JP3868521B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP3868521B2
JP3868521B2 JP23879995A JP23879995A JP3868521B2 JP 3868521 B2 JP3868521 B2 JP 3868521B2 JP 23879995 A JP23879995 A JP 23879995A JP 23879995 A JP23879995 A JP 23879995A JP 3868521 B2 JP3868521 B2 JP 3868521B2
Authority
JP
Japan
Prior art keywords
water
test
treatment method
acid
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23879995A
Other languages
Japanese (ja)
Other versions
JPH0975950A (en
Inventor
広幸 益田
忠彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Works Co Ltd
Nippon Steel Corp
Original Assignee
Katayama Chemical Works Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Works Co Ltd, Nippon Steel Corp filed Critical Katayama Chemical Works Co Ltd
Priority to JP23879995A priority Critical patent/JP3868521B2/en
Publication of JPH0975950A publication Critical patent/JPH0975950A/en
Application granted granted Critical
Publication of JP3868521B2 publication Critical patent/JP3868521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する利用分野】
本発明は、製鉄所の圧延工程における直接冷却水として使用した水の水処理方法に関し、より詳細には、該冷却水の水処理後に接触するロールやフレーム等の金属機器類の腐食、スケール析出に伴うスプレーノズルの閉塞やコイル表面へのスケール付着等の障害を防止する水処理方法に関する。
【0002】
【従来の技術及び解決しようとする課題】
製鉄所の圧延工程には熱間圧延工程と冷間圧延工程とがあり、例えば、熱間圧延工程では、加熱炉からの熱鋼塊が、粗圧延機及び仕上圧延機等によって、上下のロール間を進行する際に圧延され、厚板あるいは熱延鋼板に製造される。
この熱延鋼板は、通常酸洗工程を経て、冷間圧延工程の圧延機によって、さらに圧延され冷延鋼板となる。
【0003】
これらの圧延工程においては、圧延ロールの冷却、厚板や鋼板等の冷却及びスケール落としのため冷却水を直接スプレーしている(以下、この冷却水を「直接冷却水」という)。また、この直接冷却水は、熱間圧延の最終工程である巻取り工程において、圧延されコイル状に巻き取られた板状鋼(コイル)を冷却槽(即冷槽)で浸漬冷却する冷却水としても使用されている。
【0004】
このような直接冷却水は、スプレーしたり、浸漬した後、循環して再び冷却に使用される冷却水であり、油、懸濁物質等の水不溶性物により汚染されるため、水不溶性物質を凝集処理により除去する必要があった。
すなわち、スプレー又は浸漬後の水はスケールピットに集水され、安価な硫酸バンドやポリ塩化アルミニウム(PAC)等の無機系の凝集剤によって凝集処理が施されて油分や懸濁物質が除去され、その後、冷却塔において冷却され、再度冷却水として循環使用されている。
【0005】
しかし、凝集剤として硫酸バンドやPACを使用した場合には、冷却水中の硫酸イオンや塩素イオンが増加し、冷却水と接触する圧延機、ロール等の機器類の腐食を促進し、冷却水中に微細な酸化鉄(Fe2O3)を発生させるという問題があった。このような酸化鉄は、凝集処理によっても十分に除去することができず、循環中に配管に凝集堆積したり、剥離してスプレーノズルを閉塞させる原因となる。また、循環における溶存成分の濃縮によってスケールが生成され、これら生成物によってもスプレーノズルを閉塞させる。さらに、即冷槽に析出したカルシウムがコイル上に付着して後工程で行う塩酸酸洗時の塩酸廃液中に混入し、該廃液より鉄を回収する場合に鉄中のカルシウム含量が増大し、フェライト等の磁性材料の原料としての商品価値を損なう等の問題があった。
【0006】
そこで、リン酸・亜鉛系の防食剤や低分子ポリマー等の併用が提案されている(平成7年3月25日、栗田工業(株)発行の書籍「薬品ハンドブック」第 385頁右欄参照)。しかし、直接冷却水の使用量は膨大であるため、かかる防食剤やスケール防止剤の添加による処理は非経済的であるという問題があった。
また、防食剤やスケール防止剤を用いずに、専ら機器等の洗浄や交換による設備面による対応処置が実施されている。しかし、この場合にも、頻繁に冷却水系を一旦止めて作業を行わなければならないことから、生産能率の低下や作業面での困難性が伴い、コスト面においても経済的な対応とはいえない。
【0007】
本発明は上記課題に鑑み成されたものであり、機器等の洗浄や交換の頻度を低減させ、より経済的に直接冷却水を再利用することができる圧延工程における直接冷却水の水処理方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の発明者らは、直接冷却水系における上記障害を防止するための水処理方法を検討した結果、凝集処理工程における特定の凝集剤の使用による凝集処理と特定のスケール防止剤の使用による処理とを組み合わせることにより、冷却水の腐食環境を改善できるとともに、スケール生成による障害を防止できる事実を見出し、本発明を完成するに至った。
【0009】
本発明によれば、製鉄所の圧延工程において直接冷却水として使用した水にカチオン系有機凝集剤を添加して凝集処理し、次いで、該処理水に分子内にカルボキシル基を含有しないホスホン酸系スケール防止剤を添加した後、該処理水を循環使用することを特徴とする水処理方法が提供される。
【0010】
【発明の実施の形態】
本発明において、直接冷却水とは、製鉄所の圧延工程の成形過程における鋼材や鋼板等の鋼鉄製品や圧延ロール等に直接スプレーしたり、浸漬等して、これらの冷却又はスケール落とし等に用いた水を意味する。この直接冷却水は、スプレーや浸漬に使用された後、通常スケールピットや凝集処理槽等に一旦集水され、そこでカチオン系有機凝集剤を添加して凝集沈殿又は凝集浮上等の凝集処理により、油分や懸濁物質等を除去することができる。
【0011】
本発明の凝集処理に使用されるカチオン系有機凝集剤としては、アンモニアとエピクロルヒドリンとの重縮合物;メチルアミン、エチルアミン、イソプロピルアミン、ブチルアミン、アミルアミン等の脂肪族第一アミンとエピクロルヒドリンとの重縮合物;ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン等の脂肪族第二アミンとエピクロルヒドリンとの重縮合物;エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミンとエピクロルヒドリンとの重縮合物;アニリンとホルマリンとの縮合重合物;アルキレンジクロライドとアルキレンポリアミンとの重縮合物;ポリエチレンイミン;キトサン;ビニルイミダゾリン重合体;ポリビニルピリジン;ジアリルアンモニウムハロゲン化物の環化重合物;カチオン性ビニルラクタム−アクリルアミド共重合体;ポリアクリルアミドのカチオン化変成物等のうち分子量が五千〜百万、好ましくは十万〜五十万のものが挙げられる(1981年10月30日、(株)高分子刊行会発行の書籍「高分子凝集剤」第35〜59頁参照)。これらカチオン系有機凝集剤のうち、アンモニア、脂肪族第一アミン、脂肪族第二アミン又はアルキレンジアミンとエピクロルヒドリンとの重縮合物を使用するのが、水中の油分や懸濁物質に対する凝集作用が優れているので好ましい。
【0012】
本発明において、上記カチオン系有機凝集剤の添加量は、通常、0.05〜5mg/lであり、0.1 〜1mg/lが好ましい。カチオン系有機凝集剤の添加量が0.05mg/l未満であると、水中の油分や懸濁物質を十分に凝集除去できず、5mg/lより多く添加しても経済的デメリットを打ち消すさらなる凝集効果が発揮されないため好ましくない。
【0013】
次いで、上記処理水は、必要に応じて30℃程度に冷却されたのち、通常処理水ピット等に導入され、ホスホン酸系スケール防止剤が添加され、循環使用される。上記凝集処理された処理水に添加されるスケール防止剤としては、分子内にカルボキシル基を含有しないホスホン酸系のスケール防止剤であれば特に限定されるものではなく、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、1,1,1−ニトリロトリ(メチルホスホン酸)若しくはエチレンジアミンテトラメチレンホスホン酸又はそのアルカリ金属塩若しくはアンモニウム塩から選ばれるホスホン酸又はその水溶性塩が挙げられる。これらホスホン酸類の中で、1−ヒドロキシエチリデン−1,1−ジホスホン酸若しくは1,1,1−ニトリロトリ(メチルホスホン酸)又はそのアルカリ金属塩若しくはアンモニウム塩を使用するのがスケール防止効果の点で好ましい。
【0014】
上記スケール防止剤であるホスホン酸塩の処理水に対する添加量は、0.25〜5mg/lであり、より好ましくは 0.5〜 2.5mg/lである。このスケール防止剤の添加は連続的に行われるものであり、添加量が0.25mg/l未満では、十分なスケール防止効果が発揮されないため好ましくなく、5mg/lより多く添加しても経済的なデメリットを打ち消す効果が得られないため好ましくない。
【0015】
【実施例】
以下、この発明を試験例及び実施例により説明する。
〔試験例1〕
某製鉄所の熱間圧延工場における直接冷却水を採取し、凝集処理後の下記供試水1及び供試水2を得た。
【0016】
供試水1;凝集剤として液体バンド(硫酸アルミニウム水溶液:Al2O3 換算で8%含有) を30mg/l添加して凝集処理した処理水。
供試水2;凝集剤としてポリアミン(エチルアミンとエピクロルヒドリンとの重縮合物:分子量50万、含有量50%)を 0.7mg/l添加して凝集処理した処理水。
【0017】
供試水1及び供試水2の水質分析結果を表1に示す。
【0018】
【表1】

Figure 0003868521
【0019】
表1から、供試水2においては、冷却水系での炭酸カルシウムのスケール生成の傾向の指標となるランゲリア指数が比較的大きいことから、スケール生成傾向があり、一方、供試水1においてはランゲリア指数が負となることから腐食傾向があることが分かる。
この供試水1及び供試水2を使用して、以下の実験を実施した。各実験結果を表2に併せて示す。
《実験1:腐食・腐食生成物量測定 (非伝熱面)》
供試水1及び供試水2のそれぞれに表2に示すスケール防止剤を添加し、これらの供試水を、図1に示したジャーテスト装置に導入し、水温を40℃に保持した。各供試水中にSPCCの試験片(30×15×1mm 、表面積: 31.42cm2 、重量:約10g)を5日間吊るし、試験片に各供試水が流速約0.4m/sであたるように回転させた。試験後、試験片を塩酸で洗浄し、その重量を測定し、次式より試験片の腐食速度・腐食生成物量を算出した。
【0020】
【数1】
Figure 0003868521
【0021】
《実験2:スケール析出試験(伝熱面)》
SPCCの試験片(30×15×1mm 、表面積: 31.42cm2 、重量:約10g)を電気炉にて500 ℃に加熱した。この試験片を、表2及び3に示すスケール防止剤を添加した液量 500ml、90℃に昇温した各供試水中に1時間浸漬した。この操作を4回繰り返した。
【0022】
試験前後の各供試液中のカルシウムイオン(No6 濾紙にて濾過した濾液中のカルシウム) を測定し、次式よりカルシウム析出率(%)を算出した。
【0023】
【数2】
Figure 0003868521
【0024】
【表2】
Figure 0003868521
【0025】
【表3】
Figure 0003868521
【0026】
〔試験例2〕
図2に模式的に示した某製鉄所の圧延工場における直接冷却水系に枝管を取り、腐食・付着試験ユニット(供試薬剤注入装置とテストチューブ(SGP))を取付け、試験例1と同様の供試水1及び供試水2に、表4に示すスケール防止剤をそれぞれ添加し、10日間の試験を行った。試験前と試験開始後10日目との腐食・付着試験ユニットにおけるテストチューブの重量を測定し、次式より各供試水の腐食および付着速度を測定した。その結果を表4に示す。
【0027】
【数3】
Figure 0003868521
【0028】
【表4】
Figure 0003868521
【0029】
〔試験例3〕
某製鉄所の圧延工場における直接冷却水に、凝集剤としてポリアミン(エチルアミンとエピクロルヒドリンとの重縮合物:分子量50万、含有量50%)を 0.7mg/l添加して凝集処理した処理水を冷却水としている即冷槽に、スケール防止剤として1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加した。該即冷槽にコイルを浸漬冷却した後、その後工程である塩酸酸洗工程における塩酸洗浄液中のカルシウム量を1日1回、1カ月間測定した。また、比較のため、即冷槽に1−ヒドロキシエチリデン−1,1−ジホスホン酸を添加しなかった場合の塩酸洗浄液中のカルシウム量を同様に測定した。それらの結果を表5に示す。
【0030】
【表5】
Figure 0003868521
【0031】
【発明の効果】
本発明によれば、凝集処理工程における特定の凝集剤の使用による凝集処理と特定のスケール防止剤の使用による処理とを組み合わせることにより、冷却水の腐食環境を改善できると同時に、スケール生成による障害を、公知のスケール防止剤を使用した場合に比較して顕著に防止することが可能となった。つまり、冷却水の使用量が膨大である直接冷却水系において、特定の凝集剤と特定のスケール防止剤とを組み合わせて用いることにより、生産能率の低下や作業面での困難性がなく、かつ経済的な水処理が可能となった。
【図面の簡単な説明】
【図1】腐食・腐食生成物量測定方法において用いるジャーテスト装置の概略図である。
【図2】製鉄所の圧延工場における直接冷却水系を示す概略模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating water used as direct cooling water in a steel mill rolling process, and more specifically, corrosion of metal equipment such as rolls and frames that come into contact with the cooling water after water treatment, and scale deposition. The present invention relates to a water treatment method for preventing troubles such as spray nozzle blockage and scale adhesion to a coil surface.
[0002]
[Prior art and problems to be solved]
The steel mill rolling process includes a hot rolling process and a cold rolling process. For example, in the hot rolling process, the hot steel ingot from the heating furnace is rolled up and down by a roughing mill and a finishing mill. It is rolled as it progresses, and is produced into a thick plate or a hot-rolled steel plate.
This hot-rolled steel sheet usually undergoes a pickling process and is further rolled by a rolling mill in a cold rolling process to form a cold-rolled steel sheet.
[0003]
In these rolling processes, cooling water is sprayed directly for cooling of the rolling rolls, cooling of thick plates and steel plates, and scale reduction (hereinafter, this cooling water is referred to as “direct cooling water”). In addition, this direct cooling water is a cooling water that cools the sheet steel (coil) that has been rolled and wound in a coil shape by a cooling bath (immediate cooling bath) in the winding step that is the final step of hot rolling. It is also used as.
[0004]
Such direct cooling water is cooling water that is used for cooling again after being sprayed or immersed, and is contaminated with water-insoluble substances such as oil and suspended substances. It was necessary to remove by agglomeration treatment.
That is, the water after spraying or dipping is collected in the scale pit and subjected to agglomeration treatment with an inorganic aggregating agent such as an inexpensive sulfuric acid band or polyaluminum chloride (PAC) to remove oil and suspended substances, After that, it is cooled in the cooling tower and recycled as cooling water.
[0005]
However, when sulfuric acid band or PAC is used as the flocculant, sulfate ions and chlorine ions in the cooling water increase, and corrosion of rolling mills, rolls, and other equipment that come into contact with the cooling water is promoted. There was a problem of generating fine iron oxide (Fe 2 O 3 ). Such iron oxide cannot be sufficiently removed even by the agglomeration treatment, and causes agglomeration and accumulation on the piping during circulation or causes separation to block the spray nozzle. Also, scale is generated by the concentration of dissolved components in the circulation, and these products also block the spray nozzle. Furthermore, when calcium precipitated in the immediate cooling bath adheres to the coil and is mixed into the hydrochloric acid waste liquid at the time of hydrochloric acid pickling performed in the subsequent process, when iron is recovered from the waste liquid, the calcium content in the iron increases, There have been problems such as loss of commercial value as a raw material for magnetic materials such as ferrite.
[0006]
Therefore, the combined use of phosphoric acid and zinc anticorrosives and low molecular weight polymers has been proposed (refer to the right column on page 385 of the book "Drug Handbook" published by Kurita Kogyo Co., Ltd. on March 25, 1995). . However, since the amount of direct cooling water used is enormous, there is a problem that the treatment by adding such an anticorrosive or scale inhibitor is uneconomical.
Also, without using anticorrosives or scale inhibitors, countermeasures are implemented exclusively on the equipment side by cleaning or replacing equipment. However, in this case as well, the work must be carried out with the cooling water system frequently stopped. This is accompanied by a decrease in production efficiency and difficulty in work, and it cannot be said that the cost is economical. .
[0007]
The present invention has been made in view of the above problems, and it is possible to reduce the frequency of cleaning and replacement of equipment and the like, and to directly reuse cooling water more economically. The purpose is to provide.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have studied a water treatment method for preventing the above-described obstacles in a direct cooling water system, and as a result, a flocculation treatment using a specific flocculant and a treatment using a specific scale inhibitor in the flocculation treatment step. And the fact that the corrosive environment of the cooling water can be improved and the failure due to scale generation can be prevented, and the present invention has been completed.
[0009]
According to the present invention, a cationic organic flocculant is added to the water used directly as cooling water in the rolling process of the steel mill to perform a flocculation treatment, and then the phosphonic acid system containing no carboxyl group in the molecule in the treated water Provided is a water treatment method characterized by recycling the treated water after adding the scale inhibitor.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the direct cooling water is used for cooling or scaling down by directly spraying or dipping on steel products such as steel and steel plates, rolling rolls, etc. in the forming process of the steel mill rolling process. Means water. After this direct cooling water is used for spraying and dipping, it is usually collected once in a scale pit or a coagulation treatment tank, where a cationic organic coagulant is added and coagulation treatment such as coagulation precipitation or coagulation flotation, Oils and suspended substances can be removed.
[0011]
The cationic organic flocculant used in the flocculation treatment of the present invention includes a polycondensate of ammonia and epichlorohydrin; a polycondensation of aliphatic primary amines such as methylamine, ethylamine, isopropylamine, butylamine, and amylamine with epichlorohydrin. A polycondensation product of an aliphatic secondary amine such as dimethylamine, diethylamine, diisopropylamine, dibutylamine, diamylamine and epichlorohydrin; a polycondensation product of an alkylene diamine such as ethylenediamine, tetramethylenediamine, hexamethylenediamine and epichlorohydrin; Condensation polymer of aniline and formalin; polycondensation product of alkylene dichloride and alkylene polyamine; polyethyleneimine; chitosan; vinyl imidazoline polymer; polyvinylpyridine; Examples of cyclized polymers of ammonium halides; cationic vinyl lactam-acrylamide copolymers; cationized modified products of polyacrylamide, etc., having a molecular weight of 5,000 to million, preferably 100,000 to 500,000. (Refer to pages 35 to 59 of the book “Polymer Flocculant” published on October 30, 1981, published by Polymer Publishing Co., Ltd.). Of these cationic organic flocculants, the use of polycondensates of ammonia, aliphatic primary amines, aliphatic secondary amines or alkylene diamines and epichlorohydrin has excellent aggregating action on oily and suspended substances in water. Therefore, it is preferable.
[0012]
In the present invention, the amount of the cationic organic flocculant added is usually 0.05 to 5 mg / l, preferably 0.1 to 1 mg / l. If the amount of the cationic organic flocculant added is less than 0.05 mg / l, the oil and suspended substances in the water cannot be sufficiently agglomerated and removed. Is not preferred because it is not exhibited.
[0013]
Next, the treated water is cooled to about 30 ° C. as necessary, and then introduced into a normal treated water pit or the like, and a phosphonic acid-based scale inhibitor is added for circulation. The scale inhibitor added to the agglomerated treated water is not particularly limited as long as it is a phosphonic acid-based scale inhibitor that does not contain a carboxyl group in the molecule. For example, 1-hydroxyethylidene- 1,1-diphosphonic acid, 1,1,1-nitrilotriacetic phosphonic acid or its water-soluble salt selected from (methylphosphonic acid) or ethylene diamine tetra methylol alkylene phosphonic acids or their alkali metal salts or ammonium salts. Among these phosphonic acids, 1-hydroxyethylidene-1,1-diphosphonic acid or 1,1,1-nitrilotri (methylphosphonic acid) or an alkali metal salt or ammonium salt thereof is preferable in terms of scale prevention effect. .
[0014]
The addition amount of the phosphonate as the scale inhibitor to the treated water is 0.25 to 5 mg / l, more preferably 0.5 to 2.5 mg / l. The addition of this scale inhibitor is performed continuously, and if the addition amount is less than 0.25 mg / l, it is not preferable because sufficient scale prevention effect is not exhibited, and it is economical to add more than 5 mg / l. Since the effect of negating the disadvantage cannot be obtained, it is not preferable.
[0015]
【Example】
Hereinafter, the present invention will be described with reference to test examples and examples.
[Test Example 1]
The direct cooling water in the hot rolling mill of Sakai Steel Works was collected, and the following test water 1 and test water 2 after the coagulation treatment were obtained.
[0016]
Test water 1; treated water obtained by adding 30 mg / l of a liquid band (aluminum sulfate aqueous solution: containing 8% in terms of Al 2 O 3 ) as a flocculant.
Test water 2: treated water that was coagulated by adding 0.7 mg / l of polyamine (polycondensate of ethylamine and epichlorohydrin: molecular weight 500,000, content 50%) as a flocculant.
[0017]
Table 1 shows the results of water quality analysis of test water 1 and test water 2.
[0018]
[Table 1]
Figure 0003868521
[0019]
From Table 1, the test water 2 has a scale formation tendency because the Langerian index, which is an indicator of the tendency of calcium carbonate scale formation in the cooling water system, is relatively large. From the negative index, it can be seen that there is a tendency to corrode.
Using the test water 1 and the test water 2, the following experiment was performed. The results of each experiment are also shown in Table 2.
<< Experiment 1: Measurement of corrosion and corrosion products (non-heat transfer surface) >>
The scale inhibitors shown in Table 2 were added to each of test water 1 and test water 2, and these test waters were introduced into the jar test apparatus shown in FIG. 1, and the water temperature was kept at 40 ° C. A test piece of SPCC (30 × 15 × 1 mm, surface area: 31.42 cm 2 , weight: about 10 g) is hung for 5 days in each test water so that each test water hits the test piece at a flow rate of about 0.4 m / s. Rotated. After the test, the test piece was washed with hydrochloric acid, its weight was measured, and the corrosion rate and the amount of corrosion product of the test piece were calculated from the following equations.
[0020]
[Expression 1]
Figure 0003868521
[0021]
<< Experiment 2: Scale deposition test (heat transfer surface) >>
SPCC specimens (30 × 15 × 1 mm, surface area: 31.42 cm 2 , weight: about 10 g) were heated to 500 ° C. in an electric furnace. This test piece was immersed for 1 hour in each test water heated to 90 ° C. with a liquid volume of 500 ml to which the scale inhibitors shown in Tables 2 and 3 were added. This operation was repeated 4 times.
[0022]
Calcium ions (calcium in the filtrate filtered with No6 filter paper) in each test solution before and after the test were measured, and the calcium precipitation rate (%) was calculated from the following formula.
[0023]
[Expression 2]
Figure 0003868521
[0024]
[Table 2]
Figure 0003868521
[0025]
[Table 3]
Figure 0003868521
[0026]
[Test Example 2]
A branch pipe is taken in the direct cooling water system in the rolling mill of the Tsuji Steel Works shown schematically in FIG. 2, and a corrosion / adhesion test unit (reagent supply device and test tube (SGP)) is attached. Each of the scale inhibitors shown in Table 4 was added to each of the test water 1 and the test water 2, and the test was conducted for 10 days. The weight of the test tube in the corrosion / adhesion test unit before the test and on the 10th day after the start of the test was measured, and the corrosion and adhesion rate of each test water was measured by the following formula. The results are shown in Table 4.
[0027]
[Equation 3]
Figure 0003868521
[0028]
[Table 4]
Figure 0003868521
[0029]
[Test Example 3]
Cooling of coagulated treated water by adding 0.7 mg / l of polyamine (polycondensate of ethylamine and epichlorohydrin: molecular weight 500,000, content 50%) as coagulant to direct cooling water at the rolling mill of Sakai Steel Works 1-Hydroxyethylidene-1,1-diphosphonic acid was added as a scale inhibitor to an immediate cooling bath as water. After the coil was immersed and cooled in the immediate cooling bath, the amount of calcium in the hydrochloric acid cleaning solution in the subsequent hydrochloric acid pickling step was measured once a day for one month. For comparison, the amount of calcium in the hydrochloric acid cleaning solution when 1-hydroxyethylidene-1,1-diphosphonic acid was not added to the immediate cooling bath was measured in the same manner. The results are shown in Table 5.
[0030]
[Table 5]
Figure 0003868521
[0031]
【The invention's effect】
According to the present invention, it is possible to improve the corrosive environment of the cooling water by combining the agglomeration treatment by using a specific flocculant and the treatment by using a specific scale inhibitor in the agglomeration treatment process, and at the same time, an obstacle due to scale generation Can be remarkably prevented as compared with the case where a known scale inhibitor is used. In other words, in a direct cooling water system where the amount of cooling water used is enormous, by using a specific flocculant and a specific scale inhibitor in combination, there is no reduction in production efficiency or difficulty in work, and economic efficiency. Water treatment becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic view of a jar test apparatus used in a corrosion / corrosion product amount measuring method.
FIG. 2 is a schematic diagram showing a direct cooling water system in a steel mill rolling mill.

Claims (4)

製鉄所の圧延工程において直接冷却水として使用した水にカチオン系有機凝集剤を添加して凝集処理し、次いで、該処理水に分子内にカルボキシル基を含有しないホスホン酸系スケール防止剤を添加した後、該処理水を循環使用することを特徴とする水処理方法。A cationic organic flocculant was added to the water used directly as cooling water in the rolling process of the steel mill, and then agglomeration treatment was performed, and then a phosphonic acid scale inhibitor not containing a carboxyl group in the molecule was added to the treated water Then, the water treatment method characterized by recirculatingly using the treated water. カチオン系有機凝集剤が、アンモニア、脂肪族第一アミン、脂肪族第二アミン又はアルキレンジアミンとエピクロルヒドリンとの重縮合物である請求項1記載の水処理方法。The water treatment method according to claim 1, wherein the cationic organic flocculant is a polycondensate of ammonia, an aliphatic primary amine, an aliphatic secondary amine, or an alkylenediamine and epichlorohydrin. ホスホン酸系スケール防止剤が、1−ヒドロキシエチリデン−1,1−ジホスホン酸、1,1,1−ニトリロトリ(メチルホスホン酸)若しくはエチレンジアミンテトラメチレンホスホン酸又はそのアルカリ金属塩若しくはアンモニウム塩から選ばれるホスホン酸又はその水溶性塩である請求項1記載の水処理方法。Phosphonic acid scale inhibitor is 1-hydroxyethylidene-1,1-diphosphonic acid, 1,1,1-nitrilotriacetic (methylphosphonic acid) or ethylene diamine tetra methylol alkylene phosphonic acid or phosphonic selected from the alkali metal salt or ammonium salt The water treatment method according to claim 1, which is an acid or a water-soluble salt thereof. カチオン系有機凝集剤の添加量が0.05〜5mg/lであり、ホスホン酸系スケール防止剤の添加量が0.25〜5mg/lである請求項1〜3のいずれかに記載の水処理方法。The water treatment method according to any one of claims 1 to 3, wherein the addition amount of the cationic organic flocculant is 0.05 to 5 mg / l, and the addition amount of the phosphonic acid scale inhibitor is 0.25 to 5 mg / l.
JP23879995A 1995-09-18 1995-09-18 Water treatment method Expired - Lifetime JP3868521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23879995A JP3868521B2 (en) 1995-09-18 1995-09-18 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23879995A JP3868521B2 (en) 1995-09-18 1995-09-18 Water treatment method

Publications (2)

Publication Number Publication Date
JPH0975950A JPH0975950A (en) 1997-03-25
JP3868521B2 true JP3868521B2 (en) 2007-01-17

Family

ID=17035467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23879995A Expired - Lifetime JP3868521B2 (en) 1995-09-18 1995-09-18 Water treatment method

Country Status (1)

Country Link
JP (1) JP3868521B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551381B2 (en) * 2009-04-15 2014-07-16 水ing株式会社 Cooling water chemical injection control method and apparatus
JP2010137224A (en) * 2010-02-12 2010-06-24 Kureha Engineering Co Ltd Method for cleaning water
WO2014091819A1 (en) * 2012-12-10 2014-06-19 日鉄住金環境株式会社 Method for removing suspended solids from wastewater
JP6283865B2 (en) * 2013-09-30 2018-02-28 株式会社片山化学工業研究所 Water treatment method
JP6389066B2 (en) * 2014-06-09 2018-09-12 日鉄住金環境株式会社 Steel-based wastewater treatment method
JP6374352B2 (en) * 2014-06-09 2018-08-15 日鉄住金環境株式会社 Suspended matter polymer coagulation / sedimentation agent and suspended matter removal method
WO2015190445A1 (en) * 2014-06-09 2015-12-17 日鉄住金環境株式会社 Polymer aggregator and method for removing matter suspended in water using said aggregator
JP6374351B2 (en) * 2014-06-09 2018-08-15 日鉄住金環境株式会社 Method for removing suspended matter in water

Also Published As

Publication number Publication date
JPH0975950A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US5062962A (en) Methods of controlling scale formation in aqueous systems
US5147555A (en) Methods of controlling scale formation in aqueous systems
JP3868521B2 (en) Water treatment method
US5814247A (en) Aqueous solution for the cold-working treatment of steel sheet
WO2015122264A1 (en) Scale removal method and scale removal agent for steam generating facilities
AU2017302240A1 (en) Corrosion inhibiting polymer compositions, mixtures, and methods of using the same
CA2027294A1 (en) Method for pickling iron and steel surfaces
JP6283865B2 (en) Water treatment method
JP6389066B2 (en) Steel-based wastewater treatment method
WO2000066809A1 (en) Inhibition of corrosion in aqueous systems
JPS5913595B2 (en) Metal corrosion inhibitor and corrosion prevention method
JP4682273B2 (en) Water treatment method for circulating cooling water system
JP4431676B2 (en) Water treatment method
CN114340766A (en) Silica scale inhibitor
JP7391302B2 (en) Manganese scale generation inhibitor and manganese scale generation inhibition method
RU2114215C1 (en) Composition for chemical cleaning of product surfaces from scale and corrosion deposits
JP2002523624A (en) Prevention of corrosion in water systems
JPH1128461A (en) Method for suppressing corrosion of metal in water system
JP3258299B2 (en) Method for recovering polyalkylene glycol from water-soluble hydraulic fluid
US6063288A (en) Inhibition of silica and silicate deposition using imidazolines
JPS60102993A (en) Fluocculating method
JP3427859B2 (en) Treatment method of direct cooling water system in hot rolling process
US3651189A (en) Water treatment process
JPS6099396A (en) Obstruction preventive agent of water system
CN221093995U (en) Sulfate spring scale inhibition and corrosion prevention system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term