JPS63242964A - Alumina ceramics and manufacture - Google Patents

Alumina ceramics and manufacture

Info

Publication number
JPS63242964A
JPS63242964A JP62076464A JP7646487A JPS63242964A JP S63242964 A JPS63242964 A JP S63242964A JP 62076464 A JP62076464 A JP 62076464A JP 7646487 A JP7646487 A JP 7646487A JP S63242964 A JPS63242964 A JP S63242964A
Authority
JP
Japan
Prior art keywords
bending strength
alumina
ultraviolet transmittance
alumina ceramics
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076464A
Other languages
Japanese (ja)
Other versions
JPH0534305B2 (en
Inventor
敏夫 大橋
前川 耕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62076464A priority Critical patent/JPS63242964A/en
Publication of JPS63242964A publication Critical patent/JPS63242964A/en
Publication of JPH0534305B2 publication Critical patent/JPH0534305B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、アルミナセラミックスおよびその製造方法
に関し、とくに紫外線透過能の劣化を招くことなしに曲
げ強さの向上を図ったものであり、EFROM (Er
asable and Programmable R
ead OnryMemory)用のパッケージなど紫
外線透過材料としての用途に用いてとりわけ好適なもの
である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to alumina ceramics and a method for manufacturing the same, and particularly aims to improve bending strength without causing deterioration of ultraviolet transmittance. (Er.
asable and programmable R
It is particularly suitable for use as an ultraviolet-transmitting material, such as in packages for ead-only memories.

(従来の技術) [EFROMにおいては、紫外線照射によって半導体メ
モリーの内容を消去して情報の書替えを行う必要がある
ことから、そのパッケージとしては、少なくとも上面中
央域(一般に窓と呼ばれている)については透光性であ
ることが必要とされ、従来かかるEPROM用パッケー
ジの窓材としては、熱伝導率がいいこともあって特公昭
39−240号公報や特公昭47−51801号公報な
どに開示の透光性アルミナセラミックスが用いられてき
た。
(Prior art) [In EFROM, since it is necessary to erase the contents of the semiconductor memory and rewrite the information by irradiation with ultraviolet rays, the package must have at least the central area of the upper surface (generally called a window). It is required to be transparent, and conventional window materials for such EPROM packages have been disclosed in Japanese Patent Publication No. 39-240 and Japanese Patent Publication No. 47-51801 due to their good thermal conductivity. The disclosed translucent alumina ceramics have been used.

(発明が解決しようとする問題点) 玉出の透光性アルミナセラミックスは、従来、主に高圧
金属放電灯の発光管として使用されていたことから、と
くに可視光領域の透過率が高いことに重点がおかれ、そ
のため焼結助剤としてMgOなどを添加し、1750℃
以上の高温で焼結して結晶粒径をできるだけ大きくして
いた。
(Problem to be solved by the invention) Tamade's translucent alumina ceramics has traditionally been used mainly as arc tubes for high-pressure metal discharge lamps, so we focused on its high transmittance in the visible light region. Therefore, MgO etc. are added as a sintering aid, and the temperature is heated to 1750℃.
The crystal grain size was made as large as possible by sintering at higher temperatures.

しかしながら結晶粒径を大きくした場合には、機械的強
度が著しく低い(2500kgf/cm”程度)ところ
に問題を残していた。
However, when the crystal grain size was increased, the problem remained that the mechanical strength was extremely low (about 2500 kgf/cm'').

ここにEPROM用バッケーシジの窓材としては、IC
カードの如き薄肉のロードシステムへの適用やプラスチ
ックパッケージ化などの理由から機械的強度とくに曲げ
強さに優れることが必要とされる。
Here, the window material for the EPROM baggage is IC.
Excellent mechanical strength, especially bending strength, is required for applications in thin-walled load systems such as cards and for plastic packaging.

この発明は、上記の問題を有利に解決するもので、紫外
線透過率を低下させることなしに曲げ強さを大幅に向上
させたアルミナセラミックスを、その有利な製造方法と
共に提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and aims to propose an alumina ceramic having significantly improved bending strength without reducing ultraviolet transmittance, together with an advantageous manufacturing method thereof. .

(問題点を解決するための手段) すなわちこの発明は、純度: 99.90wtχ(以下
単に%で示す)以上でかつ結晶粒径が8μm以下である
アルミナセラミックスである。
(Means for Solving the Problems) That is, the present invention is an alumina ceramic having a purity of 99.90 wtχ (hereinafter simply expressed in %) or more and a crystal grain size of 8 μm or less.

またこの発明は、硫酸アルミニウムアンモニウムを熱分
解して得た純度: 99.9%以上でかつ比表面面積が
3〜10m”7gの酸化アルミニウム粉末に、焼結助剤
として0.1%以下のMgOと成形助剤とを添加したの
ち、所定の形状に成形し、ついで1450〜1600℃
の非酸化性雰囲気中で焼成することがら成るアルミナセ
ラミックスの製造方法である。
In addition, the present invention provides 7 g of aluminum oxide powder with a purity of 99.9% or more and a specific surface area of 3 to 10 m obtained by thermally decomposing aluminum ammonium sulfate, and 0.1% or less as a sintering aid. After adding MgO and a molding aid, it is molded into a predetermined shape, and then heated at 1450 to 1600°C.
This is a method for producing alumina ceramics, which comprises firing in a non-oxidizing atmosphere.

この発明において、アルミナセラミックスの純度を99
.9%以上に限定したのは、純度が99.9%に満たな
いと紫外線透過率が低下するだけけでなく曲げ強さも低
下するからである。
In this invention, the purity of alumina ceramics is 99%.
.. The reason why it is limited to 9% or more is because if the purity is less than 99.9%, not only the ultraviolet transmittance will decrease but also the bending strength will decrease.

また結晶粒径を8μm以下としたのは、結晶粒径が8μ
mを超えると、たとえ純度が99.9%以上であっても
、充分満足のいく曲げ強さが得られないからである。
In addition, the crystal grain size is set to 8 μm or less because the crystal grain size is 8 μm or less.
This is because if it exceeds m, sufficient bending strength cannot be obtained even if the purity is 99.9% or more.

そして純度および結晶粒径とも、上記の適正範囲を満足
させることによって、曲げ強さが5000kgf/cm
”以上でかつ厚み:0.2mo+における波長: 25
37人の紫外線透過率が40%以上の、曲げ強さおよび
紫外線透過率ともに優れたアルミナセラミックスを得る
ことができる。
By satisfying the above appropriate ranges for both purity and crystal grain size, the bending strength can be increased to 5000 kgf/cm.
” or more and thickness: Wavelength at 0.2mo+: 25
It is possible to obtain alumina ceramics having an ultraviolet transmittance of 40% or more and having excellent bending strength and ultraviolet transmittance.

次にこの発明に従う製造方法について説明する。Next, a manufacturing method according to the present invention will be explained.

さてこの発明では酸化アルミニウム粉末(以下アルミナ
粉末という)の原料として硫酸アルミニウムアンモニウ
ムを用いるが、その理由は、高純度でしかも好適比表面
積が得られるのみならず、後述する焼成に際し、従来の
透光性アルミナセラミックスの焼成温度に比べてはるか
に低温で焼結できるアルミナ粉末を容易に得ることがで
きるからである。
In this invention, aluminum ammonium sulfate is used as a raw material for aluminum oxide powder (hereinafter referred to as alumina powder).The reason for this is that it not only has high purity and a suitable specific surface area, but also can be used in the firing process as described below. This is because it is possible to easily obtain alumina powder that can be sintered at a much lower temperature than the firing temperature of alumina ceramics.

ここに得られたアルミナ粉末の比表面積が3 m”7g
に満たないと、焼結の進行が悪いだけでなく、ボアが発
生して紫外線透過率および曲げ強さとも小さいものしか
得られず、一方10m”7gを超えると、焼結が進み過
ぎて、紫外線透過率は向上するものの曲げ強さの劣化を
招くので、アルミナ粉末の比表面積は3〜10mg/g
の範囲に限定した。
The specific surface area of the alumina powder obtained here is 3 m”7g.
If it is less than 10m", sintering will not only proceed poorly, but also bores will occur, resulting in low ultraviolet transmittance and bending strength. On the other hand, if it exceeds 10m"7g, sintering will progress too much. Although the ultraviolet transmittance improves, the bending strength deteriorates, so the specific surface area of alumina powder should be 3 to 10 mg/g.
limited to the range of

ところがかようなアルミナ粉末の比表面積は、硫酸アル
ミニウムアンモニウムの熱分解時における処理条件とく
に処理温度および時間に大きく影響される。
However, the specific surface area of such alumina powder is greatly influenced by the treatment conditions during thermal decomposition of ammonium aluminum sulfate, particularly the treatment temperature and time.

ここに適正比表面積のアルミナ粉末を得る好適処理条件
について述べると、次のとおりである。
The preferred processing conditions for obtaining alumina powder with an appropriate specific surface area are as follows.

再結晶処理で高純度化した硫酸アルミニウムアンモニウ
ム塩の結晶を高純度アルミナさや鉢に充填し、これを電
気炉にて加熱熱分解させたのち、引続き1100〜13
00℃に昇温し、少くとも30分乃至5時間保持するこ
とによって比表面積が3〜10m”7gのα−結晶相の
アルミナ粉末を得る。
Crystals of aluminum ammonium sulfate salt highly purified by recrystallization treatment are filled into a high-purity alumina pod, and after being heated and pyrolyzed in an electric furnace, the crystals are heated to 1100 to 13
By raising the temperature to 00 DEG C. and maintaining it for at least 30 minutes to 5 hours, alumina powder in the α-crystalline phase with a specific surface area of 3 to 10 m'' and 7 g is obtained.

アルミナ粉末が相変換することは良く知られているが、
処理温度が1100℃以下ではγ−結晶相のアルミナが
混在し、アルミナ製品を得る焼結時にγからα相に変換
して焼結の制御が困難になり所望の製品が得られない。
It is well known that alumina powder undergoes phase transformation, but
If the treatment temperature is lower than 1100° C., alumina in the γ-crystalline phase will be mixed, and during sintering to obtain an alumina product, the γ will convert to the α phase, making it difficult to control the sintering and making it impossible to obtain the desired product.

又1300℃以上では粉末粒子間で反応が生じて疑素粒
子化し、易焼結性が阻害される。
Moreover, at temperatures above 1300° C., a reaction occurs between the powder particles, forming pseudoparticles, which inhibits easy sinterability.

また温度のみでは比表面積変化が激しいので時間係数も
加えて制御することが望ましく、均一な粉末を得るため
には少なくとも30分以上保持することが好ましい。た
だし5時間を越えて処理することは工業的に好ましくな
い。
Further, since temperature alone causes a drastic change in the specific surface area, it is desirable to control by adding a time factor, and in order to obtain a uniform powder, it is preferable to hold the temperature for at least 30 minutes or more. However, it is industrially undesirable to treat for more than 5 hours.

ついで得られたアルミナ粉末に焼結助剤と成形助剤を添
加してから、所定の形状に成形するわけであるが、成形
法としては、たとえばチューブや棒状のものは押出し成
形法が、他方EPROM用パッケージの窓材のような板
状のものはプレス成形法が好適である。
Next, a sintering aid and a forming aid are added to the alumina powder obtained, and then it is formed into a predetermined shape.For example, extrusion is used to form tubes and rods, while other methods are used. Press molding is suitable for plate-shaped materials such as window materials for EPROM packages.

焼結助剤は、MgOが最適である。MgOが透光性アル
ミナセラミックスの製造に於て粒成長抑制剤として用い
られることは公知であるが、この本発明に於ても易焼結
性のアルミナ粉末のみよりも、0.1%以下好ましくは
0.03〜0.08%の範囲でMgOを加えることによ
り、内在ボアーがなく結晶粒が極めて均一な製品が得ら
れることが分った。これは、Mg0分を予備焼成処理で
熱分解してMgOとなる硝酸マグネシウムの水溶液で添
加したことによりMgO成分が極めて均一に分布し、本
焼成時に於てその焼結反応が成形素体の外表面から初ま
りボアーを巻きこみ進行することを抑える効果をもつか
らと推測される。
The most suitable sintering aid is MgO. It is known that MgO is used as a grain growth inhibitor in the production of translucent alumina ceramics, but in the present invention, it is preferable to use MgO in an amount of 0.1% or less, rather than using only easily sinterable alumina powder. It was found that by adding MgO in the range of 0.03 to 0.08%, a product with no internal bores and extremely uniform crystal grains could be obtained. This is because Mg0 is added as an aqueous solution of magnesium nitrate which thermally decomposes to MgO in the pre-firing process, so the MgO component is distributed extremely uniformly, and the sintering reaction occurs outside the molded body during the main firing. It is presumed that this is because it has the effect of suppressing the progress of winding up the bore starting from the surface.

また成形助剤の種類は、成形法に応じて定まり、たとえ
ばプレス成形の場合は、結合材としてポリビニールアル
コール、滑材としてポリエチレングリコールが有利に適
合し、さらに両者を合計した成形助剤の添加量について
は1.5〜3.0%程度とするのが好ましい。
In addition, the type of molding aid is determined depending on the molding method; for example, in the case of press molding, polyvinyl alcohol is advantageously suitable as a binder and polyethylene glycol as a lubricant. The amount is preferably about 1.5 to 3.0%.

なお、かような成形助剤はいずれも、後述する焼成にお
いて蒸発したり分解したりして最終的には焼結体から揮
散するものであり、従って製品中に残存することはない
In addition, all such molding aids evaporate or decompose during firing, which will be described later, and are ultimately volatilized from the sintered body, so they do not remain in the product.

その後、得られた成形体を大気中で予備焼成して成形助
剤を分解、除去したのち、本焼成して製品とするわけで
あるが、かかる本焼成は非酸化性雰囲気中において行う
必要がある。というのは非酸化性以外の雰囲気ではボア
を巻き込んで焼結が進み強度ならびに紫外線透過性の低
下を招くおそれが大きいからである。ここに非酸化性雰
囲気とは、水素ガスやアンモニア分解ガスなどのガス雰
囲気は勿論のこと、真空雰囲気をも含むものである。な
お非酸化性雰囲気としてガス雰囲気を用いる場合には、
その露点を一15〜5℃程度とするのが好ましい。とい
うのは露点が5℃より高いと焼結の進行が悪く、一方−
15℃を下回ると還元力が強くなって酸化アルミニウム
の低次酸化物が生成し、これが揮散してボアを形成する
おそれが大きく、また低露点の高純度ガスは高価だから
でもある。
Thereafter, the obtained molded body is pre-fired in the air to decompose and remove the forming aid, and then the product is produced by main firing, but this main firing must be carried out in a non-oxidizing atmosphere. be. This is because, in an atmosphere other than non-oxidizing, there is a strong possibility that sintering will proceed by entraining the bore, resulting in a decrease in strength and ultraviolet transmittance. Here, the non-oxidizing atmosphere includes not only a gas atmosphere such as hydrogen gas or ammonia decomposition gas, but also a vacuum atmosphere. Note that when using a gas atmosphere as the non-oxidizing atmosphere,
It is preferable that the dew point is about -15 to 5°C. This is because when the dew point is higher than 5°C, sintering progresses slowly;
This is because when the temperature is lower than 15°C, the reducing power becomes strong and a low-order oxide of aluminum oxide is generated, which is likely to volatilize and form a bore, and high-purity gas with a low dew point is expensive.

また焼成温度が1450℃に満たないと、焼結が充分に
は進まないことから結晶粒界の結合度が弱く、満足いく
程の曲げ強さおよび紫外線透過率が得られず、一方16
00℃を超えると結晶粒径が大きくなりすぎてやはり曲
げ強さの低下を招くので、焼成は1450〜1600℃
の温度範囲で行なう必要がある。
In addition, if the firing temperature is lower than 1450°C, sintering will not proceed sufficiently and the degree of bonding of grain boundaries will be weak, making it impossible to obtain satisfactory bending strength and ultraviolet transmittance.
If the temperature exceeds 00°C, the crystal grain size becomes too large, resulting in a decrease in bending strength, so the firing temperature is 1450 to 1600°C.
It is necessary to carry out the test within a temperature range of

なお焼成時間については、製品の大きさならびに所望の
強度(粒径)さらには設定温度によって異なるけれども
0.5〜5h程度が好ましい。
The firing time is preferably about 0.5 to 5 hours, although it varies depending on the size of the product, desired strength (particle size), and set temperature.

(作 用) この発明に従うことによって、紫外線透過率の低下を招
くことなしに優れた曲げ強さが得られる理由は次のとお
りと考えられる。
(Function) The reason why excellent bending strength can be obtained according to the present invention without causing a decrease in ultraviolet transmittance is considered to be as follows.

すなわち硫酸アルミニウムアンモニウムを熱分解して得
たアルミナ粉末は、易焼結性であり、1600℃以下で
理論密度の98%以上に容易に高密度化でき、結晶粒径
が8μm以下の均一な粒構造のアルミナセラミックスと
するのに適正な比表面積のものが容易に得られることに
よる。
In other words, alumina powder obtained by thermally decomposing aluminum ammonium sulfate is easily sinterable, can be easily densified to 98% or more of the theoretical density at 1600°C or lower, and has uniform grains with a crystal grain size of 8 μm or less. This is because it is easy to obtain alumina ceramics with an appropriate specific surface area for structural alumina ceramics.

(実施例) 硫酸アルミニウムアンモニウムを表1に示i種々の条件
で熱分解してアルミナ粉末を得た。
(Example) Ammonium aluminum sulfate was thermally decomposed under various conditions shown in Table 1 to obtain alumina powder.

得られたアルミナ粉末の純度および比表面積を表1に示
す。
Table 1 shows the purity and specific surface area of the obtained alumina powder.

なお表1には比較のため、原料として炭酸アルミニウム
および水酸化アルミニウムを用いた場合についても併せ
て示した。
For comparison, Table 1 also shows cases where aluminum carbonate and aluminum hydroxide were used as raw materials.

表1 ついで得られた各粉末に、MgOとして0.07%にな
るよう硝酸マグネシウムを加え、さらに成形助剤として
ポリビニールアルコールとポリエチレングリコールとを
2.5%添加したのち、適量の水を加えてから、スプレ
ードライヤーで造粒して平均粒子径70〜90μmの粉
末としたのち、12.5!I11角、厚み0.25mm
の板にプレス成形した。
Table 1 Next, magnesium nitrate was added to each of the obtained powders to give a concentration of 0.07% as MgO, and 2.5% of polyvinyl alcohol and polyethylene glycol were added as molding aids, and then an appropriate amount of water was added. After that, it was granulated with a spray dryer to obtain a powder with an average particle size of 70 to 90 μm. I11 square, thickness 0.25mm
It was press-formed into a board.

次に、得られた成形体を、表2に示す種々の条件で焼成
した。
Next, the obtained molded bodies were fired under various conditions shown in Table 2.

かくして得られたアルミナセラミックスの曲げ強さ、紫
外線透過率、密度および平均粒径について調べた結果を
表2に併記する。
Table 2 also shows the results of examining the bending strength, ultraviolet transmittance, density, and average particle size of the alumina ceramics thus obtained.

表2 率l 曲げ強さはJIS−R16014点曲げ法傘2 
 MgO無添加 同表より明らかなように、原料として比較面積がこの発
明の下限を下回るアルミナ粉末を用いた場合(N117
)は、曲げ強さおよび紫外線透過率とも良好なものは得
られなかった。また焼成温度が上限値を上回るNα8は
、粒径が大きく、紫外線透過率は良好であったが、曲げ
強さに劣っていた。
Table 2 Rate l Bending strength is JIS-R16014 point bending method Umbrella 2
As is clear from the same table with no MgO added, when alumina powder with a comparative area below the lower limit of this invention is used as a raw material (N117
) did not have good bending strength or ultraviolet transmittance. Further, Nα8 whose firing temperature exceeded the upper limit had a large particle size and good ultraviolet transmittance, but was inferior in bending strength.

一方焼成温度が下限値を下回るNα9,10はいずれも
、曲げ強さが低いだけでなく、紫外線透過率も極めて悪
かった。
On the other hand, both Nα9 and Nα10 whose firing temperature was below the lower limit not only had low bending strength but also extremely poor ultraviolet transmittance.

また焼結助剤としてのMgOが添加しなかったNo。Moreover, No. 2 did not contain MgO as a sintering aid.

13は、曲げ強さ、紫外線透過率とも充分とは言い難か
った。
No. 13 could hardly be said to have sufficient bending strength and ultraviolet transmittance.

原料として比表面積が大きすぎるアルミナ粉末を用いた
場合(Nα14)は、粒子が大きくなりすぎ、紫外線透
過率は良かったものの曲げ強さに劣っていた。
When alumina powder with too large a specific surface area was used as a raw material (Nα14), the particles became too large, and although the ultraviolet transmittance was good, the bending strength was poor.

さらに原料として炭酸アルミニウムおよび水酸化アルミ
ニウムを用いた場合(Nα15および16)はそれぞれ
、曲げ強さおよび紫外線透過率とも低い値しか得られな
かった。
Furthermore, when aluminum carbonate and aluminum hydroxide were used as raw materials (Nα15 and 16), only low values of bending strength and ultraviolet transmittance were obtained, respectively.

これに対し、この発明の要件を満足するNo、 1〜6
はいずれも、高い曲げ強さと共に良好な紫外線透過率が
得られた。
On the other hand, Nos. 1 to 6 that satisfy the requirements of this invention
In all cases, high bending strength and good ultraviolet transmittance were obtained.

なおNα11及び12はそれぞれ、雰囲気ガスの露点が
好適範囲の下限および上限を逸脱した参考例であるが、
かような場合には曲げ強さか紫外線透過率のいずれか」
方しか良好な値は得られなかった。
Note that Nα11 and Nα12 are reference examples in which the dew point of the atmospheric gas deviates from the lower and upper limits of the preferred range, respectively.
In such cases, either bending strength or ultraviolet transmittance.
Good values could only be obtained for this method.

(発明の効果) かくしてこの発明によれば、紫外線透過率を低下させる
ことなしに機械的強度とくに曲げ強さを格段に向上させ
ることができ、有利である。
(Effects of the Invention) Thus, according to the present invention, mechanical strength, especially bending strength, can be significantly improved without reducing ultraviolet transmittance, which is advantageous.

Claims (1)

【特許請求の範囲】 1、純度:99.90wt%以上でかつ結晶粒径が8μ
m以下であるアルミナセラミックス。 2、曲げ強さが5000kgf/cm^2以上でかつ、
厚み:0.2mmにおける波長:2537Åの紫外線透
過率が40%以上である特許請求の範囲第1項記載のア
ルミナセラミックス。 3、硫酸アルミニウムアンモニウムを熱分解して得た純
度:99.9wt%以上でかつ比表面積が3〜10m^
2/gの酸化アルミニウム粉末に、焼結助剤として0.
1wt%以下のMgOと成形助剤とを添加したのち、所
定の形状に成形し、ついで1450〜1600℃の非酸
化性雰囲気中で焼成することを特徴とするアルミナセラ
ミックスの製造方法。 4、非酸化性雰囲気が、ガス雰囲気であってその露点が
−15〜5℃の範囲になる特許請求の範囲第3項記載の
方法。
[Claims] 1. Purity: 99.90wt% or more and crystal grain size of 8μ
Alumina ceramics with a thickness of less than m. 2. The bending strength is 5000 kgf/cm^2 or more, and
The alumina ceramic according to claim 1, which has an ultraviolet transmittance of 40% or more at a wavelength of 2537 Å at a thickness of 0.2 mm. 3. Purity obtained by thermally decomposing ammonium aluminum sulfate: 99.9 wt% or more and specific surface area of 3 to 10 m^
2/g of aluminum oxide powder and 0.2/g of aluminum oxide powder as a sintering aid.
A method for producing alumina ceramics, which comprises adding 1 wt% or less of MgO and a forming aid, forming into a predetermined shape, and then firing in a non-oxidizing atmosphere at 1,450 to 1,600°C. 4. The method according to claim 3, wherein the non-oxidizing atmosphere is a gas atmosphere with a dew point in the range of -15 to 5°C.
JP62076464A 1987-03-31 1987-03-31 Alumina ceramics and manufacture Granted JPS63242964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076464A JPS63242964A (en) 1987-03-31 1987-03-31 Alumina ceramics and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076464A JPS63242964A (en) 1987-03-31 1987-03-31 Alumina ceramics and manufacture

Publications (2)

Publication Number Publication Date
JPS63242964A true JPS63242964A (en) 1988-10-07
JPH0534305B2 JPH0534305B2 (en) 1993-05-21

Family

ID=13605886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076464A Granted JPS63242964A (en) 1987-03-31 1987-03-31 Alumina ceramics and manufacture

Country Status (1)

Country Link
JP (1) JPS63242964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261648A (en) * 1990-03-09 1991-11-21 Agency Of Ind Science & Technol Sintered material of polycrystalline alumina
WO1992002035A1 (en) * 1990-07-18 1992-02-06 Toto Ltd. Variable color lamp
US5122862A (en) * 1989-03-15 1992-06-16 Ngk Insulators, Ltd. Ceramic lid for sealing semiconductor element and method of manufacturing the same
US5256901A (en) * 1988-12-26 1993-10-26 Ngk Insulators, Ltd. Ceramic package for memory semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154413A (en) * 1978-05-08 1979-12-05 Ngk Spark Plug Co Alphaaalumina sintered body production
JPS6045147A (en) * 1983-08-22 1985-03-11 日東製器株式会社 Vessel
JPS62187157A (en) * 1986-02-10 1987-08-15 株式会社ニッカト− Alumina member for crusher

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154413A (en) * 1978-05-08 1979-12-05 Ngk Spark Plug Co Alphaaalumina sintered body production
JPS6045147A (en) * 1983-08-22 1985-03-11 日東製器株式会社 Vessel
JPS62187157A (en) * 1986-02-10 1987-08-15 株式会社ニッカト− Alumina member for crusher

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256901A (en) * 1988-12-26 1993-10-26 Ngk Insulators, Ltd. Ceramic package for memory semiconductor
US5122862A (en) * 1989-03-15 1992-06-16 Ngk Insulators, Ltd. Ceramic lid for sealing semiconductor element and method of manufacturing the same
JPH03261648A (en) * 1990-03-09 1991-11-21 Agency Of Ind Science & Technol Sintered material of polycrystalline alumina
WO1992002035A1 (en) * 1990-07-18 1992-02-06 Toto Ltd. Variable color lamp

Also Published As

Publication number Publication date
JPH0534305B2 (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US4273587A (en) Polycrystalline transparent spinel sintered body and a method for producing the same
JPH0244787B2 (en)
US20040109808A1 (en) Yttrium aluminum garnet powders and processing
JPS63260856A (en) Semitransparent ceramic material, manufacture of products therefrom and high voltage discharge lamp
JPS63242964A (en) Alumina ceramics and manufacture
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
JPH09249967A (en) High purity barium-strontium titanate sputtering target material and its production
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPH03285865A (en) Transparent alumina ceramics and production thereof
JPH08268751A (en) Yttrium-aluminum-garnet calcined powder and production of yttrium-aluminum-garnet sintered compact using the same
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JP4025874B2 (en) Transparent scandium oxide ceramics and method for producing the same
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP3127834B2 (en) Sputtering target for high dielectric film formation
JPS60260463A (en) Manufacture of high density oxide sintered body
Abothu et al. Nanocomposite versus sol-gel processing of barium magnesium tantalate
JPH06116039A (en) Aluminum nitride sintered compact
JPH05116929A (en) Production of mgo-sio2 type oxide
KR100310275B1 (en) Process for Preparing PFN Dielectric Ceramics with High Dielectric Constant and Low Dielectric Loss
JPH02124711A (en) Production of fine alpha-alumina powder
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JPS6272554A (en) Manufacture of fine polycrystal al2o3 sintered body
JPH11217269A (en) Aluminum nitride-based sintered compact and its production
JPH09183648A (en) Aluminous sintered compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term