JP5551381B2 - Cooling water chemical injection control method and apparatus - Google Patents
Cooling water chemical injection control method and apparatus Download PDFInfo
- Publication number
- JP5551381B2 JP5551381B2 JP2009098826A JP2009098826A JP5551381B2 JP 5551381 B2 JP5551381 B2 JP 5551381B2 JP 2009098826 A JP2009098826 A JP 2009098826A JP 2009098826 A JP2009098826 A JP 2009098826A JP 5551381 B2 JP5551381 B2 JP 5551381B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- water
- inlet
- temperature
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000498 cooling water Substances 0.000 title claims description 176
- 239000000126 substance Substances 0.000 title claims description 122
- 238000002347 injection Methods 0.000 title claims description 54
- 239000007924 injection Substances 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- 238000001816 cooling Methods 0.000 claims description 35
- 239000003795 chemical substances by application Substances 0.000 claims description 30
- 238000004364 calculation method Methods 0.000 claims description 27
- 239000003507 refrigerant Substances 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 10
- 238000001704 evaporation Methods 0.000 claims description 8
- 230000002265 prevention Effects 0.000 claims description 8
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000009529 body temperature measurement Methods 0.000 claims description 4
- 241000269627 Amphiuma means Species 0.000 claims 1
- 230000000694 effects Effects 0.000 description 18
- 238000005260 corrosion Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002455 scale inhibitor Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
本発明は、循環水路を形成する冷却水系で用いる防食剤、防スケール剤、スライムコントロール剤を含む薬品の注入制御方法と装置に関する。 The present invention relates to a chemical injection control method and apparatus including an anticorrosive agent, an antiscale agent, and a slime control agent used in a cooling water system that forms a circulation channel.
冷却水系で起きる障害には、腐食、スケール、スライムなどが挙げられる。
これらの障害を防止するために、防食剤、防スケール剤、スライムコントロール剤などの冷却水処理薬品が使用される。冷却水薬品の効果を持続させるため、冷却水中の薬品濃度を一定濃度以上に保つように薬品注入管理をするが、冷却水系の運転負荷が変動すると、それに伴い冷却水中の薬品濃度が変動する場合がある。
冷却水薬品の注入制御方法としては、放出熱量を計測して薬品注入制御をする方法、補給水量に連動して薬品注入制御をする方法、冷却水の薬品濃度を測定して測定結果を基に薬品注入制御を行う方法などがある。
補給水量に連動して薬品注入制御を行う方法として、冷却水の電気伝導度が設定値より高い時は、ブローを行って補給水を注入し、冷却水の導電率が設定値より低い時は、ブローを停止し、補給水の注入量に合わせて薬剤を注入する方法が知られている(特公昭57−3875号公報)。
Examples of failures that occur in cooling water systems include corrosion, scale, and slime.
In order to prevent these obstacles, cooling water treatment chemicals such as anticorrosives, scale preventives and slime control agents are used. In order to maintain the effect of cooling water chemicals, chemical injection control is performed so that the chemical concentration in the cooling water is kept above a certain level. However, when the operating load of the cooling water system fluctuates, the chemical concentration in the cooling water fluctuates accordingly. There is.
Cooling water chemical injection control methods include the method of controlling chemical injection by measuring the amount of released heat, the method of chemical injection control in conjunction with the amount of makeup water, and the measurement of the chemical concentration of cooling water based on the measurement results. There are methods to control chemical injection.
As a method of chemical injection control in conjunction with the amount of makeup water, when the electrical conductivity of the cooling water is higher than the set value, blow water is injected and the makeup water is injected, and when the conductivity of the cooling water is lower than the set value A method is known in which the blowing is stopped and the medicine is injected in accordance with the amount of makeup water to be injected (Japanese Patent Publication No. 57-3875).
冷却水の薬品濃度を測定し、測定結果を基に薬品注入制御を行う方法として、冷却水薬品にトレーサー物質としてリチウムの水溶性塩を添加し、リチウムイオン濃度をリチウムイオン感応物質を用いて測定し、冷却水薬品の濃度管理を行う方法が知られている(特開2004−4045号公報)。
従来の冷却水薬品の注入制方法の問題点として、電気伝導度による制御においては、電気伝導度の上限及び下限をある程度広く取らなければならず、薬品濃度がばらつき細かな制御ができないことや、電気伝導度計への汚れの付着による装置の誤作動や、冷却水中へ空気中の成分溶解による電気伝導率の上昇や、測定箇所による電気伝導度のばらつきなどにより、薬剤濃度の変動が大きくなる等の問題がある。また、トレーサー物質を冷却水薬品へ添加する方法は、コスト高となる。
As a problem of conventional cooling water chemical injection control methods, in the control by electrical conductivity, the upper and lower limits of electrical conductivity must be taken to a certain extent, the chemical concentration varies and fine control is not possible, Fluctuation in drug concentration increases due to malfunction of the device due to contamination on the conductivity meter, increased electrical conductivity due to dissolution of components in the air in the cooling water, and variations in electrical conductivity depending on the measurement location. There are problems such as. Further, the method of adding the tracer substance to the cooling water chemical is expensive.
本発明は、上記従来技術に鑑み、冷却水系の運転負荷の変動に合わせて薬品注入量を調整することにより、冷却水中の薬品濃度を安定又は最適な薬品濃度に注入制御する方法及び装置を提供することを課題とする。 In view of the above prior art, the present invention provides a method and apparatus for controlling injection of a chemical in a cooling water to a stable or optimal chemical concentration by adjusting a chemical injection amount according to fluctuations in the operating load of the cooling water system. The task is to do.
前記課題を解決するために、本発明では、開放型冷却塔と熱交換器とを循環水路で結んだ冷却水系への冷却水薬品の注入制御方法において、前記循環水路における開放型冷却塔に流入する冷却水の入口及び出口の温度と外気温度とを測定し、前記測定された温度から冷却水の入口及び出口の温度差(Δt1と、冷却水の入口温度と外気温度との温度差Δt2とを算出し、前記算出結果に基づいて蒸発水量E(E=R×0.01×(Δt1−Δt2×K) /5.8(m 3 /h))を演算算出し、前記算出結果から補給水量M(M=NE/(N−1)、但し、N:濃縮倍数)を算出し、前記算出した補給水量Mに基づいて、防食剤、防スケール剤、スライムコントロール剤を含む冷却水薬品の注入量を調整制御し、前記冷却水中の薬品濃度を最適濃度にすることを特徴とする冷却水薬品の注入制御方法としたものである。
それにより、冷却水系に注入する冷却水薬品の過剰注入を抑え、運転負荷の変動に合わせて適正な濃度に制御することができる。
In order to solve the above-mentioned problems, in the present invention, in the method for controlling the injection of cooling water chemicals into a cooling water system in which an open cooling tower and a heat exchanger are connected by a circulating water channel, it flows into the open cooling tower in the circulating water channel. the temperature of the inlet and outlet of the cooling water and the outside air temperature is measured, the temperature difference between the inlet and outlet of the cooling water from the measured temperature and (delta t1, the temperature difference between the inlet temperature and the ambient temperature of the coolant delta calculates and t2, evaporated water E on the basis of the calculation result (E = R × 0.01 × ( Δ t1- Δ t2 × K) /5.8(m 3 / h)) and an operation computed, the A makeup water amount M (M = NE / (N−1), where N is a multiple of concentration) is calculated from the calculation result, and based on the calculated makeup water amount M, an anticorrosive agent, a scale inhibitor, and a slime control agent are included. Adjust and control the amount of cooling water chemicals injected to optimize the chemical concentration in the cooling water The cooling water chemical injection control method is characterized by the following.
Thereby, excessive injection of cooling water chemicals injected into the cooling water system can be suppressed, and the concentration can be controlled to an appropriate concentration in accordance with fluctuations in operating load.
前記冷却水薬品の注入制御方法において、前記開放型冷却塔に流入する冷却水の入口及び出口の温度差と、冷却水の入口温度と外気温度との温度差とを一定時間ごとに積算し、積算値が設定値に達するごとに蒸発水量を演算算出し、その結果に基づいて補給水量を算出し、算出した補給水量に基づいて、防食剤、防スケール剤、スライムコントロール剤を含む冷却水薬品を冷却水系に注入することにより、冷却水中の薬品濃度を最適濃度に制御することができる。
それにより、冷却水系に注入する冷却水薬品の過剰注入を抑え、薬品濃度のばらつきを少なくすることができる。
In the cooling water chemical injection control method, the temperature difference between the inlet and outlet of the cooling water flowing into the open type cooling tower and the temperature difference between the inlet temperature of the cooling water and the outside air temperature are integrated at regular intervals, Every time the integrated value reaches the set value, the amount of evaporating water is calculated and calculated, and the amount of makeup water is calculated based on the calculated result. Based on the calculated amount of makeup water, cooling water chemicals containing anticorrosives, scale inhibitors and slime control agents are calculated. By injecting into the cooling water system, the chemical concentration in the cooling water can be controlled to the optimum concentration.
Thereby, excessive injection of cooling water chemicals injected into the cooling water system can be suppressed, and variation in chemical concentration can be reduced.
開放型冷却塔に流入する冷却水の入口及び出口の温度の測定は、循環水路の開放型冷却塔の入口及び出口、循環水路の熱交換器の入口及び出口、熱交また、前記循環水路における換器に流入する冷媒の入口及び出口、又は、熱交換器の伝熱面の入口及び出口の表面温度を測定することにより行うことができる。 The temperature at the inlet and outlet of the cooling water flowing into the open cooling tower is measured at the inlet and outlet of the open cooling tower of the circulating water channel, the inlet and outlet of the heat exchanger of the circulating water channel, heat exchange, and the circulating water channel. This can be done by measuring the surface temperature of the inlet and outlet of the refrigerant flowing into the exchanger or the inlet and outlet of the heat transfer surface of the heat exchanger.
また、本発明では、開放型冷却塔と熱交換器とを循環水路で結んだ冷却水系への冷却水薬品の注入制御装置において、前記循環水路における開放型冷却塔に流入する冷却水の入口及び出口温度と外気温とを測定する温度測定手段と、前記測定された温度の冷却水の入口及び出口の温度差Δt1と、冷却水の入口温度と外気温度との温度差Δt2とから、蒸発水量E(E=R×0.01×(Δt1−Δt2×K) /5.8(m 3 /h))及び補給水量M(M=NE/(N−1)、但し、N:濃縮倍数)を算出する演算算出手段と、その演算算出手段の算出結果に基づいて、防食剤、防スケール剤、スライムコントロール剤を含む冷却水薬品を冷却水系へ注入して冷却水中の薬品濃度を最適濃度に制御する濃度制御手段とを有することを特徴とする冷却水薬品の注入制御装置としたものである。 Further, in the present invention, in the cooling water chemical injection control device for the cooling water system in which the open cooling tower and the heat exchanger are connected by the circulation water channel, the inlet of the cooling water flowing into the open cooling tower in the circulation water channel and From the temperature measuring means for measuring the outlet temperature and the outside air temperature, the temperature difference Δ t1 between the inlet and outlet of the cooling water at the measured temperature, and the temperature difference Δ t2 between the inlet temperature of the cooling water and the outside air temperature , evaporating water E (E = R × 0.01 × (Δ t1- Δ t2 × K) /5.8(m 3 / h)) and replenishing water M (M = NE / (N -1), where, N : an arithmetic calculation means for calculating the concentration multiples), based on the calculation result of the arithmetic calculation means, anticorrosive, anti-scale agents, chemical concentration of the injected cooling water and cooling water chemicals including slime control agent to the cooling water system and having a density control means for controlling the optimal concentration It is obtained by the injection control device 却水 chemicals.
さらに、本発明では、開放型冷却塔と熱交換器とを循環水路で結んだ冷却水系への冷却水薬品の注入制御装置において、前記循環水路における開放型冷却塔に流入する冷却水の入口及び出口温度と外気温とを測定する温度測定手段と、前記測定された温度の冷却水の入口及び出口の温度差Δt1と、冷却水の入口温度と外気温度との温度差Δt2を一定時間ごとに積算し、積算値が設定値に達するごとに蒸発水量E(E=R×0.01×(Δt1−Δt2×K) /5.8(m 3 /h))及び補給水量M(M=NE/(N−1)、但し、N:濃縮倍数)を算出する演算算出手段と、その演算算出手段の算出結果に基づいて、防食剤、防スケール剤、スライムコントロール剤を含む冷却水薬品を冷却水系へ注入して冷却水中の薬品濃度を最適濃度に制御する濃度制御手段とを有することを特徴とする冷却水薬品の注入制御装置としたものである。
前記冷却水薬品の注入制御装置において、循環水路における開放型冷却塔に流入する冷却水の入口及び出口の温度の測定手段は、循環水路の開放型冷却塔の入口及び出口、循環水路の熱交換器の入口及び出口、熱交換器に流入する冷媒の入口及び出口、又は、熱交換器の伝熱面の入口及び出口に設けることができる。
Further, in the present invention, in the cooling water chemical injection control device for the cooling water system in which the open cooling tower and the heat exchanger are connected by the circulating water channel, the inlet of the cooling water flowing into the open cooling tower in the circulating water channel and The temperature measuring means for measuring the outlet temperature and the outside air temperature, the temperature difference Δ t1 between the inlet and outlet of the cooling water at the measured temperature, and the temperature difference Δ t2 between the inlet temperature and the outside air temperature of the cooling water for a certain time. integrating each, the evaporation amount of water E each time the integrated value reaches the set value (E = R × 0.01 × ( Δ t1- Δ t2 × K) /5.8(m 3 / h)) and replenishing water M Based on the calculation result of the calculation calculation means for calculating (M = NE / (N-1), where N is a multiple of concentration) , and the calculation result of the calculation calculation means, cooling containing an anticorrosive agent, a scale prevention agent, and a slime control agent. the optimal concentration of chemical concentration in the cooling water by injecting water chemicals to the cooling water system Is obtained by the injection control device of the cooling water chemicals and having a density control means for control.
Wherein the injection control device of the cooling water chemicals, inlet and temperature measuring means at the outlet of the cooling water flowing in an open cooling tower in the circulation water channel, the inlet and outlet of an open cooling tower circulating water channel, the heat exchange water circulation passage It can be provided at the inlet and outlet of the heat exchanger, at the inlet and outlet of the refrigerant flowing into the heat exchanger, or at the inlet and outlet of the heat transfer surface of the heat exchanger.
本発明によれば、冷却水中の薬品濃度をほぼ一定に保つことができ、余分な薬品の使用を抑えて防食・防スケール及びスライム抑制が可能となる。また、冷却水系の運転負荷の変動に合わせて、最適な薬品濃度に制御することができる。 According to the present invention, the chemical concentration in the cooling water can be kept almost constant, and the use of extra chemicals can be suppressed to prevent corrosion / scale and slime. In addition, it is possible to control the chemical concentration optimally in accordance with the fluctuation of the operating load of the cooling water system.
本発明は、冷却塔の入口、出口の冷却水温度の差、又は、熱交換器の冷却水又は冷媒の温度差を冷却水系の運転負荷の指標として、防食剤、防スケール剤、スライムコントロール剤を含む冷却水薬品の注入量を制御し、冷却水中の薬品濃度を安定又は最適な薬品濃度に注入制御させる方法である。
また、温度差の積算値を指標とすることにより、制御装置をより簡略化させ、冷却水系の負荷変動に対応する薬品注入制御を低コストで実現することができる。
本発明において、冷却水温度測定部は、冷却塔の入口及び出口に設けた測温抵抗体又は熱電対等の温度センサーと温度差計を有し、冷却水の温度差の信号を出力する。さらに、熱交換器の冷却水及び冷媒の入口及び出口の温度を測定、外気温及び湿球温度(湿度)の測定を行い、その信号も出力することができる。
The present invention relates to an anticorrosive agent, a scale inhibitor, and a slime control agent, using the difference in cooling water temperature at the inlet and outlet of the cooling tower or the temperature difference between the cooling water or refrigerant in the heat exchanger as an operating load index of the cooling water system. This is a method for controlling the injection amount of the cooling water chemicals including the chemical concentration and controlling the chemical concentration in the cooling water to a stable or optimal chemical concentration.
Further, by using the integrated value of the temperature difference as an index, the control device can be further simplified, and chemical injection control corresponding to the load fluctuation of the cooling water system can be realized at low cost.
In the present invention, the cooling water temperature measurement unit has a temperature sensor such as a resistance thermometer or a thermocouple provided at the inlet and outlet of the cooling tower and a temperature difference meter, and outputs a temperature difference signal of the cooling water. Furthermore, the temperature of the cooling water and the refrigerant inlet and outlet of the heat exchanger can be measured, the outside air temperature and the wet bulb temperature (humidity) can be measured, and the signals can also be output.
一般的に、蒸発損失量E〔m 3 /h〕、飛散損失量W〔m 3 /h〕、強制ブロー量B〔m 3 /h〕及び補給水量M〔m 3 /h〕は、計算により求められることが知られている。即ち、循環水が受け取る全熱量と、蒸発によって奪われる全熱量が等しいものとすると次式が成立する。
(文献:クーリングタワー 省エネルギー技術実践シリーズ 著者 高田秋
一 川原孝七 発行者 新倉 隆 発行所 財団法人 省エネルギーセンタ
ー 昭和61年1月21日第1版第1刷発行より)
R・10 3 ・Δtw・cpw=E・10 3 ・r
ここで、 R:循環水量〔m 3 /h〕
cpw:水の定圧比熱〔kcal/kg・℃〕、(水温40℃のときの0.
998kcal/kg・℃)
r:水の蒸発潜熱〔kcal/kg〕、 (水温40℃のときの約
578kcal/h)
Δtw:温度差(入口水温―出口水温)〔℃〕
理論値を示す蒸発損失量Eは、 E ≒ (R/100)・Δtw/5.8〔m 3 /h〕
従って、5.8℃の温度差で縦貫水量の約1%が蒸発する。
また、本発明では、Δtwを以下の式で表すことができる。
即ち、Δtw=Δt1―Δt2・K
これは、本発明において特徴的な外気温の影響を考慮した式を示すもので、定数Kは経験値を表す。
測定した温度差から、蒸発水量及び補給水量を算出する演算器を有し、その演算器の信号を受けて、補給水量を調整する。この補給水量に比例して、薬品を注入する装置により冷却水薬品を注入する。蒸発水量E及び補給水量Mは、下記のように算出できる。
E=R×0.01×(Δt1−Δt2×K) /5.8
R:循環水量
Δt1:冷却水温度差(冷却水入口温度−冷却水出口温度)
Δt2:外気温度差(冷却水入口温度−外気温度)
K:定数(0.05〜0.5)通常0.1
M=NE/(N−1)
N:濃縮倍数
In general, evaporation loss amount E [m 3 / h], scattering loss amount W [m 3 / h], forced blow amount B [m 3 / h] and makeup water amount M [m 3 / h] are calculated by calculation. It is known to be required. That is, if the total amount of heat received by the circulating water is equal to the total amount of heat taken away by evaporation, the following equation is established.
(Reference: Cooling Tower Energy Saving Technology Practice Series Author Aki Takada
Ichikawahara Koshichi Issuer Takashi Niikura Issuer Energy Conservation Center
-From the 21st edition of the first edition issued on January 21, 1986)
R · 10 3 · Δ tw · cpw = E · 10 3 · r
Here, R: amount of circulating water [m 3 / h]
cpw: constant-pressure specific heat of water [kcal / kg · ° C.] (0.
998kcal / kg ・ ℃)
r: latent heat of vaporization of water [kcal / kg], (approx.
578 kcal / h)
Δtw: Temperature difference (inlet water temperature-outlet water temperature) [℃]
The evaporation loss amount E indicating the theoretical value is E ≈ (R / 100) · Δ tw / 5.8 [m 3 / h]
Therefore, about 1% of the longitudinal water content evaporates at a temperature difference of 5.8 ° C.
In the present invention, Δtw can be expressed by the following equation.
That is, Δ tw = Δ t1− Δ t2 · K
This shows an equation that takes into consideration the influence of the outside air temperature, which is characteristic in the present invention, and the constant K represents an empirical value.
A calculator for calculating the amount of evaporated water and the amount of makeup water from the measured temperature difference is provided, and the amount of makeup water is adjusted in response to a signal from the calculator. In proportion to the amount of makeup water, cooling water chemicals are injected by a chemical injection device. The amount of evaporated water E and the amount of makeup water M can be calculated as follows.
E = R × 0.01 × (Δt1−Δt2 × K) /5.8
R: Circulating water amount Δt1: Cooling water temperature difference (cooling water inlet temperature-cooling water outlet temperature)
Δt2: outside air temperature difference (cooling water inlet temperature−outside air temperature)
K: Constant (0.05 to 0.5), usually 0.1
M = NE / (N-1)
N: Concentration multiple
冷却水温度測定部で測定した温度差Δt3を一定時間ごとに積算し、その温度差積算値Δt3tが設定値に達するごとにパルス信号を発信する装置を有する。パルス信号を受けて蒸発水量を求め、補給水量を調整する。この補給水量に比例して薬品を注入する装置により冷却水薬品を注入する。冷却水温度測定部で測定した温度差Δt3及び一定時間ごとに積算した温度差積算値Δt3tは、下記のように算出できる。
Δt3=Δt1−Δt2×K
Δt3t=Δt30+Δt31+Δt32‥
Δt1:冷却水温度差(冷却水入口温度−冷却水出口温度)
Δt2:外気温度差(冷却水入口温度−外気温度)
K:定数(0.05〜0.5)通常0.1
Δt3t:一定時間ごとの温度差積算値
The apparatus includes a device that integrates the temperature difference Δt3 measured by the cooling water temperature measurement unit at regular intervals and transmits a pulse signal each time the temperature difference integrated value Δt3t reaches a set value. Receive the pulse signal to determine the amount of evaporated water and adjust the amount of makeup water. Cooling water chemicals are injected by a device that injects chemicals in proportion to the amount of makeup water. The temperature difference Δt3 measured by the cooling water temperature measuring unit and the temperature difference integrated value Δt3t integrated every predetermined time can be calculated as follows.
Δt3 = Δt1−Δt2 × K
Δt3t = Δt30 + Δt31 + Δt32.
Δt1: Cooling water temperature difference (cooling water inlet temperature-cooling water outlet temperature)
Δt2: outside air temperature difference (cooling water inlet temperature−outside air temperature)
K: Constant (0.05 to 0.5), usually 0.1
Δt3t: Temperature difference integrated value at regular intervals
CaCO3の飽和pHは、冷却水のランゲリア指数の計算方法により、以下のように算出できる。
pHs=(9.3+A+B)-(C+D)
A:全固形分から導かれる値
B:温度から導かれる値
C:カルシウム硬度から導かれる値
D:M-アルカリ度から導かれる値
前記記載のA、B、C、Dにおける各導かれる値は、例えば、出典;E .NordellWater Treatmt, P287、Reinhol(1961) に記載の表2・4 ランゲリア指数計算表の数値を適用する。
冷却水のpHからpHsを減じた差(pH−pHs)がランゲリア指数であり、pH−pHs<0の時、冷却水系は腐食傾向であり、pH−pHs>0の時、冷却水系はスケール付着傾向にある。温度は、熱交換器の冷却水及び冷媒の入口及び出口の温度を測定した値を用いる。全固形分、カルシウム硬度、M−アルカリ度は補給水の水質分析値に濃縮倍数を乗じて算出する。
The saturated pH of CaCO 3 can be calculated as follows by a method for calculating the Langeveria index of cooling water.
pHs = (9.3 + A + B) − (C + D)
A: Value derived from the total solid content
B: Value derived from temperature
C: Value derived from calcium hardness
D: Value derived from M-alkalinity
The derived values in A, B, C, and D described above apply, for example, the numerical values of Table 2.4 Langangelian index calculation table described in Source; E. NordellWater Treatmt, P287, Reinhol (1961).
The difference (pH-pHs) obtained by subtracting pHs from the pH of the cooling water is the Langeria index. When pH-pHs <0, the cooling water system tends to corrode, and when pH-pHs> 0, the cooling water system adheres to the scale. There is a tendency. As the temperature, a value obtained by measuring the temperatures of the cooling water and the refrigerant inlet and outlet of the heat exchanger is used. The total solid content, calcium hardness, and M-alkalinity are calculated by multiplying the water analysis value of makeup water by the concentration factor.
Znの飽和度は、冷却水中のZnの理論含有量をその温度でのZnの飽和溶解度で割った値である。
Znの飽和度=Znの理論含有量/ Znの飽和溶解度
Znの飽和度<1の時、冷却水系は腐食傾向であり、Znの飽和度>1の時、冷却水系はスケール付着傾向にある。Znの飽和溶解度は、熱交換器の冷却水及び冷媒の入口及び出口の温度における飽和溶解度の値を用いる。Znの理論含有量は、補給水の水質分析値に濃縮倍数を乗じて算出する。
ランゲリア指数とZnの飽和度から、冷却水系が腐食傾向であれば防食剤の注入比率を高くし、スケール付着傾向であれば防スケール剤の注入比率を高くして濃度バランスを制御する。
The degree of saturation of Zn is a value obtained by dividing the theoretical content of Zn in cooling water by the saturation solubility of Zn at that temperature.
Zn saturation = theoretical Zn content / Zn saturation solubility When the Zn saturation <1, the cooling water system tends to corrode, and when the Zn saturation> 1, the cooling water system tends to adhere to the scale. As the saturation solubility of Zn, the value of the saturation solubility at the cooling water and refrigerant inlet and outlet temperatures of the heat exchanger is used. The theoretical content of Zn is calculated by multiplying the water quality analysis value of makeup water by the concentration factor.
Based on the Langeria index and Zn saturation, the concentration balance is controlled by increasing the injection ratio of the anticorrosive if the cooling water system tends to corrode, and by increasing the injection ratio of the antiscale agent if the cooling water system tends to adhere to the scale.
次に、本発明を図面を参照しながら詳述する。
図1は、本発明に用いる冷却水循環装置と冷却水薬品注入装置を示すフロー構成図である。図1において、1は、冷却水と空気とを接触させる開放型冷却塔であり、2は、冷却水に熱を放出する熱交換器である。この冷却塔1と熱交換器2は、配管3、4で連接され、冷却水が循環ポンプ5によって循環されて循環冷却水系を形成している。循環冷却水系には、水を補給する弁6を有する配管7と、循環冷却水の一部をブローする弁8を有する配管9が、配設されている。さらに、循環冷却水系には、冷却水薬品を注入する薬注ポンプ10を有する薬品タンク11が配設されている。さらに、冷却水の入口及び出口の水温を計る温度センサー12、13、外気温度センサー14及び冷却水のpHを計るpH計15が設けられて、その信号を受けて、弁6、8及び薬注ポンプ10を制御する制御装置16が配設されている。
また、本発明において、入口及び出口の温度を測定する位置を図2の(a)〜(d)に示す。図2(a)は、冷却塔の入口及び出口の冷却水温度、図2(b)は、熱交換器の入口及び出口の冷却水温度、図2(c)は、熱交換器の入口及び出口の冷媒温度、図2(d)は、熱交換器の伝熱面の入口及び出口の温度のそれぞれの測定位置Tである。
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flow diagram showing a cooling water circulation device and a cooling water chemical injection device used in the present invention. In FIG. 1, 1 is an open type cooling tower which makes cooling water and air contact, and 2 is a heat exchanger which discharge | releases heat to cooling water. The cooling tower 1 and the heat exchanger 2 are connected by pipes 3 and 4, and cooling water is circulated by a circulation pump 5 to form a circulating cooling water system. In the circulating cooling water system, a pipe 7 having a valve 6 for replenishing water and a pipe 9 having a valve 8 for blowing a part of the circulating cooling water are arranged. Further, a chemical tank 11 having a chemical injection pump 10 for injecting cooling water chemicals is disposed in the circulating cooling water system. Furthermore, temperature sensors 12 and 13 for measuring the water temperature at the inlet and outlet of the cooling water, an outside air temperature sensor 14 and a pH meter 15 for measuring the pH of the cooling water are provided. A control device 16 for controlling the pump 10 is provided.
Moreover, in this invention, the position which measures the temperature of an inlet_port | entrance and an exit is shown to (a)-(d) of FIG. 2 (a) is the cooling water temperature at the inlet and outlet of the cooling tower, FIG. 2 (b) is the cooling water temperature at the inlet and outlet of the heat exchanger, and FIG. 2 (c) is the inlet and outlet of the heat exchanger. The refrigerant temperature at the outlet, FIG. 2D, is a measurement position T of each of the inlet and outlet temperatures of the heat transfer surface of the heat exchanger.
実施例1
図1に示した装置を用いて、冷却水系の薬品注入制御を実施した結果を示す。
冷却塔1としては、保有水量200L、循環水量39L/min、冷却水入口温度37℃、冷却水出口温度32℃、湿球温度27℃、冷却能力13.6kWの開放型冷却塔を用いた。熱交換器2としては、伝熱面積190cm2、伝熱面設定温度60℃、チューブ内径34mmを用いた。運転条件として、補給水として袖ヶ浦市水道水(pH7.0、電気伝導度30mS/m、カルシウム硬度64mg−CaCO3/L、塩化物イオン29mg−Cl−/L、シリカ25mg−SiO2/L)を用い、5倍濃縮で運転した。これらの条件で、本方式を用いて運転した時の冷却水系内の薬品濃度変化を図3に示す。
Example 1
The result of having implemented chemical injection control of a cooling water system using the device shown in FIG.
As the cooling tower 1, an open type cooling tower having a retained water amount of 200 L, a circulating water amount of 39 L / min, a cooling water inlet temperature of 37 ° C., a cooling water outlet temperature of 32 ° C., a wet bulb temperature of 27 ° C., and a cooling capacity of 13.6 kW was used. As the heat exchanger 2 , a heat transfer area of 190 cm 2 , a heat transfer surface set temperature of 60 ° C., and a tube inner diameter of 34 mm were used. As operating conditions, Sodegaura city tap water (pH 7.0, electrical conductivity 30 mS / m, calcium hardness 64 mg-CaCO 3 / L, chloride ion 29 mg-Cl − / L, silica 25 mg-SiO 2 / L) And was operated at 5-fold concentration. FIG. 3 shows changes in the chemical concentration in the cooling water system when operated using this method under these conditions.
図3において、(1)は、従来の冷却水の電気伝導率から補給水量を求め、冷却水薬品を比例注入する方法、(2)は、本発明の冷却水の温度差から補給水量を求め冷却水薬品を比例注入する方法、及び、(3)は、本発明の冷却水の温度差と外気温差から補給水量を求め冷却水薬品を比例注入する方法を適用した例を示す。(2)の方法では、冷却水温度差が4.2〜5.9℃であり、計算式より温度差から蒸発水量を求め、薬注量を制御することで、薬品濃度のばらつきが小さくなり、薬品濃度は平均で230mg/L(方法(1)では、270mg/L)と薬品注入量を低減させることができた。(3)の方法では、計算式に外気温(5〜30℃、K=0.05)による補正をして、薬注量を制御することで、(2)の方法と比べて、より安定した制御が可能となり、薬品濃度の平均は210mg/Lであった。(1)の方法では、冷却水中の薬品濃度がばらつき、薬品濃度管理基準範囲を外れることがあった。(2)の方法では、薬品濃度のばらつきは小さくなり、薬品濃度管理基準範囲内を推移したが、負荷の低い冬季と負荷の高い夏季で薬品濃度に若干差があった。(3)の方法では、薬品濃度は安定した濃度で管理基準範囲内を維持しており、適切な薬品濃度で運転することができた。冷却水の温度差と外気温差により薬品注入量を制御することで、冷却水中の薬品濃度のばらつきを防ぎ、薬品の過剰注入を防ぐことができた。 In FIG. 3, (1) is a conventional method for determining the amount of makeup water from the electrical conductivity of the cooling water and proportionally injecting cooling water chemicals, and (2) is for determining the amount of makeup water from the temperature difference of the cooling water of the present invention. The method of proportionally injecting cooling water chemicals and (3) show an example of applying the method of proportionally injecting cooling water chemicals by determining the amount of replenishing water from the temperature difference between the cooling water and the outside air temperature of the present invention. In the method (2), the cooling water temperature difference is 4.2 to 5.9 ° C. The amount of evaporated water is obtained from the temperature difference from the calculation formula, and the chemical injection amount is controlled to reduce the variation in chemical concentration. The chemical concentration was 230 mg / L on average (270 mg / L in the method (1)), and the chemical injection amount could be reduced. In the method of (3), the calculation formula is corrected by the outside air temperature (5 to 30 ° C., K = 0.05) and the dosage is controlled, so that it is more stable than the method of (2). The average chemical concentration was 210 mg / L. In the method (1), the chemical concentration in the cooling water may vary, and the chemical concentration management reference range may be exceeded. In the method (2), the variation in the chemical concentration became small and remained within the chemical concentration management standard range, but there was a slight difference in the chemical concentration between the low load winter and the high load summer. In the method (3), the chemical concentration was stable and maintained within the control standard range, and operation was possible at an appropriate chemical concentration. By controlling the amount of chemicals to be injected according to the temperature difference between the cooling water and the outside air temperature, it was possible to prevent variations in the concentration of chemicals in the cooling water and to prevent excessive injection of chemicals.
表1に、方法(1)〜(3)における防食効果、防スケール効果及び薬品使用量をまとめたものを示す。
** 伝熱面設定温度は60℃
Table 1 shows a summary of the anticorrosive effect, the antiscale effect, and the chemical usage in the methods (1) to (3).
** Heat transfer surface set temperature is 60 ° C
従来法の(1)においては、防食及び防スケールの効果は得られていたが、本方式である(2)及び(3)と比べると薬品使用量が多かった。本方式の(2)及び(3)では、より少ない薬品使用量で防食および防スケール効果が十分に得られていた。本方式で運転することにより、薬品の過剰添加を防ぎ、冷却水系内の防食及び防スケール効果が得ることができた。防食効果は、テストピースを用いて腐食速度を測定することにより判断した。防スケール効果は、熱交換機の伝熱面温度の変化を測定することにより判断した。 In the conventional method (1), the effect of anticorrosion and scale prevention was obtained, but the amount of chemicals used was larger than in the present methods (2) and (3). In (2) and (3) of this method, the anti-corrosion and anti-scale effects were sufficiently obtained with a smaller amount of chemicals used. By operating in this manner, it was possible to prevent excessive addition of chemicals and to obtain anticorrosion and scale prevention effects in the cooling water system. The anticorrosive effect was judged by measuring the corrosion rate using a test piece. The scale prevention effect was judged by measuring the change in the heat transfer surface temperature of the heat exchanger.
実施例2
実施例1と同様な装置及び補給水を用いたが、補給水量を一定時間の積算値から算出して実施した結果を図4に示す。
図4において、(4)は、従来の冷却水の電気伝導率から補給水量を求め冷却水薬品を比例注入する方法を示し、(5)は、本発明の冷却水の温度差を一定時間ごとに積算し、その積算値から補給水量を求め、冷却水薬品を比例注入する方法を適用した例を示す。(5)の方法では、冷却水温度差が3.8〜6.3℃であり、温度差を積算し、計算式より積算値から蒸発水量を求め、薬注量を制御することで、薬品濃度のばらつきが小さくなり、薬品濃度は平均で220mg/L((4)の方法では、250mg/L)と薬品注入量を低減させることができた。(4)の方法と比べて(5)の方法では、冷却水中の薬品濃度のばらつきを防いで運転することができた。負荷に応じた適切な量を注入することで、薬品の過剰注入または注入不足を防ぎ、適切な薬品注入量に制御することができた。
Example 2
Although the same apparatus and makeup water as Example 1 were used, the result of having carried out by calculating the amount of makeup water from the integrated value of fixed time is shown in FIG.
In FIG. 4, (4) shows a conventional method for determining the amount of replenishing water from the electrical conductivity of the cooling water and proportionally injecting cooling water chemicals, and (5) shows the temperature difference of the cooling water of the present invention at regular intervals. An example is shown in which a method of proportionally injecting cooling water chemicals is obtained by determining the amount of makeup water from the integrated value. In the method of (5), the cooling water temperature difference is 3.8 to 6.3 ° C., the temperature difference is integrated, the amount of evaporated water is obtained from the integrated value from the calculation formula, and the chemical injection amount is controlled, The concentration variation was reduced, and the chemical concentration was 220 mg / L on average (250 mg / L in the method (4)), and the amount of chemical injection could be reduced. Compared with the method of (4), the method of (5) was able to operate while preventing variation in the chemical concentration in the cooling water. By injecting an appropriate amount according to the load, it was possible to prevent excessive injection or insufficient injection of chemicals and to control to an appropriate chemical injection amount.
実施例3
実施例3では、開放循環冷却水系A〜Fについて、計算式によりランゲリア指数を求め、防食剤とスケール剤の濃度バランスを制御することで、防食効果及び防スケール効果が得られた。
表2に、開放循環冷却水系A〜Fについて、本発明方法を適用し、防食効果及び防スケール効果をまとめたものを示す。
* 鉄鋼に対して10mdd以下で防食効果があるとみなされる。
** 2℃以下を正常値とする。
Example 3
In Example 3, the anti-corrosion effect and the anti-scaling effect were obtained by calculating the Langeria index for the open circulating cooling water systems A to F by the calculation formula and controlling the concentration balance between the anti-corrosive and the scale agent.
Table 2 shows a summary of the anti-corrosion effect and the anti-scale effect by applying the method of the present invention to the open circulation cooling water systems A to F.
* It is regarded as having anticorrosive effect at 10 mdd or less against steel.
** Normal value is 2 ℃ or less.
各水質及び運転条件において、防食及び防スケール効果が十分に得られていた。本方式で運転することにより、冷却水系内の防食及び防スケール効果が得ることができた。防食効果は、テストピースを用いて腐食速度を測定することにより判断した。防スケール効果は、冷凍機のLTD(冷凍機凝縮器出口温度―冷却水出口温度)を測定することにより判断した。運転期間は各水系ともに30日間とした。 Corrosion prevention and scale prevention effects were sufficiently obtained in each water quality and operating condition. By operating in this manner, anti-corrosion and anti-scale effects in the cooling water system could be obtained. The anticorrosive effect was judged by measuring the corrosion rate using a test piece. The scale prevention effect was judged by measuring the LTD (refrigerator condenser outlet temperature−cooling water outlet temperature) of the refrigerator. The operation period was 30 days for each water system.
1:開放型冷却塔、2:熱交換器、3:冷却水配管、4:冷却水配管、5:冷却水循環ポンプ、6:補給水弁、7:補給水配管、8:ブロー弁、9:ブロー配管、10:薬注ポンプ、11:薬品タンク、12:温度センサー、13:温度センサー、14:外気温度センサー、15:pH計、16:制御装置、T:温度測定位置 1: open type cooling tower, 2: heat exchanger, 3: cooling water pipe, 4: cooling water pipe, 5: cooling water circulation pump, 6: makeup water valve, 7: makeup water pipe, 8: blow valve, 9: Blow piping, 10: chemical injection pump, 11: chemical tank, 12: temperature sensor, 13: temperature sensor, 14: outside air temperature sensor, 15: pH meter, 16: controller, T: temperature measurement position
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098826A JP5551381B2 (en) | 2009-04-15 | 2009-04-15 | Cooling water chemical injection control method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098826A JP5551381B2 (en) | 2009-04-15 | 2009-04-15 | Cooling water chemical injection control method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010247063A JP2010247063A (en) | 2010-11-04 |
JP5551381B2 true JP5551381B2 (en) | 2014-07-16 |
Family
ID=43310032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009098826A Active JP5551381B2 (en) | 2009-04-15 | 2009-04-15 | Cooling water chemical injection control method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5551381B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106872345A (en) * | 2017-03-06 | 2017-06-20 | 中国核动力研究设计院 | The automatic safety control system of corrosion test |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5962134B2 (en) * | 2012-03-29 | 2016-08-03 | 栗田工業株式会社 | Cooling water line contamination monitoring method and chemical injection control method |
JP5925371B1 (en) | 2015-09-18 | 2016-05-25 | 三菱日立パワーシステムズ株式会社 | Water quality management device, water treatment system, water quality management method, and water treatment system optimization program |
DE112018006125T5 (en) * | 2017-12-01 | 2020-08-13 | Mitsubishi Heavy Industries, Ltd. | CHEMICAL FEED CONTROL DEVICE, WATER TREATMENT SYSTEM, CHEMICAL FEED CONTROL PROCEDURE AND PROGRAM |
JP6676737B2 (en) * | 2017-12-01 | 2020-04-08 | 三菱重工業株式会社 | Drug injection control device, drug management device, water treatment system, drug injection control method, and program |
CN111427392A (en) * | 2020-04-21 | 2020-07-17 | 西安西热水务环保有限公司 | Thermal power plant circulating water concentration rate timely adjusting and controlling system and method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60248998A (en) * | 1984-05-23 | 1985-12-09 | Toshiba Corp | Supplying device of supplementary water to cooling tower |
JPS63243695A (en) * | 1987-03-30 | 1988-10-11 | Toshiba Corp | Automatic blow down system for cooling tower |
JPS6449893A (en) * | 1987-08-21 | 1989-02-27 | Kurita Water Ind Ltd | Water balance measuring device for cooling tower |
JP2594224B2 (en) * | 1993-10-27 | 1997-03-26 | 株式会社関口 | Water supply addition / subtraction type water supply proportional drug injection device |
JP3868521B2 (en) * | 1995-09-18 | 2007-01-17 | 株式会社片山化学工業研究所 | Water treatment method |
JP2001048711A (en) * | 1999-08-11 | 2001-02-20 | Dainippon Ink & Chem Inc | Cooling water treatment agent |
JP2003130587A (en) * | 2001-10-29 | 2003-05-08 | Ebara Corp | Circulating type cooling apparatus for cooling water and water quality controlling method |
JP4437262B2 (en) * | 2005-10-13 | 2010-03-24 | 矢崎総業株式会社 | cooling tower |
JP5033457B2 (en) * | 2007-03-30 | 2012-09-26 | アクアス株式会社 | Water treatment chemical injection method |
JP5136830B2 (en) * | 2007-08-09 | 2013-02-06 | 三浦工業株式会社 | Cooling tower makeup water quality control device |
JP5226357B2 (en) * | 2008-03-31 | 2013-07-03 | アクアス株式会社 | Water treatment chemical injection method |
-
2009
- 2009-04-15 JP JP2009098826A patent/JP5551381B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106872345A (en) * | 2017-03-06 | 2017-06-20 | 中国核动力研究设计院 | The automatic safety control system of corrosion test |
CN106872345B (en) * | 2017-03-06 | 2019-05-14 | 中国核动力研究设计院 | The automatic safety control system of corrosion test |
Also Published As
Publication number | Publication date |
---|---|
JP2010247063A (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5551381B2 (en) | Cooling water chemical injection control method and apparatus | |
JP2009030936A (en) | Method and device for controlling chemical dosing of cooling water system | |
ES2281204T3 (en) | PERFORMANCE-BASED CONTROL SYSTEM. | |
ES2297865T3 (en) | PERFORMANCE CONTROL SYSTEM. | |
JP5818907B2 (en) | Equipment and hot water heating / heating system | |
TWI654395B (en) | Boiler medicine injection control device and method | |
JP5699445B2 (en) | Water treatment chemical injection management method and apparatus for open circulation cooling water system | |
CN100545105C (en) | The autocontrol method for the treatment of cooling circulation water system by ozone | |
JP3358523B2 (en) | Water treatment chemical concentration calculation method and automatic management method | |
US20130174913A1 (en) | Method and apparatus for controlling total dissolved solids in a liquid circulation system | |
JP5498831B2 (en) | Cooling water quality measurement method, cooling water quality management method, and water treatment chemical injection method for cooling water | |
ES2594558T3 (en) | Procedure for the operation of a dosing pump and associated dosing device | |
JPH07145909A (en) | Control method of program of boiler system ph/phosphate | |
JP2003130587A (en) | Circulating type cooling apparatus for cooling water and water quality controlling method | |
JP2002159962A (en) | System for controlling injection of water treating chemical in circulating water system | |
JP5226357B2 (en) | Water treatment chemical injection method | |
JP2010149054A (en) | Method for controlling water quality in circulating cooling water system | |
JPH0712497A (en) | Controlling method for water quality of circulating cooling water of cooling tower | |
JP2006105542A (en) | Air conditioner and operation method thereof | |
CN115597302A (en) | Constant-temperature circulation waterway system and constant-temperature circulation water tank | |
JP5033457B2 (en) | Water treatment chemical injection method | |
JP2004025036A (en) | System and method for controlling concentration of water treating chemicals | |
GB2555558A (en) | Water quality control for evaporative cooler | |
CN112125359A (en) | Automatic dosing control system and control method suitable for electric furnace water system | |
JP2017180985A (en) | Water treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5551381 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |