JP3839915B2 - Refrigerant cooling device - Google Patents

Refrigerant cooling device Download PDF

Info

Publication number
JP3839915B2
JP3839915B2 JP19223197A JP19223197A JP3839915B2 JP 3839915 B2 JP3839915 B2 JP 3839915B2 JP 19223197 A JP19223197 A JP 19223197A JP 19223197 A JP19223197 A JP 19223197A JP 3839915 B2 JP3839915 B2 JP 3839915B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
low
heat exchanger
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19223197A
Other languages
Japanese (ja)
Other versions
JPH1137623A (en
Inventor
正浩 米倉
久之 碓井
弘幸 沢田
康弘 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP19223197A priority Critical patent/JP3839915B2/en
Publication of JPH1137623A publication Critical patent/JPH1137623A/en
Application granted granted Critical
Publication of JP3839915B2 publication Critical patent/JP3839915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒冷却装置に関し、詳しくは、化学工業におけるファインケミカル等の低温反応のための冷却源として用いられる冷媒を、低温液化ガスを冷却源として熱交換器での熱交換により冷却する装置に関する。
【0002】
【従来の技術】
化学反応により発生する反応熱を除去するときには、メタノール,エタノール,ケトン,アミン,シリコーンオイル,有機ハロゲン化物等の一般にブラインと呼ばれる冷媒が循環使用されている。このような冷媒を通常の冷凍機では困難な低温域、例えば−50℃以下に冷却するための冷却源としては、各種低温液化ガス、例えば液体窒素や液体空気が用いられており、低温液化ガスと冷媒とを熱交換器で熱交換させることにより冷媒を所定温度に冷却している。
【0003】
上記熱交換器として、従来は、熱交換器部分で冷媒が凍結しないように、タンク&コイル方式や恒温槽方式が多く採用されていたが、近年は、製作の容易性や冷却能力の変更が容易な点等から、二重管式熱交換器を用いるようになってきている。
【0004】
上記二重管式熱交換器を使用して低温液化ガスにより冷媒を冷却する際には、該熱交換器の冷媒流路内で冷媒が凍結しないようにする必要がある。すなわち、冷媒流路内で冷媒の凍結が少しでも発生すると、冷媒の粘度が上昇して流速が低下するとともに、熱交換器の伝熱面に凍結物が付着し、流路抵抗が増加して更に冷媒の凍結が促進される。このように、冷媒の凍結によって冷媒流路の流路抵抗が増大すると、伝熱係数が低下して熱交換能力が損なわれるため、低温液化ガスが熱交換器内で気化せずに、熱交換器から液状のまま吹き出してしまうおそれがあった。
【0005】
このため、例えば、実開平6−22880号公報に記載されている冷媒冷却装置では、冷媒流路の複数箇所で冷媒温度を検出し、検出温度に応じて熱交換器への低温液化ガス供給量を制御することにより、冷媒流路内での冷媒の凍結を防止するようにしている。
【0006】
【発明が解決しようとする課題】
一方、多数のプレートを積層して各プレート間を流体流路としたプレート式熱交換器は、前記タンク&コイル方式や恒温槽方式、二重管式熱交換器等に比べて小型で高性能であることから、冷媒冷却装置にも、このプレート式熱交換器を使用することが望まれている。
【0007】
しかし、プレート式熱交換器の場合、流路途中の温度を正確に測定することが困難なため、前述の冷媒流路の複数箇所で冷媒温度を検出するという制御方式を採用することができなかった。
【0008】
そこで本発明は、熱交換器の冷媒流路内での冷媒の凍結を確実に防止することができ、ブレージングプレート式熱交換器を使用することができる冷媒冷却装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の冷媒冷却装置は、低温反応槽を冷却する低温循環冷媒と低温液化ガスとを熱交換器で熱交換させて前記低温循環冷媒を冷却する冷媒冷却装置において、前記熱交換器は、ブレージングプレート式熱交換器であって、該冷媒冷却装置は、ポンプにより前記低温循環冷媒を前記低温反応槽と前記ブレージングプレート式熱交換器とに循環させる冷媒循環経路と、前記低温液化ガスを低温液化ガス貯槽から前記ブレージングプレート式熱交換器に供給する低温液化ガス経路とにより形成され、前記低温液化ガス経路には、前記ブレージングプレート式熱交換器への低温液化ガス供給量を調整するための流量調整弁と、前記低温液化ガスの供給を遮断するための遮断弁とが設けられ、前記ブレージングプレート式熱交換器内の液化ガス流路で気化した蒸発ガスが流れる熱交換器出口流路には、前記ブレージングプレート式熱交換器から導出される蒸発ガスの温度を検出する蒸発ガス温度検出部が設けられ、前記冷媒循環経路には、前記ブレージングプレート式熱交換器の冷媒出口部の冷媒温度を検出する冷媒温度検出部と、前記ブレージングプレート式熱交換器の冷媒入口部及び冷媒出口部におけるそれぞれの冷媒の圧力を検出するための冷媒圧力検出部と、前記ポンプから吐出された前記低温循環冷媒を、前記ブレージングプレート式熱交換器に導入せずに前記低温反応槽に戻すためのバイパス経路及びバイパス弁とが設けられ、前記冷媒温度検出部で検出した冷媒温度は、第一温度指示調節計に入力され、該第一温度指示調節計は、あらかじめ設定された温度設定値と検出した冷媒温度とに基づいて前記流量調整弁の開度を調節して前記ブレージングプレート式熱交換器に供給する前記低温液化ガスの供給量を制御し、前記蒸発ガス温度検出部で検出した蒸発ガス温度は、前記第二温度指示調節計に入力され、該第二温度指示調節計は、あらかじめ設定された温度設定値と検出した蒸発ガス温度とに基づいて前記遮断弁を作動させて前記熱交換器への前記低温液化ガスの供給を遮断し、前記冷媒圧力検出部で検出した前記冷媒入口部及び冷媒出口部における冷媒圧力は、差圧スイッチに入力され、該差圧スイッチは、前記冷媒圧力検出部の検出圧力の差と、あらかじめ設定された差圧設定値とに基づいて、前記遮断弁を作動させて前記ブレージングプレート式熱交換器への低温液化ガスの供給を遮断し、前記第二温度指示調節計及び前記差圧スイッチは、検出した蒸発ガス温度や冷媒差圧に応じて前記バイパス弁の開度を制御することを特徴としている。
【0010】
【発明の実施の形態】
図1は、本発明の冷媒冷却装置の一形態例を示す系統図である。この冷媒冷却装置は、低温反応槽1を所定温度に冷却するための低温循環冷媒、例えば塩化メチレンを、低温液化ガス、例えば液体窒素との熱交換により冷却するためのものであって、冷却源となる低温液化ガスを貯留する低温液化ガス貯槽2と、低温液化ガスと循環冷媒とを熱交換させるブレージングプレート式熱交換器(以下、「熱交換器」という。)3と、ポンプ4により低温循環冷媒を低温反応槽1と熱交換器3とに循環させる冷媒循環経路5と、低温液化ガスを低温液化ガス貯槽2から熱交換器3に供給する低温液化ガス経路6とにより形成されている。
【0011】
低温液化ガス経路6には、熱交換器3への低温液化ガス供給量(流量)を調整するための流量調整弁7と、低温液化ガスの供給を遮断するための遮断弁8とが設けられている。さらに、熱交換器3内の液化ガス流路6aで気化した蒸発ガスが流れる熱交換器出口流路6bには、熱交換器3から導出される蒸発ガスの温度を検出する蒸発ガス温度検出部(温度センサー)9が設けられている。
【0012】
また、冷媒循環経路5には、熱交換器3の冷媒出口部3aの冷媒温度を検出する冷媒温度検出部(温度センサー)10と、熱交換器3の冷媒入口部3b及び冷媒出口部3aにおける冷媒の圧力を検出するための冷媒圧力検出部(圧力センサー)11,12とが設けられるとともに、ポンプ4から吐出された低温循環冷媒を、熱交換器3に導入せずに低温反応槽1に戻すためのバイパス経路13及びバイパス弁14が設けられている。
【0013】
前記冷媒温度検出部10で検出した冷媒温度は、第一温度指示調節計(TIC1)15に入力され、第一温度指示調節計15は、あらかじめ設定された温度設定値と検出した冷媒温度とに基づいて前記流量調整弁7の開度を調節し、熱交換器3に供給する低温液化ガスの供給量を制御する。
【0014】
前記蒸発ガス温度検出部9で検出した蒸発ガス温度は、第二温度指示調節計(TIC2)16に入力され、第二温度指示調節計16は、あらかじめ設定された温度設定値と検出した蒸発ガス温度とに基づいて前記遮断弁8を作動させ、熱交換器3への低温液化ガスの供給を遮断する。
【0015】
さらに、前記冷媒圧力検出部11,12で検出した冷媒圧力は、差圧スイッチ(PS)17に入力され、差圧スイッチ17は、冷媒圧力検出部11,12の検出圧力の差、すなわち両経路を流れる冷媒の差圧と、あらかじめ設定された差圧設定値とに基づいて、第二温度指示調節計16と同様に、前記遮断弁8を作動させ、熱交換器3への低温液化ガスの供給を遮断する。
【0016】
また、第二温度指示調節計16及び差圧スイッチ17は、検出した蒸発ガス温度や冷媒差圧に応じて前記バイパス弁14の開度も制御する。
【0017】
上述の冷媒冷却装置において、低温液化ガス貯槽2から供給される低温液化ガスは、低温液化ガス経路6の遮断弁8及び流量調整弁7を介して熱交換器3内の液化ガス流路6aに導入され、冷媒循環経路5から熱交換器3内の冷媒流路5aに導入される低温循環冷媒を冷却することにより気化して蒸発ガスとなり、熱交換器出口流路6bから流出する。一方、低温反応槽1で昇温した低温循環冷媒は、ポンプ4によって熱交換器3に導入され、冷媒流路5aで冷却された後、再び低温反応槽1に戻される。
【0018】
通常の運転状態では、冷媒温度検出部10で検出した冷媒出口部3aの冷媒温度に応じて流量調整弁7の開度が調節され、熱交換器3への低温液化ガスの供給量が制御される。すなわち、冷媒出口部3aの冷媒温度があらかじめ設定された温度より低下したら低温液化ガスの供給量を減少させ、冷媒温度が設定温度より上昇したら低温液化ガスの供給量を増加させる。これにより、低温反応槽1における通常の熱負荷の変動に対しては十分に対処することが可能である。
【0019】
なお、冷媒出口部3aに代えて冷媒入口部3bに冷媒温度検出部を設け、熱交換器3に流入する冷媒温度を検出しても同様の制御を行うことができ、冷媒入口部3b及び冷媒出口部3aの双方の冷媒温度を検出するようにしてもよい。
【0020】
また、冷媒温度を、その凝固点付近で制御する場合、熱交換器3に流入する低温循環冷媒の粘度が増大して冷媒の流動性が低下する。これにより、熱交換器3の冷媒流路5aにおける流路抵抗が増加し、冷媒入口部3bと冷媒出口部3aとの差圧が次第に上昇してくる。この差圧の上昇の程度は、低温循環冷媒の種類や冷媒流路5aの状態等の各種条件によって異なるが、通常運転時の差圧が1.3〜1.4kgf/cm2 の場合、2kgf/cm2 以上に差圧が上昇すると、冷媒の凍結が急速に始まることが多い。
【0021】
したがって、前記差圧スイッチ17の設定値を、例えば1.7kgf/cm2 とし、差圧が1.7kgf/cm2 に上昇したときに、差圧スイッチ17が作動して前記遮断弁8を閉じ、熱交換器3への低温液化ガスの供給を遮断するように設定すればよい。これにより、低温循環冷媒の温度がそれ以上低下することがなくなり、冷媒流路5a内で低温循環冷媒が凍結することを防止できる。
【0022】
また、上述のように、熱交換器3に流入する低温循環冷媒の粘度が上昇すると、熱交換器3における熱交換能力が低下するので、低温循環冷媒と熱交換を行う低温液化ガスを十分に加温することができなくなる。これにより、熱交換器3の液化ガス流路6aから熱交換器出口流路6bに流出する蒸発ガスの温度が次第に低下してくる。この温度低下の程度も、前記差圧と同様に、低温循環冷媒の種類や低温液化ガスの種類等、各種条件によって異なるが、例えば、低温循環冷媒が塩化メチレンで、低温液化ガスが液体窒素である場合は、熱交換器出口流路6bの蒸発ガス温度が−150℃以下になると、低温循環冷媒が冷媒流路5a内で凍結するおそれがある。したがって、この場合は、蒸発ガス温度検出部9で検出した蒸発ガス温度が−150℃になったら、第二温度指示調節計16が作動して前記遮断弁8を閉じるように設定すればよい。
【0023】
なお、遮断弁8の復帰は、低温反応槽1の運転状態に応じて自動的に行うこともでき、手動で行ってもよい。また、遮断弁8を設けずに、第二温度指示調節計16や差圧スイッチ17の信号で流量調整弁7を全閉するようにしてもよい。
【0024】
さらに、本形態例では、上述のように低温循環冷媒に凍結するおそれが発生した場合、第二温度指示調節計16や差圧スイッチ17の信号で前記バイパス弁14を開くようにしている。これにより、万一、熱交換器3で低温循環冷媒が凍結して冷媒流路5aが閉塞された場合でも、低温循環冷媒の循環流路が確保されるので、ポンプ4に負荷を与えることがなくなり、冷媒入口部3b側流路の圧力が異常に上昇したり、ポンプ4が破損したりすることを防止できる。
【0025】
このように、冷媒循環経路5を流れる低温循環冷媒の温度を検出して熱交換器3への低温液化ガスの供給量を調整するだけでなく、冷媒入口部3bと冷媒出口部3aとにおける冷媒差圧や、熱交換器3から流出する蒸発ガスの温度を検出することによって低温循環冷媒の凍結発生を未然に検知することができ、低温液化ガスの供給を遮断することによって低温循環冷媒の凍結を確実に防止することができる。
【0026】
さらに、熱交換器3の各入口部及び入口部に温度センサーや圧力センサー等の検出手段を設けるようにしているので、各種構造の熱交換器に対応することが可能となり、従来は適用が困難だったプレート式熱交換器、特に、各プレートをブレージング接合(ろう付け)したブレージングプレート式熱交換器を使用することが可能となり、熱交換効率の大幅な向上が図れ、熱交換器だけでなく装置全体の小型化や効率向上、製造コストの低減が図れる。
【0027】
【発明の効果】
以上説明したように、本発明の冷媒冷却装置によれば、熱交換効率に優れたブレージングプレート式熱交換器を使用することができるので、装置全体の小型化や低コスト化が図れる。
【図面の簡単な説明】
【図1】 本発明の一形態例を示す冷媒冷却装置の系統図である。
【符号の説明】
1…低温反応槽、2…低温液化ガス貯槽、3…熱交換器、3a…冷媒出口部、3b…冷媒入口部、4…ポンプ、5…冷媒循環経路、6…低温液化ガス経路、6a…液化ガス流路、6b…熱交換器出口流路、7…流量調整弁、8…遮断弁、9…蒸発ガス温度検出部、10…冷媒温度検出部、11,12…冷媒圧力検出部、13…バイパス経路、14…バイパス弁、15…第一温度指示調節計、16…第二温度指示調節計、17…差圧スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant cooling apparatus, and more particularly, to an apparatus for cooling a refrigerant used as a cooling source for a low temperature reaction such as fine chemical in the chemical industry by heat exchange in a heat exchanger using a low temperature liquefied gas as a cooling source. .
[0002]
[Prior art]
When removing reaction heat generated by a chemical reaction, a refrigerant generally called brine, such as methanol, ethanol, ketone, amine, silicone oil, and organic halide, is circulated and used. Various low-temperature liquefied gases such as liquid nitrogen and liquid air are used as a cooling source for cooling such a refrigerant to a low temperature range that is difficult with a normal refrigerator, for example, −50 ° C. or lower. The refrigerant is cooled to a predetermined temperature by exchanging heat between the refrigerant and the refrigerant using a heat exchanger.
[0003]
Conventionally, as the heat exchanger, a tank & coil method and a thermostatic chamber method were often used so that the refrigerant would not freeze in the heat exchanger part. From an easy point etc., the double tube type heat exchanger has come to be used.
[0004]
When the refrigerant is cooled by the low-temperature liquefied gas using the double pipe heat exchanger, it is necessary to prevent the refrigerant from freezing in the refrigerant flow path of the heat exchanger. That is, if freezing of the refrigerant occurs even in the refrigerant flow path, the viscosity of the refrigerant increases and the flow velocity decreases, and frozen matter adheres to the heat transfer surface of the heat exchanger, increasing the flow path resistance. Furthermore, freezing of the refrigerant is promoted. Thus, if the flow resistance of the refrigerant flow path increases due to the freezing of the refrigerant, the heat transfer coefficient decreases and the heat exchange capability is impaired, so that the low temperature liquefied gas is not vaporized in the heat exchanger and heat exchange is performed. There was a risk of the liquid being blown out from the vessel.
[0005]
For this reason, for example, in the refrigerant cooling device described in Japanese Utility Model Laid-Open No. 6-22880, the refrigerant temperature is detected at a plurality of locations in the refrigerant flow path, and the low-temperature liquefied gas supply amount to the heat exchanger is detected according to the detected temperature. By controlling this, freezing of the refrigerant in the refrigerant flow path is prevented.
[0006]
[Problems to be solved by the invention]
On the other hand, plate type heat exchangers with a large number of plates stacked and fluid flow between each plate are smaller and have higher performance than the tank & coil method, thermostatic bath method, double tube heat exchanger, etc. Therefore, it is desired to use this plate heat exchanger also for the refrigerant cooling device.
[0007]
However, in the case of a plate-type heat exchanger, it is difficult to accurately measure the temperature in the middle of the flow path, so it is not possible to employ a control method that detects the refrigerant temperature at a plurality of locations in the refrigerant flow path. It was.
[0008]
Accordingly, an object of the present invention is to provide a refrigerant cooling device that can reliably prevent the freezing of the refrigerant in the refrigerant flow path of the heat exchanger and can use the brazing plate heat exchanger. .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the refrigerant cooling device of the present invention is a refrigerant cooling device that cools the low-temperature circulating refrigerant by exchanging heat between the low-temperature circulating refrigerant that cools the low- temperature reaction tank and the low-temperature liquefied gas in a heat exchanger. The heat exchanger is a brazing plate heat exchanger, and the refrigerant cooling device is configured to circulate the low-temperature circulating refrigerant between the low-temperature reaction tank and the brazing plate-type heat exchanger by a pump, The low-temperature liquefied gas is supplied to the brazing plate heat exchanger from the low-temperature liquefied gas storage tank, and the low-temperature liquefied gas route is supplied to the brazing plate heat exchanger through the low-temperature liquefied gas route. A flow rate adjusting valve for adjusting the amount and a shut-off valve for shutting off the supply of the low-temperature liquefied gas, and the brazing plate type heat An evaporative gas temperature detecting unit for detecting the temperature of the evaporative gas derived from the brazing plate heat exchanger is provided in the heat exchanger outlet flow channel through which the evaporated gas vaporized in the liquefied gas flow channel in the exchanger flows. The refrigerant circulation path includes a refrigerant temperature detection unit that detects a refrigerant temperature at a refrigerant outlet of the brazing plate heat exchanger, and a refrigerant at each of a refrigerant inlet and a refrigerant outlet of the brazing plate heat exchanger. And a bypass path and a bypass valve for returning the low-temperature circulating refrigerant discharged from the pump to the low-temperature reaction tank without introducing it into the brazing plate heat exchanger. The refrigerant temperature detected by the refrigerant temperature detector is input to the first temperature indicating controller, and the first temperature indicating controller is set in advance. The evaporative gas temperature detection is performed by controlling the supply amount of the low-temperature liquefied gas supplied to the brazing plate heat exchanger by adjusting the opening of the flow rate adjusting valve based on the set temperature value and the detected refrigerant temperature. The evaporative gas temperature detected by the unit is input to the second temperature indicating controller, and the second temperature indicating controller controls the shut-off valve based on a preset temperature setting value and the detected evaporating gas temperature. The refrigerant pressure at the refrigerant inlet and the refrigerant outlet detected by the refrigerant pressure detector is input to the differential pressure switch, and the supply of the low-temperature liquefied gas to the heat exchanger is cut off. The switch operates the shut-off valve on the basis of the difference between the detected pressures of the refrigerant pressure detector and a preset differential pressure setting value to supply the low-temperature liquefied gas to the brazing plate heat exchanger The second temperature indicating controller and the differential pressure switch control the opening degree of the bypass valve in accordance with the detected evaporative gas temperature or refrigerant differential pressure .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an embodiment of the refrigerant cooling device of the present invention. This refrigerant cooling apparatus is for cooling a low-temperature circulating refrigerant for cooling the low-temperature reaction tank 1 to a predetermined temperature, for example, methylene chloride by heat exchange with a low-temperature liquefied gas, for example, liquid nitrogen, The low-temperature liquefied gas storage tank 2 for storing the low-temperature liquefied gas, the brazing plate heat exchanger (hereinafter referred to as “heat exchanger”) 3 for exchanging heat between the low-temperature liquefied gas and the circulating refrigerant, and the pump 4 The refrigerant circulation path 5 circulates the circulating refrigerant between the low-temperature reaction tank 1 and the heat exchanger 3, and the low-temperature liquefied gas path 6 that supplies the low-temperature liquefied gas from the low-temperature liquefied gas storage tank 2 to the heat exchanger 3. .
[0011]
The low-temperature liquefied gas path 6 is provided with a flow rate adjusting valve 7 for adjusting the supply amount (flow rate) of the low-temperature liquefied gas to the heat exchanger 3 and a shut-off valve 8 for cutting off the supply of the low-temperature liquefied gas. ing. Further, an evaporative gas temperature detection unit for detecting the temperature of the evaporative gas derived from the heat exchanger 3 is provided in the heat exchanger outlet flow channel 6b through which the evaporated gas vaporized in the liquefied gas flow channel 6a in the heat exchanger 3 flows. (Temperature sensor) 9 is provided.
[0012]
The refrigerant circulation path 5 includes a refrigerant temperature detection unit (temperature sensor) 10 that detects the refrigerant temperature of the refrigerant outlet 3a of the heat exchanger 3, and a refrigerant inlet 3b and a refrigerant outlet 3a of the heat exchanger 3. Refrigerant pressure detectors (pressure sensors) 11 and 12 for detecting the pressure of the refrigerant are provided, and the low-temperature circulating refrigerant discharged from the pump 4 is introduced into the low-temperature reaction tank 1 without being introduced into the heat exchanger 3. A bypass path 13 and a bypass valve 14 for returning are provided.
[0013]
The refrigerant temperature detected by the refrigerant temperature detection unit 10 is input to a first temperature indicating controller (TIC1) 15, which uses the preset temperature set value and the detected refrigerant temperature. Based on this, the opening degree of the flow rate adjusting valve 7 is adjusted, and the supply amount of the low-temperature liquefied gas supplied to the heat exchanger 3 is controlled.
[0014]
The evaporative gas temperature detected by the evaporative gas temperature detection unit 9 is input to the second temperature indicating controller (TIC2) 16, and the second temperature indicating controller 16 detects the evaporative gas detected in advance and the preset temperature set value. Based on the temperature, the shut-off valve 8 is operated to cut off the supply of the low-temperature liquefied gas to the heat exchanger 3.
[0015]
Further, the refrigerant pressure detected by the refrigerant pressure detectors 11 and 12 is input to a differential pressure switch (PS) 17, and the differential pressure switch 17 detects the difference between the detected pressures of the refrigerant pressure detectors 11 and 12, that is, both paths. As with the second temperature indicating controller 16, the shutoff valve 8 is operated based on the differential pressure of the refrigerant flowing through and the preset differential pressure set value, and the low-temperature liquefied gas is supplied to the heat exchanger 3. Shut off the supply.
[0016]
The second temperature indicating controller 16 and the differential pressure switch 17 also control the opening degree of the bypass valve 14 according to the detected evaporative gas temperature and the refrigerant differential pressure.
[0017]
In the above-described refrigerant cooling device, the low-temperature liquefied gas supplied from the low-temperature liquefied gas storage tank 2 is transferred to the liquefied gas flow path 6a in the heat exchanger 3 via the shut-off valve 8 and the flow rate adjusting valve 7 of the low-temperature liquefied gas path 6. The low-temperature circulating refrigerant introduced and cooled from the refrigerant circulation path 5 to the refrigerant flow path 5a in the heat exchanger 3 is vaporized to become evaporated gas and flows out from the heat exchanger outlet flow path 6b. On the other hand, the low-temperature circulating refrigerant heated in the low-temperature reaction tank 1 is introduced into the heat exchanger 3 by the pump 4, cooled in the refrigerant flow path 5 a, and then returned to the low-temperature reaction tank 1 again.
[0018]
In a normal operation state, the opening degree of the flow rate adjustment valve 7 is adjusted according to the refrigerant temperature of the refrigerant outlet part 3a detected by the refrigerant temperature detection part 10, and the supply amount of the low-temperature liquefied gas to the heat exchanger 3 is controlled. The That is, the supply amount of the low-temperature liquefied gas is decreased when the refrigerant temperature at the refrigerant outlet portion 3a falls below a preset temperature, and the supply amount of the low-temperature liquefied gas is increased when the refrigerant temperature rises above the set temperature. Thereby, it is possible to sufficiently cope with the fluctuation of the normal heat load in the low temperature reaction tank 1.
[0019]
Note that a refrigerant temperature detection unit is provided in the refrigerant inlet 3b instead of the refrigerant outlet 3a, and the same control can be performed even if the refrigerant temperature flowing into the heat exchanger 3 is detected. You may make it detect the refrigerant | coolant temperature of both the exit parts 3a.
[0020]
Further, when the refrigerant temperature is controlled in the vicinity of the freezing point, the viscosity of the low-temperature circulating refrigerant flowing into the heat exchanger 3 increases and the refrigerant fluidity decreases. Thereby, the flow path resistance in the refrigerant flow path 5a of the heat exchanger 3 increases, and the differential pressure between the refrigerant inlet part 3b and the refrigerant outlet part 3a gradually increases. The degree of increase in the differential pressure varies depending on various conditions such as the type of the low-temperature circulating refrigerant and the state of the refrigerant flow path 5a. However, when the differential pressure during normal operation is 1.3 to 1.4 kgf / cm 2 , 2 kgf When the differential pressure increases to more than / cm 2 , the refrigerant often begins to freeze rapidly.
[0021]
Accordingly, when the set value of the differential pressure switch 17 is set to 1.7 kgf / cm 2 , for example, and the differential pressure rises to 1.7 kgf / cm 2 , the differential pressure switch 17 is activated to close the shutoff valve 8. What is necessary is just to set so that supply of the low-temperature liquefied gas to the heat exchanger 3 may be shut off. As a result, the temperature of the low-temperature circulating refrigerant does not further decrease, and the low-temperature circulating refrigerant can be prevented from freezing in the refrigerant flow path 5a.
[0022]
In addition, as described above, when the viscosity of the low-temperature circulating refrigerant flowing into the heat exchanger 3 increases, the heat exchange capability in the heat exchanger 3 decreases, so that the low-temperature liquefied gas that performs heat exchange with the low-temperature circulating refrigerant is sufficiently supplied. Can not be heated. Thereby, the temperature of the evaporative gas flowing out from the liquefied gas flow path 6a of the heat exchanger 3 to the heat exchanger outlet flow path 6b gradually decreases. The degree of this temperature drop varies depending on various conditions such as the type of the low-temperature circulating refrigerant and the type of the low-temperature liquefied gas, as in the case of the differential pressure. For example, the low-temperature circulating refrigerant is methylene chloride and the low-temperature liquefied gas is liquid nitrogen. In some cases, when the evaporating gas temperature in the heat exchanger outlet channel 6b becomes −150 ° C. or lower, the low-temperature circulating refrigerant may freeze in the refrigerant channel 5a. Therefore, in this case, it may be set such that when the evaporative gas temperature detected by the evaporative gas temperature detection unit 9 reaches −150 ° C., the second temperature indicating controller 16 is activated and the shutoff valve 8 is closed.
[0023]
The return of the shut-off valve 8 can be automatically performed according to the operating state of the low temperature reaction tank 1 or may be performed manually. Further, the flow rate adjusting valve 7 may be fully closed by a signal from the second temperature indicating controller 16 or the differential pressure switch 17 without providing the shutoff valve 8.
[0024]
Further, in the present embodiment, when there is a possibility that the low-temperature circulating refrigerant freezes as described above, the bypass valve 14 is opened by a signal from the second temperature indicating controller 16 or the differential pressure switch 17. As a result, even if the low-temperature circulation refrigerant freezes in the heat exchanger 3 and the refrigerant flow path 5a is closed, the circulation path for the low-temperature circulation refrigerant is secured, so that a load may be applied to the pump 4. Thus, it is possible to prevent the pressure in the refrigerant inlet 3b side flow path from rising abnormally or the pump 4 from being damaged.
[0025]
Thus, not only the temperature of the low-temperature circulating refrigerant flowing through the refrigerant circulation path 5 is detected to adjust the supply amount of the low-temperature liquefied gas to the heat exchanger 3, but also the refrigerant at the refrigerant inlet portion 3b and the refrigerant outlet portion 3a. The freezing of the low-temperature circulating refrigerant can be detected in advance by detecting the differential pressure and the temperature of the evaporative gas flowing out of the heat exchanger 3, and the freezing of the low-temperature circulating refrigerant can be detected by shutting off the supply of the low-temperature liquefied gas. Can be reliably prevented.
[0026]
In addition, since each of the inlet portions and the inlet portions of the heat exchanger 3 are provided with detection means such as a temperature sensor and a pressure sensor, it is possible to deal with heat exchangers of various structures, and it is difficult to apply in the past. Plate heat exchangers, especially brazing plate heat exchangers that are brazed and brazed to each plate, making it possible to significantly improve heat exchange efficiency. The entire apparatus can be reduced in size and efficiency, and the manufacturing cost can be reduced.
[0027]
【The invention's effect】
As described above, according to the refrigerant cooling device of the present invention, since the brazing plate heat exchanger having excellent heat exchange efficiency can be used, the entire device can be reduced in size and cost.
[Brief description of the drawings]
FIG. 1 is a system diagram of a refrigerant cooling device showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Low temperature reaction tank, 2 ... Low temperature liquefied gas storage tank, 3 ... Heat exchanger, 3a ... Refrigerant outlet part, 3b ... Refrigerant inlet part, 4 ... Pump, 5 ... Refrigerant circulation path, 6 ... Low temperature liquefied gas path, 6a ... Liquefied gas flow path, 6b ... Heat exchanger outlet flow path, 7 ... Flow rate adjusting valve, 8 ... Shut-off valve, 9 ... Evaporative gas temperature detection unit, 10 ... Refrigerant temperature detection unit, 11, 12 ... Refrigerant pressure detection unit, 13 ... Bypass path, 14 ... Bypass valve, 15 ... First temperature indicating controller, 16 ... Second temperature indicating controller, 17 ... Differential pressure switch

Claims (1)

低温反応槽を冷却する低温循環冷媒と低温液化ガスとを熱交換器で熱交換させて前記低温循環冷媒を冷却する冷媒冷却装置において、前記熱交換器は、ブレージングプレート式熱交換器であって、該冷媒冷却装置は、ポンプにより前記低温循環冷媒を前記低温反応槽と前記ブレージングプレート式熱交換器とに循環させる冷媒循環経路と、前記低温液化ガスを低温液化ガス貯槽から前記ブレージングプレート式熱交換器に供給する低温液化ガス経路とにより形成され、前記低温液化ガス経路には、前記ブレージングプレート式熱交換器への低温液化ガス供給量を調整するための流量調整弁と、前記低温液化ガスの供給を遮断するための遮断弁とが設けられ、前記ブレージングプレート式熱交換器内の液化ガス流路で気化した蒸発ガスが流れる熱交換器出口流路には、前記ブレージングプレート式熱交換器から導出される蒸発ガスの温度を検出する蒸発ガス温度検出部が設けられ、前記冷媒循環経路には、前記ブレージングプレート式熱交換器の冷媒出口部の冷媒温度を検出する冷媒温度検出部と、前記ブレージングプレート式熱交換器の冷媒入口部及び冷媒出口部におけるそれぞれの冷媒の圧力を検出するための冷媒圧力検出部と、前記ポンプから吐出された前記低温循環冷媒を、前記ブレージングプレート式熱交換器に導入せずに前記低温反応槽に戻すためのバイパス経路及びバイパス弁とが設けられ、前記冷媒温度検出部で検出した冷媒温度は、第一温度指示調節計に入力され、該第一温度指示調節計は、あらかじめ設定された温度設定値と検出した冷媒温度とに基づいて前記流量調整弁の開度を調節して前記ブレージングプレート式熱交換器に供給する前記低温液化ガスの供給量を制御し、前記蒸発ガス温度検出部で検出した蒸発ガス温度は、前記第二温度指示調節計に入力され、該第二温度指示調節計は、あらかじめ設定された温度設定値と検出した蒸発ガス温度とに基づいて前記遮断弁を作動させて前記熱交換器への前記低温液化ガスの供給を遮断し、前記冷媒圧力検出部で検出した前記冷媒入口部及び冷媒出口部における冷媒圧力は、差圧スイッチに入力され、該差圧スイッチは、前記冷媒圧力検出部の検出圧力の差と、あらかじめ設定された差圧設定値とに基づいて、前記遮断弁を作動させて前記ブレージングプレート式熱交換器への低温液化ガスの供給を遮断し、前記第二温度指示調節計及び前記差圧スイッチは、検出した蒸発ガス温度や冷媒差圧に応じて前記バイパス弁の開度を制御することを特徴とする冷媒冷却装置。 In the refrigerant cooling device for cooling the low-temperature circulating refrigerant by exchanging heat between the low-temperature circulating refrigerant for cooling the low- temperature reaction tank and the low-temperature liquefied gas in a heat exchanger, the heat exchanger is a brazing plate heat exchanger, The refrigerant cooling device includes a refrigerant circulation path for circulating the low-temperature circulating refrigerant to the low-temperature reaction tank and the brazing plate heat exchanger by a pump, and the low-temperature liquefied gas from the low-temperature liquefied gas storage tank to the brazing plate-type heat. A low-temperature liquefied gas path for supplying to the exchanger, and the low-temperature liquefied gas path includes a flow rate adjusting valve for adjusting a low-temperature liquefied gas supply amount to the brazing plate heat exchanger, and the low-temperature liquefied gas. And a shutoff valve for shutting off the supply of gas, evaporative gas vaporized in the liquefied gas flow path in the brazing plate heat exchanger flows The exchanger outlet flow path is provided with an evaporative gas temperature detection unit for detecting the temperature of the evaporative gas derived from the brazing plate heat exchanger, and the refrigerant circulation path is provided with the brazing plate heat exchanger. A refrigerant temperature detector for detecting the refrigerant temperature at the refrigerant outlet, a refrigerant pressure detector for detecting the pressure of each refrigerant at the refrigerant inlet and the refrigerant outlet of the brazing plate heat exchanger, and the pump A bypass path and a bypass valve are provided for returning the discharged low-temperature circulating refrigerant to the low-temperature reaction tank without introducing it into the brazing plate heat exchanger, and the refrigerant temperature detected by the refrigerant temperature detector is The first temperature indicating controller is input to the first temperature indicating controller based on the preset temperature setting value and the detected refrigerant temperature. The amount of the low-temperature liquefied gas supplied to the brazing plate heat exchanger is controlled by adjusting the opening of the amount adjustment valve, and the evaporative gas temperature detected by the evaporative gas temperature detector is the second temperature indication Input to the controller, and the second temperature indicating controller operates the shut-off valve based on a preset temperature set value and the detected evaporative gas temperature to supply the low-temperature liquefied gas to the heat exchanger. The refrigerant pressure at the refrigerant inlet portion and the refrigerant outlet portion detected by the refrigerant pressure detection unit is shut off and input to the differential pressure switch, and the differential pressure switch is a difference between the detected pressure difference of the refrigerant pressure detection unit and the refrigerant pressure detection unit. , Based on a preset differential pressure set value, the shut-off valve is operated to shut off the supply of low-temperature liquefied gas to the brazing plate heat exchanger, and the second temperature indicating controller and the differential pressure Sui The switch controls the opening degree of the bypass valve according to the detected evaporative gas temperature and the refrigerant differential pressure .
JP19223197A 1997-07-17 1997-07-17 Refrigerant cooling device Expired - Lifetime JP3839915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19223197A JP3839915B2 (en) 1997-07-17 1997-07-17 Refrigerant cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19223197A JP3839915B2 (en) 1997-07-17 1997-07-17 Refrigerant cooling device

Publications (2)

Publication Number Publication Date
JPH1137623A JPH1137623A (en) 1999-02-12
JP3839915B2 true JP3839915B2 (en) 2006-11-01

Family

ID=16287848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19223197A Expired - Lifetime JP3839915B2 (en) 1997-07-17 1997-07-17 Refrigerant cooling device

Country Status (1)

Country Link
JP (1) JP3839915B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853403B1 (en) 2003-04-07 2017-05-19 Air Liquide PROCESS AND INSTALLATION FOR PROCESSING-CROSSING / COOLING / FREEZING-PRODUCTS
JP5306708B2 (en) * 2008-05-28 2013-10-02 大陽日酸株式会社 Refrigerant cooling device
JP5676388B2 (en) * 2011-08-03 2015-02-25 大陽日酸株式会社 Heat medium temperature control method and heat medium temperature control apparatus
SG11201400732RA (en) * 2011-10-11 2014-09-26 Taiyo Nippon Sanso Corp Low temperature gas supply device, heat transfer medium-cooling device, and low temperature reaction control device
JP6335502B2 (en) * 2013-12-19 2018-05-30 大陽日酸株式会社 Low temperature gas production equipment
JP7108168B2 (en) * 2017-10-24 2022-07-28 中部電力株式会社 Liquid cold heat recovery system
JP6869306B2 (en) * 2019-09-30 2021-05-12 月島機械株式会社 Heat medium supply method and heat medium utilization equipment for heat medium utilization equipment

Also Published As

Publication number Publication date
JPH1137623A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP5306708B2 (en) Refrigerant cooling device
CN105143791A (en) Refrigerant management in a HVAC system
JP3839915B2 (en) Refrigerant cooling device
WO2019087882A1 (en) Liquid temperature adjustment apparatus and temperature adjustment method using same
US20130291575A1 (en) Cooling system and method for operating same
JP2003130428A (en) Connection type cold/hot water device
CN210463335U (en) Fresh air dehumidifier and fresh air dehumidification system
JPH0473062B2 (en)
JP2806090B2 (en) Operation control device for refrigeration equipment
JP3651370B2 (en) Refrigeration equipment
WO2018179204A1 (en) Cooling system and refrigerant control method for cooling system
JP3360362B2 (en) Refrigeration equipment
KR101438182B1 (en) Attachment for controlling the flow rate and temperature of brine
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
CN109341126A (en) A kind of refrigeration system and control method
JP6989788B2 (en) Refrigeration cycle device
JPH04329698A (en) Cooling unit
JPH0622880U (en) Refrigerant cooling device
JP2005134063A (en) Heat pump type water heater and its tapping control method
JP3503583B2 (en) Refrigeration equipment
JPH06193921A (en) Supercooling type ice heat storage apparatus
JP2002340484A (en) Evaporator
TW202403250A (en) Circulation device for two-phase cooling system and refrigerant circulation method of the circulation device for two-phase cooling system include an inlet-side connection part and an outlet-side connection part; and a bypass flow path
JPH03102130A (en) Frozen state sensing method in low temperature cold water producing device
JPH06174317A (en) Method and apparatus for freezing using non-azeotropic mixed refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term