JP5394047B2 - Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner - Google Patents

Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner Download PDF

Info

Publication number
JP5394047B2
JP5394047B2 JP2008300636A JP2008300636A JP5394047B2 JP 5394047 B2 JP5394047 B2 JP 5394047B2 JP 2008300636 A JP2008300636 A JP 2008300636A JP 2008300636 A JP2008300636 A JP 2008300636A JP 5394047 B2 JP5394047 B2 JP 5394047B2
Authority
JP
Japan
Prior art keywords
compressor
cooling
cooling capacity
pipe
enthalpy difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008300636A
Other languages
Japanese (ja)
Other versions
JP2009150640A (en
Inventor
正幸 谷野
大悟 橘高
達徳 万尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2008300636A priority Critical patent/JP5394047B2/en
Publication of JP2009150640A publication Critical patent/JP2009150640A/en
Application granted granted Critical
Publication of JP5394047B2 publication Critical patent/JP5394047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ビル用マルチなどのパッケージ型空調機(以下、「PAC」と称することがある)による個別空調システム(以下「PACシステム」と称することがある)において、その運用中の冷房能力を簡便に測定する方法に関する。より具体的には、PACの中でも特にインバータ機などの容量制御機を対象にして、容易に個別空調システムやPACの現状の性能(能力、効率)が把握でき、現地での運用中に簡便に冷房能力を推定する方法及びその装置に関するものである。 The present invention relates to a cooling capacity during operation in an individual air conditioning system (hereinafter also referred to as “PAC system”) using a package type air conditioner (hereinafter also referred to as “PAC”) such as a building multi. The present invention relates to a simple measurement method. More specifically, the current performance (capacity and efficiency) of individual air conditioning systems and PACs can be easily grasped, especially for capacity controllers such as inverters, among PACs. The present invention relates to a method and an apparatus for estimating cooling capacity.

室内機と室外機からなるパッケージ型空調機は、建物などの空調負荷に設置されまた冷媒配管で接続された後、試運転調整を実施した後に施主等に引き渡される。また引渡し後にも保守管理のために性能の維持を確認する必要がある。このようなPACの能力測定方法としてはJIS B 8615−1がある。しかし当該JISによる測定法は、環境試験室にPACを設置して行うべき測定法であり、外乱のある一般建物に設置されたPACでは正確な測定はできず、運転中のPACの能力測定には適用できない。   A package type air conditioner composed of an indoor unit and an outdoor unit is installed in an air conditioning load such as a building and connected by a refrigerant pipe. In addition, it is necessary to check the maintenance of performance for maintenance management after delivery. There is JIS B 8615-1 as a method for measuring the capability of such a PAC. However, the measurement method according to JIS is a measurement method that should be performed by installing a PAC in an environmental test room. The PAC installed in a general building with disturbance cannot be measured accurately. Is not applicable.

PACの能力は前述したJISによる測定の結果が定格の能力としてカタログに掲載されて選定されているが、前述した引渡し後の性能維持の確認は例えば次の場合に必要がある。
(1)建物の竣工後見込みと比べての負荷の増減、例えば真夏日の増加など気象条件の急変や建物が店舗であれば来客数、工場であれば計画に対する生産実績の乖離などが生じる場合。
(2)間仕切り変更や室割りや模様替え等の建物の使い勝手の変更が生じた場合。また、近時コミッショニングという考え方が注目されているが、引渡しの時点で負荷に対して期待された性能が出ていることを施主や設備運用者自身が確認できれば、責任負担が明瞭化される。
負荷に対して適正な能力のPACが設置されまたは設置され続けているかを検証し評価ができれば、PACの増設や機種変更、運転法の変更など改善策を適切に講じることができる。なおPACが設置された後PACシステムの稼動後に性能を相対的に確認するには、温度計や湿度計の計測値により空調された室の負荷状態を把握することが考えられるが、室ごとに計測する必要があり、労力がかかる。
The capability of the PAC is selected by selecting the result of the measurement according to JIS described in the catalog as the rated capability. However, the confirmation of the performance maintenance after the delivery is necessary in the following cases, for example.
(1) When there is a change in the load compared to the estimated amount after completion of the building, such as a sudden change in weather conditions such as an increase in midsummer days, the number of visitors if the building is a store, or a deviation in production performance from the plan if the building is a factory .
(2) When the usage of the building changes, such as partition changes, room allocation, or redesign. Also, the concept of commissioning has been attracting attention recently, but if the owner or the facility operator can confirm that the expected performance has been achieved for the load at the time of delivery, the burden of responsibility will be clarified.
If it is possible to verify and evaluate whether or not a PAC having an appropriate capacity with respect to the load is installed, it is possible to appropriately take improvement measures such as adding a PAC, changing a model, or changing an operation method. In order to relatively confirm the performance after the PAC system is operated after the PAC is installed, it is conceivable to grasp the load state of the air-conditioned room by the measured value of the thermometer or hygrometer. It is necessary to measure and labor is required.

一般に、空調機や冷却器などの能力(冷却・加熱の熱量)を測定するには、
(A)冷媒の温度・エンタルピー・流量から求める方法、
(B)空気の温度・エンタルピー・流量から求める方法、
(C)上記(A)、(B)を複合した方法
がある。
この中で、(A)の冷媒側から求める方法は高精度ではあるが、PACシステムが設置された現地での運用中においては、特に冷媒の流量を計測することが非常に困難である。冷媒の状態を計測するには、いったんPACシステムを停止して配管内に計器を挿入する必要があるためである。
一方、(B)の空気側から求める方法は、その温度分布の形成などにより、高精度に熱量を求めることは難しい.冷蔵倉庫用のユニットクーラーについては、PACから吹き出される空気側からの正確な能力測定の試みもなされているが(特許文献1)、センサを配置した計測用ダクトの脱着などの作業が必要となるため、多数のPACによる個別空調システムには適用し難い。
In general, to measure the capacity of an air conditioner or cooler (the amount of heat of cooling / heating),
(A) A method of obtaining from the temperature, enthalpy and flow rate of the refrigerant,
(B) Method of obtaining from air temperature, enthalpy and flow rate,
(C) There is a method in which the above (A) and (B) are combined.
Among these, the method of obtaining from the refrigerant side of (A) is highly accurate, but it is very difficult to measure the flow rate of the refrigerant especially during operation in the field where the PAC system is installed. This is because in order to measure the state of the refrigerant, it is necessary to stop the PAC system once and insert a meter into the pipe.
On the other hand, in the method of obtaining from the air side of (B), it is difficult to obtain the amount of heat with high accuracy due to the formation of the temperature distribution. For unit coolers for refrigerated warehouses, attempts have been made to accurately measure the capacity from the air side blown out from the PAC (Patent Document 1), but work such as attachment / detachment of measurement ducts with sensors is required. Therefore, it is difficult to apply to an individual air conditioning system using a large number of PACs.

特許第3608655号公報Japanese Patent No. 3608655

前述したように、PACによる個別空調システムが設置された現地での運用中に、その能力を測定するための、簡便で有効な方法は見当たらないのが現状である。
本発明はかかる点に鑑みてなされたものであり、PACシステムの運転を停止することなく、大掛かりな設備を必要とせずに、しかも高精度に運転中のPACシステムの能力、特に冷房能力を測定することを目的とする。
As described above, there is currently no simple and effective method for measuring the capacity during the operation in the field where the individual air conditioning system by PAC is installed.
The present invention has been made in view of the above points, and measures the capacity of the PAC system, particularly the cooling capacity, during operation with high accuracy without stopping the operation of the PAC system and without requiring large-scale equipment. The purpose is to do.

かかる課題を解決しようとする本発明は、容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用いた空調システムの冷房能力を測定する方法であって、
まず本発明では、室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、冷房能力を推定するようにした。
The present invention which intends to solve such problems is a package type in which an outdoor unit having a capacity-controlled compressor and an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are connected by a refrigerant pipe. A method for measuring the cooling capacity of an air conditioning system using an air conditioner,
First, in the present invention, the liquid supply pipe through which the refrigerant is sent from the outdoor unit to the indoor unit is heated or cooled, and the cooling capacity is set based on the data on the change in the power consumption, the condensing pressure and the evaporation pressure of the compressor accordingly. Estimated .

容量制御型の圧縮機、例えばインバータ付きの圧縮機は空調負荷に応じて回転数が変わる。本発明はPACシステムに強制的に負荷を与え、圧縮機の動作の変化の傾向をとらえてその時の負荷に対応した能力を推定する。例えば、凝縮圧力と蒸発圧力を計測して圧縮比を求め、これから圧縮機の効率を算出して利用することができる。強制的に与える負荷としては冷房時の液冷媒に模擬負荷として付与するため「加熱」することが実際的だが、液冷媒を「冷却」しても圧縮機の運転状態の変化を把握することができるため、本発明を適用できる。本発明においては、冷房能力の推定は、そのような変化の傾向を把握し、それに基づいて推定する。   A capacity-controlled compressor, for example, a compressor with an inverter, changes its rotational speed in accordance with the air conditioning load. The present invention forcibly applies a load to the PAC system, grasps the tendency of changes in the operation of the compressor, and estimates the capacity corresponding to the load at that time. For example, the compression pressure can be obtained by measuring the condensation pressure and the evaporation pressure, and the efficiency of the compressor can be calculated from this and used. As a forced load, it is practical to “heat” because it is applied as a simulated load to the liquid refrigerant during cooling, but even if the liquid refrigerant is “cooled”, it is possible to grasp changes in the operating state of the compressor. Therefore, the present invention can be applied. In the present invention, the cooling capacity is estimated by grasping the tendency of such a change and based on it.

前記変化のデータを得るに際しては、送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を用い、少なくとも蒸発器でのエンタルピー差から前記送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差から、増倍係数α(i)を定義しその関数形を定めて行うようにしている。これによれば、大掛かりな設備を要せず算術的にPACの性能を推定することができる。またモリエル線図の応用であるため推定結果の説明が容易である。
かかる観点から、本発明は、容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用いた空調システムの冷房能力を測定する方法であって、
室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、下記の式から冷房能力を推定するようにし、
蒸発器でのエンタルピー差から送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差Δh (i) から、増倍係数α (i) を、Δh (i) =α (i) ・Δh (0) と定義し、
冷房能力Q (0) の推定は、下記の式により行うこと特徴とする、パッケージ型空調機による空調システムの冷房能力測定方法である。
冷房能力Q (0) =Qin (i) /{1−α (i) ・(W (i) /W (0) )・(η (i) /η (0) )・(Δhc (0) /Δhc (i) )}
なおQin (i) は、送液管に付加した熱量、(W (i) /W (0) )は、送液管に熱量Qin (i) を付加したときの消費電力の変化割合、(η (i) /η (0) )は、送液管に熱量Qin (i) を付加したときの圧縮機の効率の変化割合、(Δhc (0) /Δhc (i) )は、送液管に熱量Qin (i) を付加したときの圧縮機理論エンタルピー差の比である。
In obtaining the change data, the heating amount after heating or cooling the liquid feeding tube or the enthalpy difference for the cooling amount is used, and at least after the liquid feeding tube is heated or cooled from the enthalpy difference in the evaporator. The multiplication coefficient α (i) is defined from the enthalpy difference excluding the enthalpy difference for the heating amount or the cooling amount, and its function form is determined . According to this, it is possible to estimate the performance of the PAC arithmetically without requiring a large facility. The estimation result is easy to explain because it is an application of the Mollier diagram.
From this point of view, the present invention provides a packaged air conditioner in which an outdoor unit having a capacity-controlled compressor and an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are connected by a refrigerant pipe. A method for measuring the cooling capacity of the air conditioning system used,
Heating or cooling the liquid supply pipe through which refrigerant is sent from the outdoor unit to the indoor unit, and estimating the cooling capacity from the following formula based on the data of changes in power consumption, condensation pressure and evaporation pressure of the compressor accordingly Like
From the enthalpy difference Δh (i) excluding the enthalpy difference for the heating amount or the cooling amount after heating or cooling the liquid feeding pipe from the enthalpy difference in the evaporator , the multiplication factor α (i) is expressed as Δh (i) = is defined as α (i) · Δh (0 ),
The cooling capacity Q (0) is estimated by the following equation, and is a method for measuring the cooling capacity of an air conditioning system using a packaged air conditioner.
Cooling capacity Q (0) = Qin (i) / {1- [alpha] (i). (W (i) / W (0) ). ([Eta] (i) / [eta] (0) ). ([Delta] hc (0) / Δhc (i) )}
Qin (i) is the amount of heat added to the liquid feeding tube, (W (i) / W (0) ) is the rate of change in power consumption when the amount of heat Qin (i) is added to the liquid feeding tube , (η (I) / η (0) ) is the rate of change in the efficiency of the compressor when heat quantity Qin (i) is added to the liquid feed pipe, and (Δhc (0) / Δhc (i) ) is the liquid feed pipe It is the ratio of the compressor theoretical enthalpy difference when the amount of heat Qin (i) is added.

また別な観点にかかる本発明においては、次の演算を、手順1Aと手順1Bの一方→手順1Aと手順1Bの残りの一方→手順3→手順4の手順で実行する。かかる場合、通常のパソコンが適用できる。
手順1A:蒸発器でのエンタルピー差から送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差Δh(i)を、増倍係数α(i)を用いて次式のように定義する。
Δh(i)=α(i)・Δh(0)
Δh(0)は通常運転の場合の室内機の蒸発器でのエンタルピー差
手順1B:冷凍サイクルの一般的な特性から、増倍係数α(i)を高圧ガスの圧力の変化割合PH(0)/PH(i)と指数βを用いて次式のように定義する。
α(i)=(PH(0)/PH(i)β
但しPHは,凝縮圧力である。
手順3:手順1Aの式を用いて、送液管に冷熱量を付加しない場合の空調システムの運転状態を表す冷房能力Q(0)と動力W(0)と圧縮機の効率η(0)と圧縮機理論エンタルピー差Δhc(0)
送液管に加熱量または冷熱量Qin(i)を付加した場合の空調システムの運転状態を表す冷房能力Q(i)と動力W(i)と圧縮機の効率η(i)と圧縮機理論エンタルピー差Δhc(i)
とを整理して、、Q(0)=Q(i)の条件の下、下記の式を得る。
(0)=Qin(i)/{1−α(i)・(W(i)/W(0))・(η(i)/η(0))・(Δhc(0)/Δhc(i))}
手順4:手順1Bの式と圧縮機の効率η(i)の一般的な関数形(=a・(PH/PL))から次の式を得る。
(0)=Qin(i)/{1−(PH(0)/PH(i)β・(W(i)/W(0))・(χ(i)/χ(0)・(Δhc(0)/Δhc(i))}
aおよびbは、圧縮機で定まる固有の係数、PHは凝縮圧力,PLは蒸発圧力、χは圧縮比(PH/PL)である。である。
In the present invention according to another aspect, the following calculation is performed in the order of one of procedure 1A and procedure 1B → the other procedure 1A and the remaining procedure 1B → procedure 3 → procedure 4 . In such a case, a normal personal computer can be applied.
Procedure 1A: Enthalpy difference Δh (i) obtained by subtracting the enthalpy difference for the heating amount or the cooling amount after heating or cooling the liquid feeding pipe from the enthalpy difference in the evaporator, using the multiplication factor α (i) It is defined as
Δh (i) = α (i) · Δh (0)
Δh (0) is the enthalpy difference in the evaporator of the indoor unit during normal operation. Procedure 1B: From the general characteristics of the refrigeration cycle, the multiplication factor α (i) is the change rate PH (0) of the pressure of the high-pressure gas. / PH (i) and the index β are defined as follows:
α (i) = (PH (0) / PH (i) ) β
Where PH is the condensation pressure.
Step 3: Cooling capacity Q (0) , power W (0), and compressor efficiency η (0) representing the operating state of the air conditioning system when the amount of cooling heat is not added to the liquid feeding pipe using the formula of step 1A And compressor theory enthalpy difference Δhc (0) ,
Cooling capacity Q (i) , power W (i) , compressor efficiency η (i) and compressor theory representing the operating state of the air conditioning system when heating amount or cooling amount Qin (i) is added to the liquid feed pipe Enthalpy difference Δhc (i)
And the following formula is obtained under the condition of Q (0) = Q (i) .
Q (0) = Qin (i) / {1- [alpha] (i). (W (i) / W (0) ). ([Eta] (i) / [eta] (0) ). ([Delta] hc (0) / [Delta] hc ( i) )}
Procedure 4: The following equation is obtained from the equation of procedure 1B and the general function form (= a · (PH / PL) b ) of the compressor efficiency η (i) .
Q (0) = Qin (i) / {1- (PH (0) / PH (i) ). Beta. (W (i) / W (0) ). (Χ (i) / χ (0) ) b (Δhc (0) / Δhc (i) )}
a and b are specific coefficients determined by the compressor, PH is a condensation pressure, PL is an evaporation pressure, and χ is a compression ratio (PH / PL). It is.

手順1Aと手順1Bはいずれを先に実施しても良い。本発明によれば、計測値に一定の演算をするだけでよいため、PACシステムの規模や用途に関わらず汎用的に利用できる。
前記した手順1〜4は、冷房能力Q(0)の推定式である、
(0)=Qin(i)/{1−(PH(0)/PH(i)β・(W(0)/W(i))・(χ(0)/χ(i)・(Δhc(0)/Δhc(i))}
ここで、i=1〜n(nは3以上)
を得るための手順である。
そして別な観点にかかる本発明では、動力W(0)とW(i)、凝縮圧力PH(0)とPH(i)、蒸発圧力PL(0)とPL(i)の測定値と、W(0)、W(i)、PH(0)、PH(i)、PL(0)、PL(i)から求められるχ(0)、χ(i)、Δhc(0)、Δhc(i)を上記推定式に代入して連立方程式を解いて冷房能力Q(0)を推定することになる。
したがって、たとえばプログラム化されてパソコン等で利用する場合には、以下のものをプログラム化して、パソコンのハードディスクや適宜の記憶媒体に記録される。
(1) 測定した動力W(0)とW(i)、凝縮圧力PH(0)とPH(i)、蒸発圧力PL(0)とPL(i)の入力方法、
(2) (1)で入力したW(0)、W(i)、PH(0)、PH(i)、PL(0)、PL(i)からχ(0)、χ(i)、Δhc(0)、Δhc(i)を計算するための冷媒の物性データと計算式、
(3) (1)で入力したW(0)、W(i)、PH(0)、PH(i)と、(2)で計算したχ(0)、χ(i)、Δhc(0)、Δhc(i)の上記推定式への代入方法、
(4) 上記推定式のi=1〜nの連立方程式を満足するβとbの最確値を求める解法(例えば最小二乗法)
Either procedure 1A or procedure 1B may be performed first. According to the present invention, since it is only necessary to perform a certain calculation on the measurement value, it can be used universally regardless of the scale and application of the PAC system.
The above-described procedures 1 to 4 are estimation formulas for the cooling capacity Q (0) .
Q (0) = Qin (i ) / {1- (PH (0) / PH (i) ). Beta. (W (0) / W (i) ). (Χ (0) / χ (i) ) b (Δhc (0) / Δhc (i) )}
Here, i = 1 to n (n is 3 or more)
It is a procedure for obtaining.
In the present invention according to another aspect, the measured values of power W (0) and W (i) , condensation pressure PH (0) and PH (i) , evaporation pressure PL (0) and PL (i) , (0) , W (i) , PH (0) , PH (i) , PL (0) , PL (i) obtained from χ (0) , χ (i) , Δhc (0) , Δhc (i) Is substituted into the above estimation equation to solve the simultaneous equations to estimate the cooling capacity Q (0).
Therefore, for example, when being programmed and used on a personal computer or the like, the following are programmed and recorded on a hard disk or an appropriate storage medium of the personal computer.
(1) Input method of measured power W (0) and W (i) , condensation pressure PH (0) and PH (i) , evaporation pressure PL (0) and PL (i) ,
(2) W (0) , W (i) , PH (0) , PH (i) , PL (0) , PL (i) input in (1) to χ (0) , χ (i) , Δhc (0) , Δhc (i) refrigerant physical property data and calculation formula for calculating,
(3) W (0) , W (i) , PH (0) , PH (i) input in (1) and χ (0) , χ (i) , Δhc (0) calculated in (2 ) , Δhc (i) is substituted into the above estimation equation,
(4) Solution for obtaining the most probable values of β and b satisfying the simultaneous equations of i = 1 to n in the above estimation formula (for example, least square method)

さらに圧縮機に電力を供給する電力線に設けた電力計、圧縮機の冷媒吐出管に設けた圧力計、圧縮機の冷媒吸込管に設けた圧力計で計測した、圧縮機の消費電力、凝縮圧力、蒸発圧力のそれぞれの値を用いて、少なくとも送液管に対する加熱量または冷熱量Qin(i)とβとbの関係を求めるようにしてもよい。 Furthermore, power consumption of the compressor, condensation pressure measured with a power meter provided on the power line that supplies power to the compressor, a pressure gauge provided on the refrigerant discharge pipe of the compressor, and a pressure gauge provided on the refrigerant suction pipe of the compressor The relationship between at least the amount of heating or cooling Qin (i) with respect to the liquid feeding pipe and β and b may be obtained using each value of the evaporation pressure.

本発明によれば、通常のPACシステムが備えているセンサから計測値を得られるため、冷房能力推定にあたってPACの設定値の変更などを必要としない。つまり設備保有者・運用者に影響を与えない。Q(0)、β、bは、送液管に付加した3種類以上の加熱量または冷却量Qin(i)、すなわち{Qin(1)、Qin(2)、Qin(3)}での圧縮機の消費電力W(i)、凝縮圧力PH(i)、蒸発圧力PL(i)、の計測値と、χ(i)、Δhc(i)の算出値を用いて、上式の3つの連立方程式を満足するように求める。その手法として、例えば最小二乗法を用いた繰り返し計算がある。
また本発明の、容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用い、室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、冷房能力を推定する、パッケージ型空調機による空調システムの冷房能力測定方法を実施するための測定装置は、前記送液管の管壁に装着可能で、前記送液管に冷熱または温熱を付与するための断熱材で外装されたチューブと、前記チューブとは別体の熱源装置とを有し、前記熱源装置は、液体の満たされた恒温槽と、当該恒温槽から当該液体液を前記チューブに供給するポンプと、当該恒温槽内の液体を加熱または冷却する熱交換器とを有することを特徴としている。
According to the present invention, since a measurement value can be obtained from a sensor included in a normal PAC system, it is not necessary to change the setting value of the PAC in estimating the cooling capacity. In other words, it does not affect equipment owners / operators. Q (0) , β and b are three or more heating or cooling amounts added to the liquid supply pipe Qin (i) , ie compression with {Qin (1) , Qin (2) , Qin (3) } Using the measured values of the machine power consumption W (i) , condensing pressure PH (i) , evaporation pressure PL (i) , and calculated values of χ (i) , Δhc (i) Find to satisfy the equation. For example, there is an iterative calculation using a least square method.
Further, the present invention uses an outdoor unit having a capacity-controlled compressor and an outdoor heat exchanger, and a packaged air conditioner in which an indoor unit having an indoor heat exchanger is connected by a refrigerant pipe. A package type air conditioner that heats or cools a liquid supply pipe through which a refrigerant is sent from an air conditioner to an indoor unit, and estimates cooling capacity based on data of changes in power consumption, condensation pressure, and evaporation pressure of the compressor accordingly The measuring device for carrying out the cooling capacity measuring method of the air conditioning system by the machine can be mounted on the pipe wall of the liquid feeding pipe and is covered with a heat insulating material for applying cold heat or heat to the liquid feeding pipe And a heat source device separate from the tube, the heat source device comprising: a thermostatic bath filled with liquid; a pump for supplying the liquid liquid from the thermostatic bath to the tube; and the thermostatic bath To heat or cool the liquid It is characterized by having a exchanger.

本発明によれば、PACシステムの運転を停止することなく、大掛かりな設備を必要とせずに、しかも高精度にPACシステムの冷房能力を測定することができる。   According to the present invention, it is possible to measure the cooling capacity of the PAC system with high accuracy without stopping the operation of the PAC system and without requiring a large facility.

図1では、一台の室外機に対して複数の室内機が接続されているような、ビル用マルチに本発明を適用した場合の例を示している。この図では1室に室内機1bが2台設置された空調室R1、R2が示され、以降別の空調室への冷媒配管が延長している。PACシステム1は室外機1aと複数の室内機1bとそれらを接続する冷媒配管往管1cと冷媒配管還管1dとから主として構成されている。室外機1aには圧縮機と室外側熱交換器、その他アキュムレータを備えている(いずれも図示せず)。また室外側熱交換器の排熱には、方式によって対応が異なり、空冷方式の場合には送風機1eが機内に備えられ、いわゆる水マルチなどの水冷方式の場合には冷却塔(図示せず)が冷却水配管を介して室外機1aと接続される。室内機1bには室内側熱交換器1fが内蔵され、送風機1gで室内等の空調負荷に空調空気を給気する。冷媒配管往管(以下「送液管」と称する)1cの室内機1b側には、膨張弁1h等の減圧装置が設けられる。液冷媒はかかる減圧装置により室内機1b内の熱交換器1fで気化しこれにより空調室R1、R2が冷房される。   FIG. 1 shows an example in which the present invention is applied to a building multi-use in which a plurality of indoor units are connected to one outdoor unit. In this figure, air conditioning rooms R1 and R2 in which two indoor units 1b are installed in one room are shown, and the refrigerant pipe to another air conditioning room is extended thereafter. The PAC system 1 mainly includes an outdoor unit 1a, a plurality of indoor units 1b, a refrigerant pipe outgoing pipe 1c connecting them, and a refrigerant pipe return pipe 1d. The outdoor unit 1a includes a compressor, an outdoor heat exchanger, and other accumulators (all not shown). The exhaust heat of the outdoor heat exchanger varies depending on the system, and in the case of an air cooling system, a blower 1e is provided in the apparatus, and in the case of a water cooling system such as a so-called water mulch, a cooling tower (not shown). Is connected to the outdoor unit 1a through the cooling water pipe. The indoor unit 1b has a built-in indoor heat exchanger 1f, and the blower 1g supplies conditioned air to an air conditioning load such as a room. A decompression device such as an expansion valve 1h is provided on the refrigerant pipe outgoing pipe (hereinafter referred to as “liquid feeding pipe”) 1c on the indoor unit 1b side. The liquid refrigerant is vaporized by the heat exchanger 1f in the indoor unit 1b by the decompression device, thereby cooling the air-conditioned rooms R1 and R2.

本実施の形態では、送液管1cを所定の熱量で加熱または冷却する熱源装置を用いる。図1に示した2は熱源装置の1例であり、水などの供試液の満たされた恒温槽2a、ポンプ2b、送液管1cへの液の供給量を計測する流量計2c、および送液管1cへの液の送出温度と戻り温度を計測する温度計2dと、恒温槽2aに温熱または冷熱を付与するヒートポンプ2eから主として構成される。恒温槽2aには水またはブラインなどの液流体2fが満たされ、ポンプ2bにより送出可能になっている。ヒートポンプ2eは、恒温槽2a内の供試液を加熱または冷却する熱交換器2gと、大気中に熱を放出したり採熱する熱交換器2hを備え、前者が恒温槽2aに浸漬され、恒温槽2a内の液流体を加熱または冷却する。   In the present embodiment, a heat source device that heats or cools the liquid feeding pipe 1c with a predetermined amount of heat is used. 1 shown in FIG. 1 is an example of a heat source device, and a thermostat 2a filled with a test liquid such as water, a pump 2b, a flow meter 2c for measuring the amount of liquid supplied to the liquid feeding pipe 1c, It is mainly composed of a thermometer 2d that measures the temperature at which the liquid is sent to the liquid pipe 1c and the return temperature, and a heat pump 2e that applies hot or cold heat to the thermostat 2a. The thermostat 2a is filled with a liquid fluid 2f such as water or brine, and can be sent out by a pump 2b. The heat pump 2e includes a heat exchanger 2g that heats or cools the test solution in the thermostat 2a and a heat exchanger 2h that releases or collects heat into the atmosphere, and the former is immersed in the thermostat 2a. The liquid fluid in the tank 2a is heated or cooled.

さらに本実施形態では、恒温槽2a内の液流体によって送液管1cの管壁に冷熱または温熱を付与すべく断熱材3aで外装されたチューブ3を用いる。チューブ3は内側に前記の液流体が流通しうる中空管であり、図示のように送液管1cに巻き回せるような柔軟構造で、送液管1cに接する部分を残してシート状の断熱材3aで外装される。チューブ3は熱源装置2と一体化されていてもよいが、別体とされて空調システムが運転される現地でワンタッチジョイントなどを介して接続されてもよい。   Furthermore, in this embodiment, the tube 3 covered with the heat insulating material 3a is used so as to apply cold heat or heat to the tube wall of the liquid feeding tube 1c by the liquid fluid in the thermostatic chamber 2a. The tube 3 is a hollow tube through which the liquid fluid can circulate, and has a flexible structure that can be wound around the liquid supply tube 1c as shown in the drawing, leaving a portion in contact with the liquid supply tube 1c, and a sheet-like heat insulation It is covered with a material 3a. Although the tube 3 may be integrated with the heat source device 2, it may be separated and connected via a one-touch joint or the like at a site where the air conditioning system is operated.

この熱源装置2は前述のようにして加熱・冷却されたその熱量を算出するためのデータを測る。つまり温度計2dにより求めた送液温度と還液温度の差に流量計2cの計測値を乗ずることで熱量が算出される。チューブ3は送液管1cを流れる液冷媒に外部から温熱または冷熱を付与する。ここでは加熱する例を挙げるが、加熱量は冷房能力に対して十分に小さいため、液冷媒がガス化することはない。これらの機能は加熱に限れば電気ヒータでもより簡便に代替でき電流計により付与熱量を計測できる。なお、熱源装置の形態により、熱発生手段は直接送液管1cを冷却または加熱するものであることもあり、その場合熱量計測手段とは別体となる。   The heat source device 2 measures data for calculating the amount of heat heated and cooled as described above. That is, the amount of heat is calculated by multiplying the difference between the liquid feeding temperature and the return liquid temperature obtained by the thermometer 2d by the measurement value of the flow meter 2c. The tube 3 gives warm heat or cold heat from the outside to the liquid refrigerant flowing through the liquid feeding pipe 1c. Here, although an example of heating will be given, the amount of heating is sufficiently small with respect to the cooling capacity, so the liquid refrigerant will not be gasified. If these functions are limited to heating, an electric heater can be substituted more easily, and the applied heat can be measured with an ammeter. Depending on the form of the heat source device, the heat generating means may directly cool or heat the liquid feeding pipe 1c, and in that case, separate from the heat quantity measuring means.

その他、消費電力を計測する電力計Wを備え、かつ室外機1aは通常の室外機と同様、圧縮機の高圧側冷媒と低圧側冷媒の圧力をそれぞれ計測する圧力計PH、PLを備える。PACシステムの室内機側、すなわち空調室R1、R2には、室内温度計TRが備えられて室温を計測する。そのほか屋外の適所に外気温を計測する温度センサToutが設けられる。なお、室内温度計TRと温度センサToutは通常のPACシステムに設けられるもので、本発明による推定法を実施するタイミングを測るために用い、推定の演算には用いない。   In addition, the outdoor unit 1a is provided with pressure gauges PH and PL for measuring the pressures of the high-pressure side refrigerant and the low-pressure side refrigerant of the compressor, respectively, similarly to a normal outdoor unit. An indoor thermometer TR is provided on the indoor unit side of the PAC system, that is, the air conditioning rooms R1 and R2, and the room temperature is measured. In addition, a temperature sensor Tout for measuring the outside air temperature is provided at a suitable outdoor location. Note that the indoor thermometer TR and the temperature sensor Tout are provided in a normal PAC system, and are used to measure the timing at which the estimation method according to the present invention is performed, and are not used for the calculation of estimation.

以上の構成を備えたPACシステムの冷房能力測定方法を以下に説明する。なお、インバータなどの容量制御機構を有するパッケージ空調機では、空調負荷に応じた冷房能力Q(0)で運転がなされている.このQ(0)は空調負荷が変化しない限り不変である. A method for measuring the cooling capacity of the PAC system having the above configuration will be described below. The packaged air conditioner having a capacity control mechanism such as an inverter is operated with a cooling capacity Q (0) corresponding to the air conditioning load. This Q (0) is unchanged unless the air conditioning load changes.

(1)冷房能力推定の手順
まず熱源装置2とつながるチューブ3を送液管1cの適所、この場合は送液管1cが分岐する前の箇所、すなわち主管部分Mに組み付ける。運用中のPACの能力の推定は、朝方や夕方のように外気負荷の変動が大きい時刻は避け、外気温度Toutの変動が少ない時間帯、例えば10時から14時間で実施時期を選定する。能力推定の実施中は、中間階の2フロアや1フロアの東側と西側など、同一用途の室で室外機が異なる二系統を測定し、一方は送液管に冷熱量を付加した運転を実施して冷房能力を推定し、他方は通常の運転を実施する。すなわち、別の室外機の送液管に対して、前述と同様圧縮機の消費電力量と凝縮圧力と蒸発圧力を計測する。室外機は同一用途の居室や上または下の階を空調する室外機は近接して配置されるのが一般のため、測定値を目視して負荷をかけた側の系統と見比べることも容易である。
外気温度Toutが変動していないで、かつ通常の運転をする側のPACの動力が変動していないときに、空調負荷が変化してないと判断する.そして、室外機機内にある圧縮機吐出管の圧力計と圧縮機吸込管の圧力計廻りの弁をそれぞれ開き、表示装置を接続する。なお消費電力は既存の盤から目視することもできる。通常の運転をする側のPACに急激な変動、または徐々にではあるが大幅な変動がでたら、負荷をかけた側のPACの測定を中止する。
(1) Procedure for Estimating Cooling Capacity First, the tube 3 connected to the heat source device 2 is assembled at an appropriate position of the liquid feed pipe 1c, in this case, the place before the liquid feed pipe 1c branches, that is, the main pipe portion M. The estimation of the capacity of the PAC during operation avoids the time when the fluctuation of the outside air load is large such as in the morning or evening, and selects the implementation time in the time zone where the fluctuation of the outside air temperature Tout is small, for example, from 10:00 to 14 hours. During the performance estimation, we measured two systems with different outdoor units, such as two floors on the intermediate floor and the east and west sides of one floor, and one of them was operated by adding cold heat to the liquid supply pipe. Then, the cooling capacity is estimated, and the other performs normal operation. That is, the power consumption amount, the condensing pressure, and the evaporating pressure of the compressor are measured for the liquid feeding pipe of another outdoor unit as described above. Since outdoor units are generally located close to living rooms for the same purpose and outdoor or air-conditioned floors, it is easy to compare the measured values with the system on the side where the load is applied. is there.
When the outside air temperature Tout does not change and the power of the PAC on the normal operation side does not change, it is determined that the air conditioning load has not changed. Then, the pressure gauges of the compressor discharge pipe and the compressor suction pipe around the pressure gauge in the outdoor unit are opened, and the display device is connected. The power consumption can also be visually observed from existing boards. If the PAC on the normal driving side changes suddenly or gradually but greatly, the measurement of the PAC on the loaded side is stopped.

図2に能力推定を実施する系統の手順を示す。なお、以下の手順はコンピュータを使って行うことができ、計算結果はパソコン画面への表示や印刷によって得ることができ、ただし後述の計算結果からの冷房能力の推定は、対比テーブルをパソコン内に記憶させて対比してもよいし、保守員が目視によって判断してもよい。一例としては圧縮機の高圧側と低圧側にそれぞれ設けた圧力計PH、PLと電力計Wの信号を可搬式のパソコンに送信し、後述の比較、演算をさせることができる。この際外気温度と室温の計測値もパソコンに取り込み表示できるようにすれば、空気温度の変動に伴って作業を中断することができる。
まず、冷房能力推定を実施する系統ともう一方の別の系統の負荷変動が、能力推定の精度に影響を及ぼさない状態にあることを確認する。すなわち、外気温度Toutと室温Tを測定し(ステップS1)、外気温度Toutの経時変化率(δTout/δt)と室温Tの経時変化率(δT/δt)が予め定めた閾値以下となることを確認した後に(ステップS2)、運用中のPACの凝縮圧力(高圧)PH(0)、蒸発圧力(低圧)PL(0)、動力(消費電力)W(0)を測定する(ステップS3)。
次に熱源装置2を用いて、図3に示すように段階的に3通り(i=1〜3)の熱量Qin(i)を送液管1cに加熱または冷却する(ステップS4)。例えば、室外機1aの圧縮機(図示せず)を出た50℃の液冷媒に対して、20℃(i=1)、17℃(i=2)、14℃(i=3)の冷熱を付与する。3通りの熱の付与は、後述の能力推定式の未知の数値3つを連立方程式で解くためである。
FIG. 2 shows a procedure of a system for performing capacity estimation. The following procedure can be performed using a computer, and the calculation results can be obtained by displaying or printing on a personal computer screen. However, the cooling capacity can be estimated from the calculation results described later by using a comparison table in the personal computer. You may memorize | store and contrast, and a maintenance worker may judge by visual observation. As an example, the signals of the pressure gauges PH and PL and the wattmeter W provided on the high-pressure side and the low-pressure side of the compressor can be transmitted to a portable personal computer for comparison and calculation described later. At this time, if the measured values of the outside air temperature and the room temperature can also be captured and displayed on the personal computer, the work can be interrupted as the air temperature fluctuates.
First, it is confirmed that the load fluctuations of the system that performs the cooling capacity estimation and the other system other than the system do not affect the accuracy of the capacity estimation. That is, to measure the outside air temperature T out and room temperature T R (step S1), the time rate of change of the outside air temperature T out (δT out / δt) with time rate of change of the room temperature T R (δT R / δt) is predetermined After confirming that it is below the threshold (step S2), measure the condensation pressure (high pressure) PH (0) , evaporation pressure (low pressure) PL (0) , and power (power consumption) W (0) of the operating PAC. (Step S3).
Next, using the heat source device 2, as shown in FIG. 3, three kinds (i = 1 to 3) of heat quantity Qin (i) are heated or cooled in the liquid feeding pipe 1c step by step (step S4). For example, with respect to the liquid refrigerant at 50 ° C. that has exited the compressor (not shown) of the outdoor unit 1a, cold heat of 20 ° C. (i = 1), 17 ° C. (i = 2), 14 ° C. (i = 3) Is granted. The three ways of applying heat are to solve three unknown numerical values of the ability estimation formula described later using simultaneous equations.

熱量Qin(i)の加熱または冷却により変化したPACのサイクル状態が安定した後に、熱量Qin(i)ごとの凝縮圧力PH(i)、蒸発圧力PL(i)、動力W(i)を測定する(ステップS5)。最後に、外気温度Toutの経時変化率(δT/δt)と室温Tの経時変化率(δT/δt)が閾値以下であることを確認し(ステップS6)、測定したデータに基づき後述の能力推定式を導出する(ステップS7)。能力推定式の導出(ステップS7)は、まず、図3に示すように能力推定式に3通り(i=1〜3)の熱量Qin(i)ごとの凝縮圧力PH(i)、蒸発圧力PL(i)、動力W(i)を代入して連立させる。
次に、後述の能力推定式の未知の数値3つをパラメータとした収束計算を行い連立解を求める。その結果、求めた解である数値3つの内の1つであるPACの冷房能力Q(0)を推定できる。以上の閾値は要求される推定精度による。
すなわち、本発明においては、高い推定精度が要求されるほど、「閾値」を小さく定める必要がある。i=1から3(またはそれ以上)のQin(i)を付加して,動力,凝縮圧力,蒸発圧力を計測している時間中は,冷房負荷(冷房能力Q(0))が不変であることが前提条件であり,測定時間中のQ(0)の変動は推定精度の低下につながる。ここでは,Q(0)が測定時間中に変化していないことを,外気温度と室温の経時変化率(δTout/δt,δT/δt)によって判断する(δTout/δt,δT/δtが大きいことは,冷房負荷変動が大きいことを意味する)。測定時間中のδTout/δt=0(零),δT/δt=0(零)が理想であるが、現実的には困難なので閾値を定めることにした。この「閾値」を小さくすることで,冷房負荷変動が小さい場合での測定データが得られるため,推定精度が向上する。なお、この一連の推定手順を実施している間は、通常の運転を実施している同一用途の室の別系統の運転状態の測定も実施し、空調負荷が変化してないことの確認を行なう。
After the cycle state of the PAC was changed by heating or cooling the heat Qin (i) is stabilized, condensation pressure PH of each heat Qin (i) (i), for measuring the evaporation pressure PL (i), the power W (i) (Step S5). Finally, to confirm that time rate of change of the outside air temperature T out (δT / δt) with time rate of change of the room temperature T R (δT / δt) is below a threshold (step S6), and later on the basis of the measured data A capability estimation formula is derived (step S7). The derivation of the capacity estimation formula (step S7) is first performed as shown in FIG. 3 in which the condensation pressure PH (i) and the evaporation pressure PL for each of the heat quantity Qin (i) in three ways (i = 1 to 3) in the capacity estimation formula. (I) Substituting power W (i) and making it simultaneous.
Next, a convergence calculation is performed by using three unknown numerical values of the ability estimation formula described later as parameters to obtain simultaneous solutions. As a result, the cooling capacity Q (0) of the PAC, which is one of the three numerical values that are the obtained solutions, can be estimated. The above threshold depends on the required estimation accuracy.
That is, in the present invention, the “threshold value” needs to be set smaller as the higher estimation accuracy is required. The cooling load (cooling capacity Q (0) ) is unchanged during the time when power, condensation pressure, and evaporation pressure are measured by adding Qin (i) of i = 1 to 3 (or more) This is a precondition, and fluctuations in Q (0) during the measurement time lead to a decrease in estimation accuracy. Here, it is determined that Q (0) does not change during the measurement time based on the rate of change over time (δT out / δt, δT R / δt) between the outside temperature and room temperature (δTout / δt, δT R / δt). A large value means that the cooling load fluctuation is large). ΔT out / δt = 0 (zero) and δT R / δt = 0 (zero) during the measurement time are ideal, but since it is difficult in practice, the threshold value is determined. By reducing the “threshold value”, measurement data can be obtained when the cooling load fluctuation is small, so that the estimation accuracy is improved. While performing this series of estimation procedures, measure the operating status of another system in a room of the same use that is performing normal operation, and confirm that the air conditioning load has not changed. Do.

(2)送液管の冷却および加熱による冷媒状態の変化について
ここでは、図2と図3の冷房能力の推定式算出のステップの前提として、室外機1aの圧縮機(図示せず)の凝縮圧力と蒸発圧力とエンタルピー差の関連を説明する。
図4のように、送液管1cに熱量Qin(i)を付加(冷却の場合はプラス、加熱の場合はマイナス)すると、動力(消費電力)はW(0)からW(i)に変化する。
図5は、このときの冷媒状態をモリエル線図上に示したものである。同図では、通常運転の場合(図5(a))と比較して、送液管を冷却した場合(Qin(i)はプラスの場合:図5(b))の冷媒状態を例示する。
図5(b)に示したように、送液管1cを冷却すると、送液(膨張弁の入口)のエンタルピーはh3(0)からh4(i)に変化する.また、凝縮圧力(高圧)はPH(0)からPH(i)に変化し、蒸発圧力(低圧)はPL(0)からPL(i)に変化する。この高圧や低圧の変化に応じて、室外機1aの圧縮機(図示せず)吐出のエンタルピーはh1(0)’からh1(i)’に変化する。同時に、冷媒流量はG(0)からG(i)に変化し、圧縮機の効率(総合効率)はη(0)からη(i)に変化する。図5(a)に示すように、通常運転の場合、蒸発器でのエンタルピー差Δh(0)、ならびに圧縮機でのエンタルピー差Δhc(0)’は、下記の(1−1)式と(1−2)式である。
Δh(0)=h2(0)−h3(0) ・・・・(1−1)式
Δhc(0)’=h1(0)’−h2(0) ・・・・(1−2)式
また、図5(b)に示すように、送液管1cに冷熱量Qin(i)を付加した場合、Qin(i)分のエンタルピー差Δhin(i)、冷房力能力Q(0)からQin(i)を引いた冷熱量分のエンタルピー差Δh(i)、ならびに圧縮機でのエンタルピー差Δhc(i)’は、下記の(2−1)式、(2−2)式、(2−3)式である。
Δh(i)=h2(i)−h3(i) ・・・・(2−1)式
Δhc(i)’=h1(i)’−h2(i) ・・・・(2−2)式
Δhin(i)’=h3(i)−h4(i) ・・・・(2−3)式
(2) Change in refrigerant state due to cooling and heating of liquid feeding pipe Here, as a premise of the step of calculating the estimation formula of the cooling capacity in FIGS. 2 and 3, condensation of the compressor (not shown) of the outdoor unit 1a The relationship between pressure, evaporation pressure, and enthalpy difference will be explained.
As shown in FIG. 4, when the heat quantity Qin (i) is added to the liquid feeding pipe 1c ( plus in the case of cooling, minus in the case of heating), the power (power consumption ) changes from W ( 0) to W (i) . To do.
FIG. 5 shows the refrigerant state at this time on the Mollier diagram. In the same figure, compared with the case of a normal driving | operation (FIG. 5 (a)), when the liquid feeding pipe is cooled (Qin (i) is a plus: FIG. 5 (b)), the refrigerant | coolant state is illustrated.
As shown in FIG. 5B, when the liquid feed pipe 1c is cooled, the enthalpy of the liquid feed (expansion valve inlet) changes from h3 (0) to h4 (i) . Further, the condensation pressure (high pressure) changes from PH (0) to PH (i) , and the evaporation pressure (low pressure) changes from PL ( 0) to PL (i) . The enthalpy of discharge from the compressor (not shown) of the outdoor unit 1a changes from h1 ( 0) ′ to h1 (i) ′ in accordance with the change in high pressure or low pressure. At the same time, the refrigerant flow rate changes from G (0) to G (i), and the efficiency (total efficiency) of the compressor changes from η (0) to η (i) . As shown in FIG. 5A, in normal operation, the enthalpy difference Δh (0) in the evaporator and the enthalpy difference Δhc (0) ′ in the compressor are expressed by the following equation (1-1) and ( 1-2).
Δh (0) = h2 (0) −h3 (0) ... (1-1) Δhc (0) ′ = h1 (0) ′ − h2 (0) ... (1-2) Further, as shown in FIG. 5 (b), when added to cold calorie Qin (i) the liquid feed pipe 1c, Qin from Qin (i) content of the enthalpy difference Δhin (i), cooling power capacity Q (0) (i) by subtracting the cold amount of enthalpy difference Delta] h (i), and the enthalpy difference Δhc in the compressor (i) 'is the following equation (2-1), (2-2) equation, (2- 3) Formula.
Δh (i) = h2 (i) -h3 (i) (2-1) equation Δhc (i) '= h1 (i) ' -h2 (i) ··· (2-2) equation Δhin (i) ′ = h3 (i) −h4 (i) (2-3)

ここで、Δh(i)は、増倍係数α(i)を用いて、下記の(3)式のように書くこととする。
Δh(i)=α(i)・Δh(0) ・・・・(3)式
圧縮機理論エンタルピー差(エントロピーsが一定の下でのエンタルピー差)は、高圧、低圧、および蒸発器出口の過熱度制御(過熱度=一定)から、冷媒の物性値を用いて求めることができる.
通常運転の場合の圧縮機理論エンタルピー差をΔhc(0)、冷熱量Qin(i)を付加した場合の圧縮機理論エンタルピー差をΔhc(i)と書くと、(1−2)式と(2−2)式のΔhc(0)’とΔhc(i)’は下記の(4−1)式と(4−2)式のように書くことができる。
Δhc(0)’= Δhc(0)/η(0) ・・・・(4−1)式
Δhc(i)’= Δhc(i)/η(i) ・・・・(4−2)式
ここで、η(0)は通常運転の場合の圧縮機効率であり、η(i)は冷熱量Qin(i)を付加した場合の圧縮機効率である。
Here, Δh (i) is written as the following expression (3) using the multiplication coefficient α (i) .
Δh (i) = α (i) · Δh (0) ... (3) Compressor theoretical enthalpy difference (enthalpy difference under constant entropy s) is the high pressure, low pressure, and evaporator outlet. From the superheat control (superheat = constant), it can be obtained using the physical properties of the refrigerant.
When the compressor theoretical enthalpy difference in the normal operation is expressed as Δhc (0) and the compressor theoretical enthalpy difference when the heat quantity Qin (i) is added is expressed as Δhc (i) , equations (1-2) and (2 −h ) (0) ′ and Δhc (i) ′ in the expression −2) can be written as the following expressions (4-1) and (4-2).
Δhc (0) ′ = Δhc (0) / η (0) ... (4-1) Δhc (i) ′ = Δhc (i) / η (i) ... (4-2) Here, η (0) is the compressor efficiency in the normal operation, and η (i) is the compressor efficiency when the cold energy Qin (i) is added.

(3)冷房能力および動力
送液管1cに冷熱量を付加しない場合、冷房能力Q(0)と動力W(0)は、下記の(5−1)式と(5−2)式となる。
(0)=G(0)・Δh(0) ・・・・(5−1)式
(0)=G(0)・Δhc(0)’= G(0)・Δhc(0)/η(0) ・・・・(5−2)式
また、送液管1cに冷熱量Qin(i)を付加した場合、冷房能力Q(0)と動力W(i)は下記の(6−1)式と(6−2)式となる。
(0)=Qin(i)+G(i)・Δh(i)= Qin(i)+G(i)・α(i)・Δh(0) ・・・・(6−1)式
(i)=G(i)・Δhc(i)’= G(i)・Δhc(i) /η(i) ・・・・(6−2)式
これらの(5−1)式、(5−2)式、(6−1)式、(6−2)式を整理すると、下記の(7)式を得る。
(0)=Qin(i)/{1−α(i)・(W(i) /W(0))・(η(i)/η(0))・(Δhc(0)/Δhc(i))} ・・・・(7)式
(3) Cooling capacity and power When cooling quantity is not added to the liquid feeding pipe 1c, the cooling capacity Q (0) and power W (0) are expressed by the following formulas (5-1) and (5-2). .
Q (0) = G (0) · Δh (0) ··· (5-1) Equation W (0) = G (0) · Δhc (0) '= G (0) · Δhc (0) / .eta. (0) ... (5-2) When cooling quantity Qin (i) is added to liquid feeding pipe 1c, cooling capacity Q (0) and power W (i) are expressed by the following (6- 1) and (6-2).
Q (0) = Qin (i) + G (i) · Δh (i) = Qin (i) + G (i) · α (i) · Δh (0) ··· (6-1) Formula W (i ) = G (i) · Δhc (i) ′ = G (i) · Δhc (i) / η (i) ... (6-2) Equations (5-1), (5-2) ), (6-1), and (6-2) are rearranged to obtain the following (7).
Q (0) = Qin (i) / {1- [alpha] (i). (W (i) / W (0) ). ([Eta] (i) / [eta] (0) ). ([Delta] hc (0) / [Delta] hc ( i) )} Equation (7)

(4)圧縮機の効率およびエンタルピー差の増倍係数の関数形
圧縮機の効率ηをa・(PH/PL)の一般的な関数形とする。また、PH/PLを圧縮比χとおくと下記の(8)式を得る。
η(i)/η(0)=(χ(i)/η(0) ・・・・(8)式
ここで、aおよびbは、圧縮機で定まる固有の係数である。
エンタルピー差Δh(i)の増倍係数α(i)は、ここでは仮に、冷熱量Qin(i)が冷房能力Q(0)に比べて十分に小さい場合には、α(i)は測定値や理論値から定まることを想定する。なお、ここでの課題は、圧縮機の効率のように、エンタルピー差の増倍係数の関数形を定めることにある。
以降の説明を簡単にするため下記の(9)式のように、高圧の変化割合PH(0)/PH(i)を用いて定めることとする。
α(i)=f(PH(0)/PH(i)) ・・・・(9)式
ここで、f(PH(0)/PH(i))の関数形を、下記の(9−1)式のように定めることとする。
f(PH(0)/PH(i))=(PH(0)/PH(i)β ・・・・(9−1)式
なお、低圧および蒸発器出口での過熱度制御(過熱度=一定)から、Δh(i)を定めるための一方のエンタルピー(圧縮機吸入のエンタルピーh2(i))およびΔh(0)を定めるための一方のエンタルピー(圧縮機吸入のエンタルピーh2(0))は、冷媒の物性値を用いて求めることができる。したがって、今まで説明してきたように、(3)式に基づいてΔh(i)を定めるための増倍係数α(i)でなく、加熱・冷却前のエンタルピーh3(i)を定める増倍係数を採用しても良い。
(4) Function efficiency of compressor efficiency and enthalpy difference multiplication coefficient The compressor efficiency η is a general function form of a · (PH / PL) b . Further, when PH / PL is set to the compression ratio χ, the following equation (8) is obtained.
η (i) / η (0) = (χ (i) / η (0) ) b (8) where a and b are inherent coefficients determined by the compressor.
Here, the multiplication factor α (i) of the enthalpy difference Δh (i) is assumed to be α (i) is a measured value when the amount of heat Qin (i) is sufficiently smaller than the cooling capacity Q (0). It is assumed that it is determined from the theoretical value. The problem here is to determine the function form of the multiplication coefficient of the enthalpy difference, such as the efficiency of the compressor.
In order to simplify the following description, it is determined by using the high pressure change rate PH (0) / PH (i) as in the following equation (9).
α (i) = f (PH (0) / PH (i) ) (9) where f (PH (0) / PH (i) ) is expressed as the following (9− 1) It shall be determined as shown in the equation.
f (PH (0) / PH (i) ) = (PH (0) / PH (i) ) β (Equation (9-1)) Note that the superheat degree control (superheat degree at the low pressure and the evaporator outlet) = Constant), one enthalpy for determining Δh (i) (compressor suction enthalpy h2 (i) ) and one enthalpy for determining Δh (0) (compressor enthalpy h2 (0) ) Can be determined using the physical property values of the refrigerant. Therefore, as described so far, not the multiplication factor α (i) for determining Δh (i) based on the equation (3 ) , but the multiplication factor for determining the enthalpy h3 (i) before heating / cooling. May be adopted.

(5)冷房能力の算出式および試験の種類
以上の(8)式および(9)式を(7)式に代入すると、下記の(10)式を得る。
(0)=Qin(i)/{1−(PH(0)/PH(i)β・(W(i)/W(0))・(χ(i)/χ(0)・(Δhc(0)/Δhc(i))} ・・・・(10)式
上記の(10)式において、ここで求めるべき冷房能力Q(0)と指数のbとβの3つが未知であるため、送液管1cに冷熱量を付加しない運転とともに、冷熱量Qin(1)、冷熱量Qin(2)、冷熱量Qin(3)の3種類の冷熱量を送液管1cに付加した運転を実施すれば、次の3元連立方程式を解くことで冷房能力Q(0)を推定することができる。
(0)=Qin(1)/{1−(PH(0)/PH(1)β・(W(1)/W(0))・(χ(1)/χ(0)・(Δhc(0)/Δhc(1))}
(0)=Qin(2)/{1−(PH(0)/PH(2)β・(W(2)/W(0))・(χ(2)/χ(0)・(Δhc(0)/Δhc(2))}
(0)=Qin(3)/{1−(PH(0)/PH(3)β・(W(3)/W(0))・(χ(3)/χ(0)・(Δhc(0)/Δhc(3))}
これを解くことによって、冷房能力Q(0)、b、βを求めることができる。演算装置によって解く場合のフローを図3に示した。これらは予めプログラム化してパソコン等にインストールしたり、適宜の記憶媒体に記録しておくことができる。
以上の結果が定格能力よりも低く算出されればPACの増設やOA機器等の発熱への対策を検討し、逆に高く算出されればPACの別の負荷域への移設等、負荷と空調が適切となるよう対策を検討することができる。
(5) Cooling capacity calculation formula and test type When the above formulas (8) and (9) are substituted into formula (7), the following formula (10) is obtained.
Q (0) = Qin (i) / {1- (PH (0) / PH (i) ). Beta. (W (i) / W (0) ). (Χ (i) / χ (0) ) b (Δhc (0) / Δhc (i) )} (10) In the above equation (10), the cooling capacity Q (0) to be obtained here and the exponents b and β are unknown. Therefore, in addition to the operation without adding the amount of cold heat to the liquid feeding pipe 1c, three kinds of cold heat quantities of the cold heat quantity Qin (1) , the cold heat quantity Qin (2) and the cold heat quantity Qin (3) were added to the liquid feeding pipe 1c. When the operation is performed, the cooling capacity Q (0) can be estimated by solving the following three simultaneous equations.
Q (0) = Qin (1) / {1- (PH (0) / PH (1) ) β · (W (1) / W (0) ) · (χ (1) / χ (0) ) b (Δhc (0) / Δhc (1) )}
Q (0) = Qin (2) / {1- (PH (0) / PH (2) ) β · (W (2) / W (0) ) · (χ (2) / χ (0) ) b (Δhc (0) / Δhc (2) )}
Q (0) = Qin (3) / {1- (PH (0) / PH (3) ) β. (W (3) / W (0) ). (Χ (3) / χ (0) ) b (Δhc (0) / Δhc (3) )}
By solving this, the cooling capacity Q (0) , b, β can be obtained. The flow in the case of solving with an arithmetic unit is shown in FIG. These can be programmed in advance and installed in a personal computer or recorded in an appropriate storage medium.
If the above results are calculated to be lower than the rated capacity, consider measures to increase the number of PACs and heat generated by OA equipment, etc. If the values are calculated to be higher, load and air conditioning such as relocation of the PAC to another load range. Measures can be considered so that is appropriate.

表1は冷房能力演算のツールの一例で、この表(コンピュータ利用の場合はデータテーブル)の各欄に計測値(付熱量加、消費電力、圧縮機の高圧側と低圧側の各圧力)と計算値(圧縮比とエンタルピー差)を、通常運転時と3通りの運転時の4つの運転モードごとに入力しあるいは記入する。ここで圧縮比=凝縮圧力/蒸発圧力の意であり、測定した蒸発圧力(低圧側冷媒の圧力を計測する圧力計PL)と凝縮圧力(高圧側冷媒の圧力を計測する圧力計PH)の計測値を利用する。なお、表1のうち備考欄は入力または記入されるデータの出所を確認的に示している。
表1の実際の運用としては以下が考えられる。表1のうち計測値が埋まればあとの計算は短時間で済む。そこで、計測をPACシステム試運転中や稼動中の現場(現地)で行い、前記方程式を事務所等で解いてもよい。または、携帯電話等の移動端末に測定値を手入力し、遠隔地のサーバに計算させて結果の送信を前記移動端末に戻し受けても良い。なお、図2の「能力推定式を算出」の処理は判断子(外気温度Toutと室温Tのしきい値との比較)の前に行ってもよい。
Table 1 is an example of a cooling capacity calculation tool, and each column of this table (data table in the case of computer use) includes measured values (heat addition, power consumption, pressures on the high and low pressure sides of the compressor) and Enter or enter the calculated values (compression ratio and enthalpy difference) for each of the four operating modes during normal operation and three operations. Here, compression ratio = condensation pressure / evaporation pressure, and measurement of measured evaporation pressure (pressure gauge PL that measures the pressure of the low-pressure refrigerant) and condensation pressure (pressure gauge PH that measures the pressure of the high-pressure refrigerant) Use the value. In Table 1, the remarks column confirms the source of data to be entered or entered.
The actual operation in Table 1 can be considered as follows. If the measured values in Table 1 are filled, the subsequent calculations can be completed in a short time. Therefore, the measurement may be performed at a PAC system trial operation or a site (onsite) in operation, and the equation may be solved at an office or the like. Alternatively, a measurement value may be manually input to a mobile terminal such as a mobile phone, and a remote server may be used to calculate and return the result to the mobile terminal. The processing of the "calculation ability estimation equation" in FIG. 2 may be performed before determiner of (compared to the threshold of the outside air temperature T out and room T R).

Figure 0005394047
Figure 0005394047

(6)冷房能力の推定精度
以上の方法によって求めた冷房能力の推算精度、とくにエンタルピー差の増倍係数の関数形の妥当性を推定精度によって確認するために、室外機1aのかわりに水熱源ヒートポンプ(水冷チラー)を用いた試験装置で実施した結果を説明する。
図6に汎用水冷チラーを用いた試験装置40の系統を示す。また、表2に構成機器の仕様を示す。
図6は,試験装置40における各機器と冷媒配管との系統を模式的に示したものであり、送液管41を冷却や加熱するために、図1に示したような熱源装置(ヒートポンプ装置)42を用いている。また図1のチューブ3に代えて熱交換器42aを用いている。そして熱交換器42aを経た冷媒は膨張弁43を経て蒸発器44から、アキュムレータ45、圧縮機46、凝縮器47を巡るようになっている。送液管41を流れる冷媒の流量は質量流量計48によって計測される。蒸発器44で冷却された冷水は,冷房モードでの模擬負荷となる電気ヒータ49で熱交換器50加熱され蒸発器44に戻される。なお送液管41を流れる汎用水冷チラーの凝縮圧力は,圧力計51によって計測され,また蒸発圧力は圧力計52によって計測され,蒸発器入口温度は温度計53によって計測され,蒸発器出口温度は温度計54によって計測され,圧縮機46の電力は電力計55によって計測される。
そして熱交換器42aを介して汎用水冷チラーに付加した冷熱量Qinは、熱源水の流量計(図示せず)および温度計(図示せず)によって求めた。ここで推定すべき冷凍能力Q(真値)は、蒸発器44の冷水の出入口温度差と流量から求めることができる。
(6) Prediction accuracy of cooling capacity In order to check the estimation accuracy of the cooling capacity obtained by the above method, in particular the validity of the function form of the multiplication factor of the enthalpy difference, the water heat source instead of the outdoor unit 1a. The result implemented with the test apparatus using a heat pump (water cooling chiller) is demonstrated.
FIG. 6 shows a system of a test apparatus 40 using a general-purpose water-cooled chiller. Table 2 shows the specifications of the components.
FIG. 6 schematically shows a system of each device and refrigerant piping in the test apparatus 40, and in order to cool and heat the liquid feeding pipe 41, a heat source apparatus (heat pump apparatus) as shown in FIG. ) 42 is used. Moreover, it replaces with the tube 3 of FIG. 1, and uses the heat exchanger 42a. The refrigerant that has passed through the heat exchanger 42 a passes through the expansion valve 43, goes from the evaporator 44 to the accumulator 45, the compressor 46, and the condenser 47. The flow rate of the refrigerant flowing through the liquid feeding pipe 41 is measured by the mass flow meter 48. The cold water cooled by the evaporator 44 is heated by the heat exchanger 50 by the electric heater 49 serving as a simulated load in the cooling mode and returned to the evaporator 44. The condensing pressure of the general-purpose water-cooled chiller flowing through the liquid feeding pipe 41 is measured by a pressure gauge 51, the evaporation pressure is measured by a pressure gauge 52, the evaporator inlet temperature is measured by a thermometer 53, and the evaporator outlet temperature is Measured by the thermometer 54, and the electric power of the compressor 46 is measured by the wattmeter 55.
The amount of cold Qin added to the general-purpose water-cooled chiller via the heat exchanger 42a was determined by a heat source water flow meter (not shown) and a thermometer (not shown). The refrigerating capacity Q (true value) to be estimated here can be obtained from the inlet / outlet temperature difference and flow rate of the cold water of the evaporator 44.

Figure 0005394047
Figure 0005394047

推定冷凍能力Q(0)や推定精度(Q(0)/Q)の結果を表3、表4に示す。表3は送液管41を冷却した場合、表4は送液管41を加熱した場合である。また、送液管41を冷却した場合の試験装置40の運転状態の経時変化を図7に示す。送液管41に付加する冷熱量Qin(i)を3段階に変化させ、各段階において凝縮器47入口の冷却水の温度・流量、蒸発器44入口の冷水温度・流量が一定となった後の運転状態を測定した.表3の推定冷凍能力欄からわかるように、冷凍能力の予測精度は±6%、表4は±5%であり、送液管41を冷却する場合と加熱する場合共に十分な精度で予測できる。併せて、前出(9−1)式のようなエンタルピー差の増倍係数の関数形が妥当であることを確認した。なお、連立方程式で推定した能力Q(0)と定格能力との差は、表中に推定精度Q(0)/Qと表現している。Q(0)が通常運転の場合を示しており、冷却による測定時にQ(0)=2.8kW、加熱による測定時にQ(0)=2.4kWであった。 Tables 3 and 4 show the results of the estimated refrigeration capacity Q (0) and the estimated accuracy (Q (0) / Q). Table 3 shows a case where the liquid feeding pipe 41 is cooled, and Table 4 shows a case where the liquid feeding pipe 41 is heated. FIG. 7 shows the change over time in the operating state of the test apparatus 40 when the liquid feeding tube 41 is cooled. After the amount of cold heat Qin (i) added to the liquid feeding pipe 41 is changed in three stages, the temperature and flow rate of the cooling water at the inlet of the condenser 47 and the temperature and flow rate of the cold water at the inlet of the evaporator 44 become constant in each stage. The operating state of was measured. As can be seen from the estimated refrigeration capacity column of Table 3, the prediction accuracy of the refrigeration capacity is ± 6%, and Table 4 is ± 5%, and can be predicted with sufficient accuracy when the liquid feeding pipe 41 is cooled and heated. . In addition, it was confirmed that the function form of the multiplication coefficient of the enthalpy difference as in the above equation (9-1) was appropriate. The difference between the capacity Q (0) estimated by the simultaneous equations and the rated capacity is expressed as estimated accuracy Q (0) / Q in the table. Q (0) shows the case of normal operation, Q (0) = 2.8 kW when measured by cooling, and Q (0) = 2.4 kW when measured by heating.

Figure 0005394047
Figure 0005394047

Figure 0005394047
Figure 0005394047

本発明は前述の実施形態に限らず実施できる。例えば室内外機が各一台のPACにも本発明は適用できる。また熱源装置は、加熱・冷却を正確に測定できるものであれば、ペルチェ素子なども用いることができる.   The present invention is not limited to the embodiment described above, and can be implemented. For example, the present invention can be applied to a PAC having one indoor / outdoor unit. As the heat source device, a Peltier element or the like can be used as long as it can accurately measure heating and cooling.

本発明の実施形態に係る概略構成図。1 is a schematic configuration diagram according to an embodiment of the present invention. 本発明の実施形態に係る冷房能力推定手順のフローチャート。The flowchart of the cooling capacity estimation procedure which concerns on embodiment of this invention. 本発明の実施形態に係る冷房能力推定式の導出をするための演算のフローチャート。The flowchart of the calculation for derivation | leading-out of the cooling capacity estimation formula which concerns on embodiment of this invention. 本発明の実施形態を実施するに際し、測定中のサイクル変化を示す図。The figure which shows the cycle change during a measurement in implementing embodiment of this invention. 本発明の実施形態を実施するに際し、送液管に冷熱量Qin(i)を付加したときの冷媒状態の変化の模式図。The schematic diagram of the change of a refrigerant | coolant state when the amount of cold heat Qin (i) is added to the liquid feeding pipe in implementing embodiment of this invention. 本発明の実施形態の精度を検証するための試験装置図。FIG. 2 is a test apparatus diagram for verifying the accuracy of the embodiment of the present invention. 本発明の実施形態の精度を検証した際の、試験装置の運転状態の経時変化を示す図。The figure which shows the time-dependent change of the driving | running state of a test apparatus at the time of verifying the precision of embodiment of this invention.

符号の説明Explanation of symbols

1 PACシステム
1a 室外機
1b 室内機
1c 送液管
2 熱源装置
3 チューブ
DESCRIPTION OF SYMBOLS 1 PAC system 1a Outdoor unit 1b Indoor unit 1c Liquid supply pipe 2 Heat source apparatus 3 Tube

Claims (4)

容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用いた空調システムの冷房能力を測定する方法であって、
室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、下記の式から冷房能力を推定するようにし、
蒸発器でのエンタルピー差から送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差Δh (i) から、増倍係数α (i) を、Δh (i) =α (i) ・Δh (0) と定義し、
冷房能力Q (0) の推定は、下記の式により行うこと特徴とする、パッケージ型空調機による空調システムの冷房能力測定方法。
冷房能力Q (0) =Qin (i) /{1−α (i) ・(W (i) /W (0) )・(η (i) /η (0) )・(Δhc (0) /Δhc (i) )}
なおQin (i) は、送液管に付加した熱量、
(W (i) /W (0) )は、送液管に熱量Qin (i) を付加したときの消費電力の変化割合、
(η (i) /η (0) )は、送液管に熱量Qin (i) を付加したときの圧縮機の効率の変化割合、
(Δhc (0) /Δhc (i) )は、送液管に熱量Qin (i) を付加したときの圧縮機理論エンタルピー差の比である。
Cooling capacity of an air-conditioning system using a packaged air conditioner in which an outdoor unit equipped with a capacity-controlled compressor and an outdoor heat exchanger and an indoor unit equipped with an indoor heat exchanger are connected by refrigerant piping. A method of measuring,
Heating or cooling the liquid supply pipe through which refrigerant is sent from the outdoor unit to the indoor unit, and estimating the cooling capacity from the following formula based on the data of changes in power consumption, condensation pressure and evaporation pressure of the compressor accordingly Like
From the enthalpy difference Δh (i) excluding the enthalpy difference for the heating amount or the cooling amount after heating or cooling the liquid feeding pipe from the enthalpy difference in the evaporator , the multiplication factor α (i) is expressed as Δh (i) = is defined as α (i) · Δh (0 ),
The method for measuring the cooling capacity of an air conditioning system using a packaged air conditioner is characterized in that the cooling capacity Q (0) is estimated by the following equation.
Cooling capacity Q (0) = Qin (i) / {1- [alpha] (i). (W (i) / W (0) ). ([Eta] (i) / [eta] (0) ). ([Delta] hc (0) / Δhc (i) )}
Qin (i) is the amount of heat added to the liquid delivery pipe,
(W (i) / W (0) ) is the rate of change in power consumption when the amount of heat Qin (i) is added to the liquid delivery pipe ,
(i) / η (0) ) is the rate of change in the efficiency of the compressor when the heat quantity Qin (i) is added to the liquid feed pipe ,
(Δhc (0) / Δhc (i) ) is a ratio of the compressor theoretical enthalpy difference when the heat quantity Qin (i) is added to the liquid feeding pipe .
容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用いた空調システムの冷房能力を測定する方法であって、
室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、冷房能力を推定するようにし、
前記変化のデータを得るに際しては、送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を用い、少なくとも蒸発器でのエンタルピー差から前記送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差から、増倍係数α(i)を定義しその関数形を定めて行うこととし、
次の演算を、手順1Aと手順1Bの一方→手順1Aと手順1Bの残りの一方→手順3→手順4の順で実行するプロセスを有することを特徴とする、請求項2に記載のパッケージ型空調機による空調システムの冷房能力測定方法。
手順1A:蒸発器でのエンタルピー差から送液管を加熱または冷却した後の加熱量または冷却量分のエンタルピー差を除いたエンタルピー差Δh(i)を、増倍係数α(i)を用いて次式のように定義する。
Δh(i)=α(i)・Δh(0)
Δh(0)は通常運転の場合の室内機の蒸発器でのエンタルピー差
手順1B:冷凍サイクルの一般的な特性から、増倍係数α(i)を高圧ガスの圧力の変化割合PH(0)/PH(i)と指数βを用いて次式のように定義する。
α(i)=(PH(0)/PH(i)β
但しPHは,凝縮圧力である。
手順3:手順1Aの式を用いて、送液管に冷熱量を付加しない場合の空調システムの運転状態を表す冷房能力Q(0)と動力W(0)と圧縮機の効率η(0)と圧縮機理論エンタルピー差Δhc(0)
送液管に加熱量または冷熱量Qin(i)を付加した場合の空調システムの運転状態を表す冷房能力Q(i)と動力W(i)と圧縮機の効率η(i)と圧縮機理論エンタルピー差Δhc(i)
とを整理して、Q(0)=Q(i)の条件の下、下記の式を得る。
(0)=Qin(i)/{1−α(i)・(W(i)/W(0))・(η(i)/η(0))・(Δhc(0)/Δhc(i))}
手順4:手順1Bの式と圧縮機の効率η(i)の一般的な関数形であるa・(PH/PL)から次の式を得る。
(0)=Qin(i)/{1−(PH(0)/PH(i)β・(W(i)/W(0))・(χ(i)/χ(0)・(Δhc(0)/Δhc(i))}
但し、aおよびbは、圧縮機で定まる固有の係数、PHは凝縮圧力,PLは蒸発圧力、χは圧縮比(PH/PL)である。
Cooling capacity of an air-conditioning system using a packaged air conditioner in which an outdoor unit equipped with a capacity-controlled compressor and an outdoor heat exchanger and an indoor unit equipped with an indoor heat exchanger are connected by refrigerant piping. A method of measuring,
Heating or cooling a liquid supply pipe through which refrigerant is sent from the outdoor unit to the indoor unit, and estimating the cooling capacity based on data of changes in power consumption, condensing pressure, and evaporation pressure of the compressor according to the heating pipe .
In obtaining the change data, the heating amount after heating or cooling the liquid feeding tube or the enthalpy difference for the cooling amount is used, and at least after the liquid feeding tube is heated or cooled from the enthalpy difference in the evaporator. From the enthalpy difference excluding the enthalpy difference for the heating amount or cooling amount, the multiplication factor α (i) is defined and its function form is determined ,
3. The package type according to claim 2, further comprising: a process for executing the next operation in the order of one of the procedure 1 </ b> A and the procedure 1 </ b> B → the remaining one of the procedure 1 </ b> A and the procedure 1 </ b> B → the procedure 3 → the procedure 4. A method for measuring the cooling capacity of an air conditioning system using an air conditioner.
Procedure 1A: Enthalpy difference Δh (i) obtained by subtracting the enthalpy difference for the heating amount or the cooling amount after heating or cooling the liquid feeding pipe from the enthalpy difference in the evaporator, using the multiplication factor α (i) It is defined as
Δh (i) = α (i) · Δh (0)
Δh (0) is the enthalpy difference procedure 1B in the evaporator of the indoor unit in normal operation: From the general characteristics of the refrigeration cycle, the multiplication factor α (i) is the change rate PH (0) of the pressure of the high-pressure gas. / PH (i) and the index β are defined as follows:
α (i) = (PH (0) / PH (i) ) β
Where PH is the condensation pressure.
Step 3: Cooling capacity Q (0) , power W (0), and compressor efficiency η (0) representing the operating state of the air conditioning system when the amount of cooling heat is not added to the liquid feeding pipe using the formula of step 1A And compressor theory enthalpy difference Δhc (0) ,
Cooling capacity Q (i) , power W (i) , compressor efficiency η (i) and compressor theory representing the operating state of the air conditioning system when heating amount or cooling amount Qin (i) is added to the liquid feed pipe Enthalpy difference Δhc (i) ,
And the following formula is obtained under the condition of Q (0) = Q (i) .
Q (0) = Qin (i) / {1- [alpha] (i). (W (i) / W (0) ). ([Eta] (i) / [eta] (0) ). ([Delta] hc (0) / [Delta] hc ( i) )}
Procedure 4: The following formula is obtained from the formula of Procedure 1B and a · (PH / PL) b which is a general function form of the compressor efficiency η (i) .
Q (0) = Qin (i) / {1- (PH (0) / PH (i) ). Beta. (W (i) / W (0) ). (Χ (i) / χ (0) ) b (Δhc (0) / Δhc (i) )}
Where a and b are specific coefficients determined by the compressor, PH is a condensation pressure, PL is an evaporation pressure, and χ is a compression ratio (PH / PL).
圧縮機に電力を供給する電力線に設けた電力計、圧縮機の冷媒吐出管に設けた圧力計、圧縮機の冷媒吸込管に設けた圧力計で計測した、圧縮機の消費電力、凝縮圧力、蒸発圧力のそれぞれの値を用いて、
少なくとも送液管に対する加熱量または冷熱量Qin(i)βとbの関係を求めることを特徴とする、請求項に記載のパッケージ型空調機による空調システムの冷房能力測定方法。
The power consumption of the compressor, the condensing pressure, measured with a power meter provided on the power line that supplies power to the compressor, a pressure gauge provided on the refrigerant discharge pipe of the compressor, and a pressure gauge provided on the refrigerant suction pipe of the compressor, Using each value of evaporation pressure,
The method for measuring the cooling capacity of an air conditioning system using a package type air conditioner according to claim 2 , wherein at least a heating amount or cooling amount Qin (i) for the liquid feed pipe is determined.
容量制御型の圧縮機と室外側熱交換器を備えた室外機と、室内側熱交換器を備えた室内機を冷媒配管で接続してなるパッケージ型空調機を用い、室外機から室内機に冷媒が送られる送液管を加熱または冷却し、それに応じた前記圧縮機の消費電力、凝縮圧力および蒸発圧力の変化のデータに基づいて、冷房能力を推定する、パッケージ型空調機による空調システムの冷房能力測定方法を実施するための測定装置であって、Using a package-type air conditioner that connects an outdoor unit equipped with a capacity-controlled compressor and an outdoor heat exchanger and an indoor unit equipped with an indoor heat exchanger with a refrigerant pipe, the outdoor unit is converted into an indoor unit. An air conditioning system using a packaged air conditioner that heats or cools a liquid supply pipe to which a refrigerant is sent and estimates cooling capacity based on data of changes in power consumption, condensation pressure, and evaporation pressure of the compressor accordingly. A measuring device for carrying out the cooling capacity measuring method,
前記送液管の管壁に装着可能で、前記送液管に冷熱または温熱を付与するための断熱材で外装されたチューブと、A tube that can be attached to the pipe wall of the liquid feeding pipe, and is sheathed with a heat insulating material for applying cold or warm heat to the liquid feeding pipe;
前記チューブとは別体の熱源装置とを有し、A heat source device separate from the tube;
前記熱源装置は、液体の満たされた恒温槽と、当該恒温槽から当該液体を前記チューブに供給するポンプと、当該恒温槽内の液体を加熱または冷却する熱交換器とを有することを特徴とする、冷房能力測定装置。The heat source device includes a thermostatic bath filled with a liquid, a pump that supplies the liquid from the thermostatic bath to the tube, and a heat exchanger that heats or cools the liquid in the thermostatic bath. A cooling capacity measuring device.
JP2008300636A 2007-11-26 2008-11-26 Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner Active JP5394047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300636A JP5394047B2 (en) 2007-11-26 2008-11-26 Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007304144 2007-11-26
JP2007304144 2007-11-26
JP2008300636A JP5394047B2 (en) 2007-11-26 2008-11-26 Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner

Publications (2)

Publication Number Publication Date
JP2009150640A JP2009150640A (en) 2009-07-09
JP5394047B2 true JP5394047B2 (en) 2014-01-22

Family

ID=40919938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300636A Active JP5394047B2 (en) 2007-11-26 2008-11-26 Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner

Country Status (1)

Country Link
JP (1) JP5394047B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186623A1 (en) * 2017-04-04 2018-10-11 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560258A (en) * 2017-08-28 2018-01-09 珠海格力电器股份有限公司 Performance evaluation method of water chilling unit and water chilling unit
KR102391331B1 (en) 2017-10-24 2022-04-28 삼성전자주식회사 Air conditioner system and control method thereof
CN109539432B (en) * 2018-10-15 2021-09-28 平安科技(深圳)有限公司 Air conditioner cooling water circulation system and air conditioner cooling water loop control method
CN109539433B (en) * 2018-10-15 2022-03-25 平安科技(深圳)有限公司 Cooling water series system, loop control method and storage medium
CN109855900B (en) * 2019-04-03 2024-02-02 无锡化工装备股份有限公司 Comprehensive test experiment system for lifting film evaporator
KR20220147266A (en) * 2021-04-27 2022-11-03 한온시스템 주식회사 Air conditioning system for automotive vehicles
CN113665466B (en) * 2021-08-18 2022-10-18 东蒲联合科技(福建)有限责任公司 Cold-chain logistics vehicle function self-checking method and cold-chain logistics vehicle
CN114738940B (en) * 2022-03-28 2024-03-22 青岛海尔空调电子有限公司 Method and device for controlling refrigeration of air conditioner, air conditioner and storage medium
CN115218341B (en) * 2022-06-29 2024-05-14 北京小米移动软件有限公司 Method, device and storage medium for detecting state of air conditioner refrigerant
CN115854499B (en) * 2022-12-21 2024-05-10 珠海格力电器股份有限公司 Air conditioning unit control method, air conditioning unit and computer readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510576A (en) * 1982-07-26 1985-04-09 Honeywell Inc. Specific coefficient of performance measuring device
JPH07280397A (en) * 1994-04-04 1995-10-27 Onishi Netsugaku:Kk Refrigerating capacity measuring method for refrigerator
JP4119143B2 (en) * 2002-03-22 2008-07-16 カルソニックカンセイ株式会社 Driving torque calculation device for variable displacement compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186623A1 (en) * 2017-04-04 2018-10-11 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
US10955177B2 (en) 2017-04-04 2021-03-23 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same

Also Published As

Publication number Publication date
JP2009150640A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5394047B2 (en) Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner
JP4829147B2 (en) Air conditioning equipment
US8660702B2 (en) Central cooling and circulation energy management control system
WO2010021101A1 (en) Diagnostic aid device
JPWO2014203311A1 (en) Air conditioning system control apparatus and air conditioning system control method
JP6556065B2 (en) Operation plan system for heat source system, and operation plan judgment method for heat source system
JP2010048433A (en) Diagnostic support device
EP2787298B1 (en) Air conditioning device
Corberán et al. Partialization losses of ON/OFF operation of water-to-water refrigeration/heat-pump units
Li et al. Improving quick cooling performance of a R410A split air conditioner during startup by actively controlling refrigerant mass migration
CN102353403B (en) Methods for measuring chilled water flow and cooling medium flow of central air-conditioning host machine
JP6017374B2 (en) Heat source system
Cecchinato et al. A simplified method to evaluate the seasonal energy performance of water chillers
Jiang et al. Experimental and numerical study on the heat transfer performance of the radiant floor heating condenser with composite phase change material
Tsoy et al. Improvement of refrigerating machine energy efficiency through radiative removal of condensation heat
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
JP7072398B2 (en) Integrated air conditioner management equipment and management program
KR20100108056A (en) Real time performance evaluation method for ground source heat pump system and evaluation device programming the same
Padilla Exergy analysis of the performance of a variable refrigerant flow (VRF) air conditioning system
JP2008281255A (en) Refrigerant flow rate measuring method, method of obtaining cooling/heating capacity of refrigerating device, and refrigerant flow rate measuring device
Togashi et al. Development of variable refrigerant flow heat-pump model for annual-energy simulation
JP2022044935A (en) Energy plant performance estimation device
Hu et al. Performance investigation of a multi-connected heating tower heat pump system
EP3757481B1 (en) Air conditioning device
JP2014035091A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150