間)では、液相状態(満液状態)の冷媒に対して超音波による流量計測を実施して、冷媒流量を精度よく計測することができる。しかもそのようにして冷媒の流量を計測した後は、加熱装置42によって冷媒を加熱して、液相状態(満液状態)の冷媒を再び冷却前の気液二相状態に戻すことができるから、冷却前と同じ気液二相状態に戻し、冷凍サイクルの運転状態を大きく変えることはない。またこれら冷却装置41、加熱装置42、並びに超音波流量計31トランスデューサ32、33は、いずれも既設の配管に対して適用可能であるから、稼動中の設備の運転性能の実測も可能であり、計測した後は容易にこれらを持ち去ることができる。
If the refrigerant flow rate measuring apparatus according to this embodiment is used, the refrigerant in the
次に加熱装置、冷却装置の例を説明する。図3に示した冷却装置は、ブラインが循環する、配管3に対して着脱自在な冷却ジャケット51として構成されている。冷却ジャケット51内を巡るブラインは、ブライン冷却槽52から、ポンプ53によって往管54を通じて冷却ジャケット51内に送られ、冷却ジャケット51によって配管3内の冷媒を冷却して昇温したブラインは、還管55を経てブライン冷却槽52に戻される。ブラインの流量調整は、往管54に設けた流量調整バルブ56によって制御される。なお往管54には、温度計57、流量計58が設けられ、還管55には温度計59が設けられている。これらによって、冷却熱量が計測される。
Next, examples of the heating device and the cooling device will be described. The cooling device shown in FIG. 3 is configured as a cooling
一方加熱装置は、温水が循環する、配管3に対して着脱自在な温水ジャケット61として構成されている。温水ジャケット61内を巡る温水は、温水加熱槽62から、ポンプ63によって往管64を通じて温水ジャケット61内に送られ、温水ジャケット61によって配管3内の冷媒を加熱して降温した温水は、還管65を経て温水加熱槽62に戻される。温水の流量調整は、往管64に設けた流量調整バルブ66によって制御される。なお往管64には、温度計67、流量計68が設けられ、還管65には温度計69が設けられている。これらによって、加熱量が計測される。
On the other hand, the heating device is configured as a
ところで、本発明においては、加熱装置、冷却装置を同時に運転する必要がある。したがって、図4に示し例では、例えば冷却側のブライン用のポンプ53と、加熱側の温水用のポンプ63とは、その発停を同期させる必要がある。かかる点に鑑み、図4に示した例では、ポンプ53、63はいずれもインバータ制御装置50、60によって制御されるとともに、これらインバータ制御装置50、60は制御装置CRによって制御される。また冷却ジャケット51による冷却熱量、温水ジャケット61による加熱量も、制御装置CRによって制御される。
By the way, in this invention, it is necessary to operate | move a heating apparatus and a cooling device simultaneously. Therefore, in the example shown in FIG. 4, for example, the cooling-
図5に示した例では、冷却側は図4と同様、ブラインが循環する冷却ジャケット51が使用されているが、加熱側は、電力の供給によって発熱する電気ヒータ71が使用されている。すなわち、この電気ヒータ71は、交流電源72からケーブル73、74を通じて供給される電力によって発熱して配管3内の冷媒を過熱する構成を有しており、電気ヒータ71自体は、配管3の表面に取り付け自在である。そして加熱量は、電力計75によって計測される。交流電源72の電力供給量、並びに供給の発停は、サイリスタ等の制御装置76によって制御される。かかる構成を有する加熱装置としての電気ヒータ71であっても、冷却装置である冷却ジャケット51とは、その発停を同期化したり、冷却熱量、加熱量を制御する必要があるので、制御装置CRによって、インバータ制御装置50と制御装置76は制御されている。
In the example shown in FIG. 5, a cooling
以上説明した図4、図5の例では、冷却側、加熱側は、いずれも異なったエネルギー源系の冷却装置、加熱装置を使用していたが、図6に示した例では、1のエネルギー源系によって、冷却と加熱の双方を同時に実行できるペルチェ素子を用いている。 In the example of FIGS. 4 and 5 described above, the cooling side and the heating side use different energy source system cooling devices and heating devices, but in the example shown in FIG. A Peltier element that can perform both cooling and heating simultaneously is used depending on the source system.
この例で用いたペルチェ素子81は、吸熱側、すなわち冷却側と、発熱側、すなわち加熱側に、P型素子82、N型素子83を各々交互に配列して金属板84によって直列に接続し、さらにまた冷却側と加熱側の各P型素子82、N型素子83を各々をリード線85、86で接続した構成を有している。そして吸熱側、すなわち冷却側は、金属板84の一側面に伝熱材87を配し、この伝熱材87を、配管3に対して着脱自在でかつ熱伝達性が良好なジャケット88の外周に取り付けた構成を有している。また一方発熱側、すなわち加熱側も、金属板84の一側面に伝熱材89を配し、この伝熱材89を、配管3に対して着脱自在でかつ熱伝達性が良好なジャケット90の外周に取り付けた構成を有している。そして伝熱材89に対しては、例えば冷却液を出入りさせるチューブ91、92によって冷却可能になっている。
The
かかる構成を有するペルチェ素子81を使用すれば、例えばリード線85、86を介して、直流電源93からの直流電流を供給することで、冷却側に配置されたP型素子82、N型素子83では、吸熱作用が生じ、加熱側に配置されたP型素子82、N型素子83では、発熱(放熱)作用が生じる。したがって、冷却側のジャケット88は、配管3内の冷媒を冷却し、加熱側のジャケット90は、配管3内の冷媒を加熱する。
If the
このようにペルチェ素子81を使用すれば、冷却、加熱を同時に実行することができ、これらの動作を同期させる制御装置は不要であり、例えば図6に示したように、直流電源93からの直流供給回路に開閉スイッチ94を設ければよい。しかも、ペルチェ素子81による冷却、加熱はひとつのエネルギー源系であり、冷却熱量と加熱量との制御についても、加熱側の伝熱材89に対して供給する冷却液の制御で済むものである。
If the
次に本発明にしたがって、ビル用マルチ空調システムの性能計測の例について説明する。図7に示した構成は、冷凍サイクルの構成は、図2、図3に示したものと同一であり、また冷却装置の構成、加熱装置の構成については、各々図4にて説明したブラインを使用した冷却ジャケット51、温水を使用した温水ジャケット61に拠ったものであり、その周辺機器の構成は図4に示した例と同じであり、したがって同一符号によって示される部材、装置、構成は、図4に示した例と同一のものである。
Next, according to the present invention, an example of performance measurement of a multi air conditioning system for buildings will be described. The configuration shown in FIG. 7 is the same as that shown in FIGS. 2 and 3 in the configuration of the refrigeration cycle, and the configuration of the cooling device and the configuration of the heating device are the same as those shown in FIG. The cooling
図7に示したように、配管3内を流れる液化した冷媒の流量(体積流量)の計測には、先に説明した超音波流量計31を使用する。また液化した冷媒のエンタルピー21は、配管3における室外機1側に設けた温度計11、圧力計12の測定結果が用いられ、ガス化した冷媒のエンタルピー22は、配管4における室外機1側に設けた温度計13、圧力計14の測定結果が使用される。また交流電源101から室外機1側に供給された電力、すなわち消費電力は、クランプオンタイプの電力計102で計測される。また超音波流量計31によって計測される液相状態(満液状態)の冷媒の温度は、配管3における計測区間に取り付けられた温度計103の測定値が使用される。この液相状態(満液状態)の冷媒の温度は、冷媒(液)の圧力計測値から算出する飽和液温度と比較して、満液状態を確認するとともに、超音波流量計31への流体温度入力値の設定の目安として使用される。なお温度から計算した流体中の音速値として入力する場合もある。以上の各測定結果は全てデータロガー104へと出力され、得られたデータは、例えばパソコン105で演算、処理される。
As shown in FIG. 7, the
次にかかる構成を使用した室外機1、室内機2が発揮する冷暖房能力について説明する。図8は、冷房時の概要をモリエル線図で示したものであり、まず冷媒(ガス)計測と冷媒(液)計測点での冷媒状態を計測し、このときの冷凍効果から冷媒の加熱と冷却の熱量差の分を引いて、冷媒エンタルピー差を求める。これに超音波流量計31で計測された体積流量に、冷媒の比重を乗じた冷媒流量(質量流量)を乗ずれば、冷房能力が算出できる。またこれを消費電力で除することで、冷房時の成績係数(COP)が算出できる。
Next, the cooling / heating capacity exhibited by the
図9は、暖房時の概要をモリエル線図で示したものであり、冷媒(ガス)計測と冷媒(液)計測点での冷媒状態を計測し、この差から冷媒の加熱量と冷却の熱量差の分を引いて、冷媒エンタルピー差を求める。これに超音波流量計31で計測された体積流量に、冷媒の比重を乗じた冷媒流量(質量流量)を乗ずれば、暖房能力が算出できる。またこれを消費電力で除することで、暖房時の成績係数(COP)が算出できる。
FIG. 9 is a Mollier diagram showing an outline during heating. The refrigerant state at the refrigerant (gas) measurement point and the refrigerant (liquid) measurement point is measured, and the heating amount of the refrigerant and the heat amount of cooling are calculated based on the difference. Subtract the difference to find the refrigerant enthalpy difference. If the volume flow rate measured by the
以上を式で説明すると、
冷房時/暖房時の能力:A[kW]
前記冷媒流量:F[L/h]
冷媒の比重:S[kg/L]
ガス冷媒エンタルピー:GP[kJ/kg]
液体冷媒エンタルピー:LP[kJ/kg]
冷媒を加熱した際の加熱量:H[kW]
冷媒を冷却した際の冷却熱量:C[kW]
としたとき、
A=F×S/3600[sec/h]×{(GP−LP)−(H−C)÷(F×S/3600[sec/h])}
なおGP−LPは室外機としての冷凍効果となる。
Explaining the above with a formula,
Cooling / heating capacity: A [kW]
Refrigerant flow rate: F [L / h]
Specific gravity of refrigerant: S [kg / L]
Gas refrigerant enthalpy: GP [kJ / kg]
Liquid refrigerant enthalpy: LP [kJ / kg]
Heating amount when the refrigerant is heated: H [kW]
Heat of cooling when the refrigerant is cooled: C [kW]
When
A = F * S / 3600 [sec / h] * {(GP-LP)-(HC) / (F * S / 3600 [sec / h])}
In addition, GP-LP becomes a freezing effect as an outdoor unit.
また成績係数(COP)については、
室外機の消費電力:W[kW]
としたとき、COP=A/Wである。
About coefficient of performance (COP)
Outdoor unit power consumption: W [kW]
COP = A / W.
次に、発明者らが実際に行なった超音波流量計を用いた冷媒流量の計測試験結果について説明する。図10は、当該試験の方法の概要を示しており、室外機1からの液化した冷媒が流れる配管3に対して、冷却装置41によって冷却し、配管3内の冷媒を液相化して満液状態とする。冷却装置41には、プレート熱交換器を使用した。そして冷却装置41の下流側に、質量流量計111と超音波流量計31のトランスデューサ32、33を設置した。冷媒状態は、冷却装置41の下流側に、圧力計112と薄膜白金表面温度計113を設置し、これらの測定結果に基づいて計測した。そして満液状態と、満液でない状態での冷媒流量の計測値を比較した。
Next, description will be made on the result of the refrigerant flow measurement test using the ultrasonic flowmeter actually performed by the inventors. FIG. 10 shows an outline of the test method. The
図11に試験結果を示す。図11には、冷媒圧力と冷媒温度の計測値から算出したエンタルピーaと、冷媒圧力の計測値から算出した飽和液エンタルピーbとを示している。エンタルピーaが飽和液エンタルピーbよりも小さい場合は、冷媒が液の状態にある。同図中の線cは、冷媒が満液状態のとき1、満液でない状態なときを0として、冷媒状態を示したものである。 FIG. 11 shows the test results. FIG. 11 shows an enthalpy a calculated from the measured values of the refrigerant pressure and the refrigerant temperature, and a saturated liquid enthalpy b calculated from the measured values of the refrigerant pressure. When the enthalpy a is smaller than the saturated liquid enthalpy b, the refrigerant is in a liquid state. The line c in the figure shows the refrigerant state with 1 when the refrigerant is full and 0 when the refrigerant is not full.
はじめに冷却装置41で冷却を行って満液状態とし、そのあと冷却装置41を停止して冷却しない(満液でない)状態で計測を行った。その結果を図12に示した。Xが質量流量計111での計測値を示し、Yが超音波流量計での計測値を示している。この図からわかるように、満液状態のときには、質量流量計111と超音波流量計31の計測値がよく一致している。しかしながら計測の後半部の満液でない状態のときには、超音波流量計31の指示値は得られていない。なお満液でない状態では、質量流量計111の指示が変動し、質量流量計もメーカにより度合いは違うが、計測精度が低下することが確認できる。以上の事から、配管3内の冷媒を冷却によって液相化して満液状態とした状態での、超音波流量計31による冷媒流量の計測の正確性が確認できた。
First, cooling was performed by the cooling
以上、本発明の内容を主としてビル用マルチ空調システムの室外機と室内機での冷凍サイクルを例にとって説明したが、本発明によれば、冷媒配管表面温度と圧力計測を併せて行うことで、ビル用マルチ空調システムだけでなく、パッケージ空調機(空冷、水冷)やコンデンシングユニットなどにおける、冷媒サイクルの能力やCOPの性能計測ができる。 As described above, the contents of the present invention have been mainly explained by taking the refrigeration cycle in the outdoor unit and the indoor unit of the multi-air conditioning system for buildings as an example, but according to the present invention, by performing the refrigerant pipe surface temperature and pressure measurement together, In addition to multi-air conditioning systems for buildings, it is possible to measure refrigerant cycle capability and COP performance in packaged air conditioners (air cooling, water cooling) and condensing units.
本発明は、ビル用マルチ空調システム、パッケージ空調機の冷媒サイクルの能力や成績係数の測定に有用であり、既設の設備に対して特に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful for measuring the capacity and coefficient of performance of refrigerant cycles of multi-air conditioning systems for buildings and packaged air conditioners, and is particularly useful for existing facilities.
1 室外機
2 室内機
3 配管(液管)
4 配管(ガス管)
5 凝縮器
6 圧縮機
11、13 温度計
12、14 圧力計
31 超音波流量計
32、33 トランスデューサ
41 冷却装置
42 加熱装置
51 冷却ジャケット
61 温水ジャケット
1
4 Piping (gas pipe)
DESCRIPTION OF
Claims (6)
前記冷凍サイクルにおいて液化した後の冷媒が流れる配管において、気液二相状態の冷媒を液相状態にまで冷却し、
前記液相状態となった後の冷媒の流量を超音波流量計によって計測し、
前記計測が終わった後の冷媒を、冷却前の気液二相状態にまで加熱することを特徴とする、冷媒流量の計測方法。 A method for measuring the flow rate of refrigerant circulating under a vapor compression refrigeration cycle,
In the pipe through which the refrigerant after being liquefied in the refrigeration cycle flows, the refrigerant in the gas-liquid two-phase state is cooled to the liquid phase state,
Measure the flow rate of the refrigerant after being in the liquid phase state with an ultrasonic flow meter,
The refrigerant flow rate measuring method, wherein the refrigerant after the measurement is heated to a gas-liquid two-phase state before cooling.
冷房時/暖房時の能力:A[kW]
前記冷媒流量:F[L/h]
冷媒の比重:S[kg/L]
ガス冷媒エンタルピー:GP[kJ/kg]
液体冷媒エンタルピー:LP[kJ/kg]
冷媒を加熱した際の加熱量:H[kW]
冷媒を冷却した際の冷却熱量:C[kW]
としたとき、
次式によって求めることを特徴とする、冷凍装置の冷暖房能力を求める方法。
A=F×S/3600[sec/h]×{(GP−LP)−(H−C)÷(F×S/3600[sec/h])} A method for determining the cooling / heating capacity of a refrigeration apparatus using the vapor compression refrigeration cycle based on the refrigerant flow rate obtained by using the refrigerant flow rate measurement method according to claim 1,
Cooling / heating capacity: A [kW]
Refrigerant flow rate: F [L / h]
Specific gravity of refrigerant: S [kg / L]
Gas refrigerant enthalpy: GP [kJ / kg]
Liquid refrigerant enthalpy: LP [kJ / kg]
Heating amount when the refrigerant is heated: H [kW]
Heat of cooling when the refrigerant is cooled: C [kW]
When
A method for obtaining a cooling / heating capacity of a refrigeration apparatus, characterized by obtaining the following equation.
A = F * S / 3600 [sec / h] * {(GP-LP)-(HC) / (F * S / 3600 [sec / h])}
冷房時/暖房時の能力:A[kW]
前記冷媒流量:F[L/h]
冷媒の比重:S[kg/L]
ガス冷媒エンタルピ:GP[kJ/kg]
液体冷媒エンタルピ:LP[kJ/kg]
冷媒を加熱した際の加熱量:H[kW]
冷媒を冷却した際の冷却熱量:C[kW]
前記配管の単位長さ当たりの保温材からの熱損失:LO[kW/m]
前記配管の配管長:L[m]、
としたとき、
次式によって求めることを特徴とする、冷凍装置の冷暖房能力を求める方法。
A=F×S/3600[sec/h]×{(GP−LP)−(H−C)÷(F×S/3600[sec/h])}+L×LO A method for determining the cooling / heating capacity of a refrigeration apparatus using the vapor compression refrigeration cycle based on the refrigerant flow rate obtained by using the refrigerant flow rate measurement method according to claim 1,
Cooling / heating capacity: A [kW]
Refrigerant flow rate: F [L / h]
Specific gravity of refrigerant: S [kg / L]
Gas refrigerant enthalpy: GP [kJ / kg]
Liquid refrigerant enthalpy: LP [kJ / kg]
Heating amount when the refrigerant is heated: H [kW]
Heat of cooling when the refrigerant is cooled: C [kW]
Heat loss from the heat insulating material per unit length of the pipe: LO [kW / m]
Pipe length of the pipe: L [m],
When
A method for obtaining a cooling / heating capacity of a refrigeration apparatus, characterized by obtaining the following equation.
A = F * S / 3600 [sec / h] * {(GP-LP)-(HC) / (F * S / 3600 [sec / h])} + L * LO
前記冷凍サイクルにおいて液化した後の冷媒が流れる配管内の流体の流量を測定する超音波流量計と、
前記超音波流量計のトランスデューサを前記配管に取り付ける位置の上流側に設置されて、配管内の冷媒を冷却する冷却装置と、
前記トランスデューサを前記配管に取り付ける位置の下流側に設置されて、配管内の冷媒を加熱する加熱装置と、
を有することを特徴とする、冷媒流量計測装置。 An apparatus for measuring the flow rate of refrigerant circulating under a vapor compression refrigeration cycle,
An ultrasonic flowmeter that measures the flow rate of the fluid in the pipe through which the refrigerant after being liquefied in the refrigeration cycle flows;
A cooling device that is installed upstream of the position where the transducer of the ultrasonic flowmeter is attached to the pipe, and cools the refrigerant in the pipe;
A heating device installed on the downstream side of the position where the transducer is attached to the pipe, and heating the refrigerant in the pipe;
A refrigerant flow rate measuring device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124461A JP4986701B2 (en) | 2007-05-09 | 2007-05-09 | Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007124461A JP4986701B2 (en) | 2007-05-09 | 2007-05-09 | Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008281255A true JP2008281255A (en) | 2008-11-20 |
JP4986701B2 JP4986701B2 (en) | 2012-07-25 |
Family
ID=40142214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007124461A Expired - Fee Related JP4986701B2 (en) | 2007-05-09 | 2007-05-09 | Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4986701B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124818A (en) * | 2011-12-15 | 2013-06-24 | Valeo Japan Co Ltd | Device for estimating drive torque of compressor, and condenser used for the same |
CN107300430A (en) * | 2017-07-18 | 2017-10-27 | 甘肃蓝科石化高新装备股份有限公司 | A kind of vacuum heat insulating low-temperature pipe leaking heat measurement apparatus and its measuring method |
CN107421764A (en) * | 2017-08-22 | 2017-12-01 | 中国商用飞机有限责任公司北京民用飞机技术研究中心 | A kind of liquid-cooling heat radiation equipment performance test system |
JP2019178790A (en) * | 2018-03-30 | 2019-10-17 | 三浦工業株式会社 | Cooling capacity measuring apparatus |
WO2023141185A1 (en) * | 2022-01-24 | 2023-07-27 | Charm Sciences, Inc. | Detection system, assembly, and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626723A (en) * | 1992-07-10 | 1994-02-04 | Toshiba Corp | Multiple air conditioner |
JPH07280397A (en) * | 1994-04-04 | 1995-10-27 | Onishi Netsugaku:Kk | Refrigerating capacity measuring method for refrigerator |
JP2001317838A (en) * | 2000-05-08 | 2001-11-16 | Matsushita Refrig Co Ltd | Controller of refrigerant circuit provided integrally with thermoelectric module |
JP2006183953A (en) * | 2004-12-28 | 2006-07-13 | Tokyo Electric Power Co Inc:The | Apparatus for measuring refrigerating machine |
-
2007
- 2007-05-09 JP JP2007124461A patent/JP4986701B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0626723A (en) * | 1992-07-10 | 1994-02-04 | Toshiba Corp | Multiple air conditioner |
JPH07280397A (en) * | 1994-04-04 | 1995-10-27 | Onishi Netsugaku:Kk | Refrigerating capacity measuring method for refrigerator |
JP2001317838A (en) * | 2000-05-08 | 2001-11-16 | Matsushita Refrig Co Ltd | Controller of refrigerant circuit provided integrally with thermoelectric module |
JP2006183953A (en) * | 2004-12-28 | 2006-07-13 | Tokyo Electric Power Co Inc:The | Apparatus for measuring refrigerating machine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124818A (en) * | 2011-12-15 | 2013-06-24 | Valeo Japan Co Ltd | Device for estimating drive torque of compressor, and condenser used for the same |
CN107300430A (en) * | 2017-07-18 | 2017-10-27 | 甘肃蓝科石化高新装备股份有限公司 | A kind of vacuum heat insulating low-temperature pipe leaking heat measurement apparatus and its measuring method |
CN107421764A (en) * | 2017-08-22 | 2017-12-01 | 中国商用飞机有限责任公司北京民用飞机技术研究中心 | A kind of liquid-cooling heat radiation equipment performance test system |
JP2019178790A (en) * | 2018-03-30 | 2019-10-17 | 三浦工業株式会社 | Cooling capacity measuring apparatus |
JP7407502B2 (en) | 2018-03-30 | 2024-01-04 | 三浦工業株式会社 | Cooling capacity measuring device |
WO2023141185A1 (en) * | 2022-01-24 | 2023-07-27 | Charm Sciences, Inc. | Detection system, assembly, and method |
Also Published As
Publication number | Publication date |
---|---|
JP4986701B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ni et al. | An experimental study on performance enhancement of a PCM based solar-assisted air source heat pump system under cooling modes | |
EP2211123B1 (en) | Air conditioner | |
Park et al. | Experimentation and modeling of refrigerant flow through coiled capillary tubes | |
US20140034145A1 (en) | Advanced Valve Actuation System with Integral Freeze Protection | |
JP5394047B2 (en) | Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner | |
JP2008164265A (en) | Air conditioner and its coolant amount determining method | |
JP4986701B2 (en) | Refrigerant flow rate measurement method, method for determining cooling / heating capacity of refrigeration apparatus, and refrigerant flow rate measurement device | |
JP4795709B2 (en) | Constant temperature and humidity device | |
JP2012215350A (en) | Heating medium flowrate estimator, heat source, and hot medium flowrate estimation method | |
JP2012127573A (en) | Heat source system | |
Corberán et al. | Partialization losses of ON/OFF operation of water-to-water refrigeration/heat-pump units | |
Sieres et al. | Influence of the refrigerant charge in an R407C liquid-to-water heat pump for space heating and domestic hot water production | |
Cecchinato et al. | A simplified method to evaluate the seasonal energy performance of water chillers | |
Elsayed et al. | Effect of condenser air flow on the performance of split air conditioner | |
JP2010216765A (en) | Local cooling system | |
Tran et al. | Refrigerant-based measurement method of heat pump seasonal performances | |
CN102353403B (en) | Methods for measuring chilled water flow and cooling medium flow of central air-conditioning host machine | |
Janković et al. | Analysis of the impact of different operating conditions on the performance of a reversible heat pump with domestic hot water production | |
JP6972468B2 (en) | Evaluation device and evaluation method for air conditioners | |
CN107084543A (en) | Water-cooling water chilling unit and control method thereof | |
Zhao et al. | Steady-state hybrid modeling of economized screw water chillers using polynomial neural network compressor model | |
KR20100108056A (en) | Real time performance evaluation method for ground source heat pump system and evaluation device programming the same | |
Padilla | Exergy analysis of the performance of a variable refrigerant flow (VRF) air conditioning system | |
Sutthivirode et al. | Feasibility study and in-depth performance assessment of needle valve using as expansion device in refrigeration system | |
JP3584274B2 (en) | Refrigerant amount adjustment method and refrigerant amount determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120417 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4986701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |