JPH0531516B2 - - Google Patents

Info

Publication number
JPH0531516B2
JPH0531516B2 JP61002649A JP264986A JPH0531516B2 JP H0531516 B2 JPH0531516 B2 JP H0531516B2 JP 61002649 A JP61002649 A JP 61002649A JP 264986 A JP264986 A JP 264986A JP H0531516 B2 JPH0531516 B2 JP H0531516B2
Authority
JP
Japan
Prior art keywords
sintering
sintered body
sintered
fine powder
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61002649A
Other languages
Japanese (ja)
Other versions
JPS62162670A (en
Inventor
Hiroshi Fukaya
Junko Iwanari
Juichi Nishii
Hiroshi Ichimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61002649A priority Critical patent/JPS62162670A/en
Publication of JPS62162670A publication Critical patent/JPS62162670A/en
Publication of JPH0531516B2 publication Critical patent/JPH0531516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、チタン酸ジルコン酸鉛(以下、
「PZT」という)焼結体の製法に関する。 〔従来の技術〕 PZT焼結体は、優れた圧電材料および焦電材
料として広く用いられている。 従来、PZT焼結体の製造方法としては、鉛
(Pb)、ジルコニウム(Zr)およびチタン(Ti)
の各酸化物を乾式で所要割合に混合したものを
PbO蒸気を含む空気中で焼結する方法が用いられ
て来たが、近年、これら成分金属のアルコキシド
を同一溶液中で同時に加水分解することによつて
複合析出物からなる微粉末を得(以下、この微粉
末の製法を「アルコキシド法」という)、該微粉
末を焼結する方法が用いられるようになつて来
た。すなわち、後者の製法で用いられるアルコキ
シド法により得られる微粉末は、Pb,Zrおよび
Tiの酸化物ないし水酸化物あるいはその水和物
と考えられるが、高純度で均一性の高い微細粒子
からなるため易焼結性が優れ、より低温で焼結を
実施できるため注目されるに至つたものである。 〔発明が解決しようとする問題点〕 ところで、圧電アクチユエータ等の積層素子の
製造、焦電体膜の形成などにおいては、スクリー
ン印刷法により塗膜を形成しこれを焼結して
PZT焼結体膜を作製することが行なわれる。こ
のとき、焼成温度が高いと膜自体が変形を起す恐
れがあるとともに、電極が同時に焼成される場合
には高価な金電極でも破壊の恐れがあり、低価な
Ag系、Ag−Pb系は破壊が生じ電極を付与するこ
とができないなどの支障を生ずるため、焼成はな
るべく低い温度で、望ましくは1000℃以下の温度
で実施できることが望まれる。しかし、前記のア
ルコキシド法によつても、1000℃以下で十分に焼
結できる微粉末は未だ得られていないのが現状で
ある。 PZT焼結体を製造する際の焼結温度を低下さ
せる方法としては、Pb,ZrおよびTiの酸化物粉
末を乾式混合する際にPbOを過剰に加えておいて
焼結する方法が知られている(山口修、粉体およ
び粉末冶金、17,3,116−121(1970)が、この
方法では焼結体中にPbOの大きな析出相が現わ
れ、均一なPZT焼結体は得られていない。 また従来のPZT焼結体の製造方法では、PbO
蒸気を含む空気中において焼結する必要があつた
ため作業がそれだけ煩雑であるという欠点もあつ
た。 そこで、本発明の目的は、これらの問題点を解
決し、1000℃以下の低温で焼結を行ない、均一で
高密度のPZT焼結体を得ることができるPZT焼
結体の製法を提供することにある。 〔問題点を解決するための手段〕 本発明は、前記の従来技術の問題点を解決する
ものとして、 チタンアルコキシド、ジルコニウムアルコキシ
ドおよび鉛アルコキシドを含有する溶液に水を加
え、これらアルコキシドの加水分解により得られ
た微粉末を仮焼した微粉末を成形後焼結すること
からなる一般式(): PbxZrATi1-AO3 ……() 〔式中、Aは、0.1≦A≦0.98である〕 で表わされる組成を有するチタン酸ジルコン酸鉛
焼結体の製法において、 前記一般式()のおけるxが、1.01≦x≦
1.20であり、前記粉末の焼結を800℃以上におい
て行なうことを特徴とする製法を提供するもので
ある。 本発明は、前述のアルコキシド法により焼結用
微粉末を製造するに際し、鉛成分が化学量論的量
より過剰となるように調整することによつて、易
焼結性の高い微粉末を得、これを焼結に用いるも
のである。 アルコキシド法は、例えば、特開昭57−82121
号公報に記載されているとおりであり、所望組成
のPZT焼結体が得られるような割合で、即ち、
前記一般式()に即して述べると、Pb:Zr:
Ti(モル比)=x:A:1−Aとなるように、Pb,
ZrおよびTiの3種のアルコキシドを適当な溶媒
に溶かし、水を添加して同時に加水分解させるこ
とにより析出物として微粉末を得る方法である。
使用できる溶媒は、使用する3種の金属のアルコ
キシドの良溶媒であれば、特に制限されず、例え
ば、ベンゼン、トルエン、キシレン、ヘキサン、
メチルエーテル、エチルエーテル、メチルアルコ
ール、エチルアルコール、プロピルアルコール、
イソプロピルアルコール等を挙げることができ
る。このアルコキシド法の実施態様は種々可能で
あり、例えば前記特開昭57−82121号に記載のよ
うに3種の金属のアルコキシドの溶液を所要量混
合後水を添加してもよいし、後記実施例のよう
に、まずナトリウムアルコキシドを調製した溶液
にTiおよびZrのアルコキシドを加え、しかる後
に酢酸鉛を添加して反応させることにより鉛アル
コキシドを該溶液中に生成せしめ、これに水を加
えてもよく、特に制約はない。 アルコキシド法に原料として用いることができ
る、Pb,TiおよびZrのアルコキシドとしては、
例えば、イソプロポキシド、メトキシド、エトキ
シド、n−プロポキシド、n−ブトキシド、tert
−ブトキシド等を例示することができ、これらは
前記公報に記載の方法等によつて容易に合成で
き、また一部は市販されている。 アルコキシド法により得られる微粉末は、Pb,
TiおよびZrの酸化物ないし水酸化物あるいは水
和物からなる複合粒子と考えられるが、高純度で
あるとともに、均一な微細粒子からなるものであ
る。この微粉末は、濾過、洗浄後乾燥した後、仮
焼し好ましくは粉砕し、成形後さらに焼結に供さ
れる。 上記のようにして得られた微粉末は、一般式
()に対応する割合でPb,ZrおよびTiを含有し
ており、x=1.01〜1.20の範囲であつて、鉛を化
学量論的量(x=1)より過剰に含んでいること
が必要である。xが1.01未満であると、1000℃以
下の温度での焼結が困難であり、高密度焼結体は
得られない。また、xが1.20より大きいと、焼結
体中に鉛酸化物の析出相が生成するため均一な焼
結体を得ることができない。 アルコキシド法により得られた上記の微粉末
は、仮焼し、好ましくは粉砕後に成形し、焼結に
供される。微粉末の仮焼温度は500〜800℃が好ま
しく、特に600〜700℃が好ましい。仮焼温度500
℃未満であると固相反応が完了しない結果、後の
焼結によつても高密度焼結体が得られないことが
多く、また800℃より高いと微粉末の粒成長が大
きくなり、高密度焼結体が得難い。 また、焼結温度は、800℃以上が必要であり、
好ましくは900℃〜1200℃である。特に、x=
1.01〜1.05である場合には、900℃以上が好まし
い。焼結温度が800℃未満であると、焼結が余り
進行しない。なお、焼結温度が1200℃を超える
と、PbOの蒸気が激しくなるため高密度焼結体を
得る上で好ましくない。 上記焼結を行なう際の雰囲気は、従来どおり
PbO蒸気を含有する空気でもよいが、PbO蒸気を
含まない単なる空気でも十分である。 〔作用〕 本発明で焼結に供される微粒子では、過剰の鉛
酸化物がZr及びTiの酸化物中に均一に分散して
複合体を形成しているものと考えられ、この過剰
の鉛酸化物が反応成分の表面あるいは粒界を濡ら
すため液相焼結が低温で速やかにかつ均一に進行
し、高密度で均一な焼結体が得られるものと推察
される。 〔実施例〕 以下、本発明を実施例により具体的に説明す
る。 実施例 1 (1) Zr/Ti=52/48(一般式()においてA=
0.52に相当)であつて、種々のPb含量(x=
0.93〜1.25の範囲)を有するPZT焼結体試料No.
1〜30を本発明の方法により製造した。試料No.
8のPZT焼結体の製造を例示する。 (2) 試料No.8のPZT焼結体の製造: 金属ナトリウム12.852gとイソプロピルアルコ
ール150mlとを反応させ、ナトリウムイソプロポ
キシドを製造した。これに、Zr:Ti=52:48(モ
ル比)となるように、チタンイソプロポキシド
36.028gとジルコニウムイソプロポキシド44.980
gとを加え、還流下1時間反応させた。得られた
反応溶液に無水酢酸鉛90.897g(一般式()に
おいて、x=1.06に相当する量)を加え、さらに
1時間還流下で反応させた。反応溶液から生じた
酢酸ナトリウムを濾別後、濾液に水を加え、アル
コキシドの加水分解を行なつた。得られた沈殿物
を濾過、洗浄後、乾燥して微粉末を得た。得られ
た微粉末を600℃で1時間仮焼した後、攪潰器で
粉砕し、2t/cm2の圧力でタブレツトに成形した。
このタブレツトをPbO蒸気で飽和した1気圧の酸
素雰囲気(PbO蒸気圧:約3.4Torr)中におい
て、1000℃において焼成し、PZT焼結体を得た。
この焼結体は全体に均一で緻密な組織からなり、
焼結密度を測定したところ、7.92g/cm3と高密度
を有することがわかつた(理論密度8g/cm3)。
また、異常粒成長は無く均一な高密度焼結体が得
られた。 (3) 他の試料No.のPZT焼結体の製造: 一般式()におけるxがそれぞれ表1に示す
値となるように無水酢酸鉛の使用量を変え、表1
に示すそれぞれの焼結温度で焼結を行なつた以外
は、試料No.8の場合と同様にしてPZT焼結体を
製造した。試料No.1〜6、16〜18および22〜30
は、xの値および/または焼結温度が本発明の条
件を満たさない比較例である。得られた焼結体の
焼結密度を表1に示す。いずれの試料にも異常粒
成長は認められなく均一であつた。 しかし、比較例16〜18および比較例22〜30では
得られた焼結体の焼結密度が低く、焼結不十分で
あつた。一方、本発明の実施例である試料No.7〜
15および試料No.19〜21で得られた焼結体は、1000
℃を超える温度で焼結を行つた試料No.1〜6と同
様に実用上十分な焼結密度を有するものであつ
た。
[Industrial Application Field] The present invention is directed to lead zirconate titanate (hereinafter referred to as lead zirconate titanate).
Regarding the manufacturing method of a sintered body (referred to as "PZT"). [Prior Art] PZT sintered bodies are widely used as excellent piezoelectric and pyroelectric materials. Traditionally, PZT sintered bodies have been manufactured using lead (Pb), zirconium (Zr), and titanium (Ti).
Each of the oxides are dry mixed in the required proportions.
A method of sintering in air containing PbO vapor has been used, but in recent years, fine powder consisting of composite precipitates has been obtained by simultaneously hydrolyzing the alkoxides of these component metals in the same solution (hereinafter referred to as (This method of producing fine powder is referred to as the "alkoxide method"), and a method of sintering the fine powder has come into use. In other words, the fine powder obtained by the alkoxide method used in the latter manufacturing method contains Pb, Zr and
It is thought to be an oxide or hydroxide of Ti, or a hydrate thereof, but it is attracting attention because it is composed of fine particles with high purity and uniformity, making it easy to sinter, and sintering can be performed at lower temperatures. It has been reached. [Problems to be solved by the invention] By the way, in manufacturing laminated elements such as piezoelectric actuators, forming pyroelectric films, etc., it is necessary to form a coating film by a screen printing method and sinter it.
A PZT sintered body film is produced. At this time, if the firing temperature is high, the film itself may be deformed, and if the electrodes are fired at the same time, even expensive gold electrodes may be destroyed;
Since Ag-based and Ag-Pb-based materials cause problems such as failure and failure to provide electrodes, it is desirable that firing be performed at as low a temperature as possible, preferably at a temperature of 1000° C. or lower. However, even with the alkoxide method described above, it is currently not possible to obtain a fine powder that can be sufficiently sintered at temperatures below 1000°C. A known method for lowering the sintering temperature when producing PZT sintered bodies is to add an excessive amount of PbO when dry mixing Pb, Zr, and Ti oxide powders and then sintering. (Osamu Yamaguchi, Powder and Powder Metallurgy, 17 , 3, 116-121 (1970), but with this method, a large precipitated phase of PbO appears in the sintered body, and a uniform PZT sintered body cannot be obtained. In addition, in the conventional manufacturing method of PZT sintered body, PbO
Another drawback was that the work was complicated because it required sintering in air containing steam. Therefore, the purpose of the present invention is to solve these problems and provide a method for producing a PZT sintered body that can be sintered at a low temperature of 1000°C or less and obtain a uniform and high-density PZT sintered body. There is a particular thing. [Means for Solving the Problems] The present invention solves the problems of the prior art as described above by adding water to a solution containing titanium alkoxide, zirconium alkoxide and lead alkoxide, and by hydrolyzing these alkoxides. General formula () consisting of calcining the obtained fine powder and sintering the fine powder after molding: Pb x Zr A Ti 1-A O 3 ... () [In the formula, A is 0.1≦A≦ 0.98] In the method for manufacturing a lead zirconate titanate sintered body having a composition expressed by
1.20, and provides a manufacturing method characterized in that the powder is sintered at a temperature of 800°C or higher. The present invention provides fine powder with high sinterability by adjusting the lead component to be in excess of the stoichiometric amount when producing fine powder for sintering by the alkoxide method described above. , which is used for sintering. For example, the alkoxide method is disclosed in JP-A No. 57-82121.
As described in the publication, the ratio is such that a PZT sintered body of the desired composition can be obtained, that is,
In accordance with the above general formula (), Pb:Zr:
Pb, so that Ti (molar ratio) = x:A:1-A,
This is a method to obtain a fine powder as a precipitate by dissolving three types of alkoxides, Zr and Ti, in a suitable solvent, adding water, and simultaneously hydrolyzing the mixture.
The solvent that can be used is not particularly limited as long as it is a good solvent for the three metal alkoxides used, and examples include benzene, toluene, xylene, hexane,
Methyl ether, ethyl ether, methyl alcohol, ethyl alcohol, propyl alcohol,
Examples include isopropyl alcohol. Various embodiments of this alkoxide method are possible; for example, as described in JP-A-57-82121, water may be added after mixing a required amount of solutions of three metal alkoxides, or as described below. As in the example, Ti and Zr alkoxides are first added to a solution prepared with sodium alkoxide, and then lead acetate is added and reacted to form lead alkoxide in the solution. Well, there are no particular restrictions. Alkoxides of Pb, Ti and Zr that can be used as raw materials in the alkoxide method include:
For example, isopropoxide, methoxide, ethoxide, n-propoxide, n-butoxide, tert
Examples include -butoxide, which can be easily synthesized by the method described in the above-mentioned publication, and some are commercially available. The fine powder obtained by the alkoxide method contains Pb,
They are thought to be composite particles consisting of oxides, hydroxides, or hydrates of Ti and Zr, and are highly pure and consist of uniform fine particles. This fine powder is filtered, washed, dried, calcined, preferably pulverized, molded, and further subjected to sintering. The fine powder obtained as described above contains Pb, Zr and Ti in proportions corresponding to the general formula (), with x = 1.01 to 1.20, and a stoichiometric amount of lead. It is necessary to contain more than (x=1). When x is less than 1.01, sintering at a temperature of 1000° C. or lower is difficult, and a high-density sintered body cannot be obtained. Moreover, if x is larger than 1.20, a precipitated phase of lead oxide is generated in the sintered body, making it impossible to obtain a uniform sintered body. The above-mentioned fine powder obtained by the alkoxide method is calcined, preferably pulverized, then shaped and subjected to sintering. The calcining temperature of the fine powder is preferably 500 to 800°C, particularly preferably 600 to 700°C. Calcining temperature 500
If the temperature is below 800℃, the solid phase reaction will not be completed, and a high-density sintered body will often not be obtained even in the subsequent sintering.If the temperature is higher than 800℃, the grain growth of the fine powder will increase and It is difficult to obtain a dense sintered body. In addition, the sintering temperature must be 800℃ or higher.
Preferably it is 900°C to 1200°C. In particular, x=
When it is 1.01 to 1.05, the temperature is preferably 900°C or higher. If the sintering temperature is less than 800°C, sintering will not proceed much. Note that if the sintering temperature exceeds 1200°C, PbO vapor will become intense, which is not preferable for obtaining a high-density sintered body. The atmosphere during the above sintering is the same as before.
Air containing PbO vapor may be used, but simple air containing no PbO vapor is also sufficient. [Function] In the fine particles subjected to sintering in the present invention, it is thought that excess lead oxide is uniformly dispersed in Zr and Ti oxides to form a composite. It is presumed that because the oxide wets the surface or grain boundaries of the reaction components, liquid phase sintering proceeds quickly and uniformly at low temperatures, resulting in a highly dense and uniform sintered body. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 (1) Zr/Ti=52/48 (A= in general formula ()
0.52) and various Pb contents (x=
0.93~1.25) PZT sintered body sample No.
1 to 30 were produced by the method of the present invention. Sample No.
The production of the PZT sintered body in No. 8 will be exemplified. (2) Production of PZT sintered body of sample No. 8: 12.852 g of metallic sodium and 150 ml of isopropyl alcohol were reacted to produce sodium isopropoxide. Add titanium isopropoxide to this so that Zr:Ti = 52:48 (mole ratio).
36.028g and zirconium isopropoxide 44.980
g and the mixture was reacted under reflux for 1 hour. 90.897 g of anhydrous lead acetate (an amount corresponding to x=1.06 in the general formula ()) was added to the obtained reaction solution, and the reaction was further continued under reflux for 1 hour. After filtering off the sodium acetate produced from the reaction solution, water was added to the filtrate to hydrolyze the alkoxide. The obtained precipitate was filtered, washed, and dried to obtain a fine powder. The resulting fine powder was calcined at 600° C. for 1 hour, then crushed with a crusher and molded into tablets at a pressure of 2 t/cm 2 .
This tablet was fired at 1000° C. in a 1 atm oxygen atmosphere saturated with PbO vapor (PbO vapor pressure: approximately 3.4 Torr) to obtain a PZT sintered body.
This sintered body has a uniform and dense structure throughout,
When the sintered density was measured, it was found to have a high density of 7.92 g/cm 3 (theoretical density 8 g/cm 3 ).
Further, a uniform high-density sintered body was obtained without abnormal grain growth. (3) Manufacture of PZT sintered bodies of other sample No.: The amount of lead acetate anhydride used was changed so that x in the general formula () became the values shown in Table 1.
PZT sintered bodies were manufactured in the same manner as in the case of sample No. 8, except that sintering was performed at the respective sintering temperatures shown in . Sample No. 1-6, 16-18 and 22-30
is a comparative example in which the value of x and/or the sintering temperature do not satisfy the conditions of the present invention. Table 1 shows the sintered density of the obtained sintered body. No abnormal grain growth was observed in any of the samples, and they were uniform. However, in Comparative Examples 16 to 18 and Comparative Examples 22 to 30, the sintered bodies obtained had low sintered densities and were insufficiently sintered. On the other hand, samples No. 7~ which are examples of the present invention
15 and samples No. 19 to 21, the sintered bodies obtained were 1000
Like Samples Nos. 1 to 6, which were sintered at temperatures exceeding .degree. C., they had a practically sufficient sintered density.

【表】【table】

【表】【table】

【表】 実施例 2 試料No.31〜45のPZT焼結体の製造: 本実施例では、焼結を空気雰囲気中で行なつ
た。その他は、一般式()におけるxがそれぞ
れ表2に示す値となるように無水酢酸鉛の使用量
を変え、それぞれ表2に示す温度で焼結を行なつ
た以外は試料No.8の場合と同様にしてPZT焼結
体を製造した。試料No.40〜45は、xの値または焼
結温度が本発明の条件を満たさない比較例であ
る。得られた焼結体について測定した焼結密度を
表2に示す。いずれの試料No.の焼結体にも異常粒
成長は認められず均一であつた。しかし、比較例
40〜45では得られた焼結体の焼結密度が低く、焼
結不十分であつた。一方、本発明の実施例である
試料No.31〜39で得られた焼結体は、十分に高い焼
結密度を有するものであつた。
[Table] Example 2 Production of PZT sintered bodies of samples Nos. 31 to 45: In this example, sintering was performed in an air atmosphere. The other cases are Sample No. 8 except that the amount of lead acetate anhydride used was changed so that x in the general formula () was the value shown in Table 2, and the sintering was performed at the temperatures shown in Table 2. A PZT sintered body was manufactured in the same manner. Samples Nos. 40 to 45 are comparative examples in which the value of x or the sintering temperature does not satisfy the conditions of the present invention. Table 2 shows the sintered density measured for the obtained sintered body. No abnormal grain growth was observed in the sintered bodies of any of the sample numbers, and they were uniform. However, comparative example
40 to 45, the sintered body obtained had a low sintered density and was insufficiently sintered. On the other hand, the sintered bodies obtained in Samples Nos. 31 to 39, which are examples of the present invention, had sufficiently high sintered densities.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の製法は、1000℃以下の低温における焼
結により、ほぼ理論密度に等しい高密度でしかも
均一なPZT焼結体を製造することができる。し
たがつて、従来困難であつたスクリーン印刷法を
利用するPZT焼結体膜の製造に好適である。ま
た、省エネルギーの点でも有利であるため種々の
用途に広く利用することができる。 本発明の製法は、PbOを含有しない単なる空気
雰囲気中における焼結でも可能であり、製造工程
を簡略化できる利点がある。
By sintering at a low temperature of 1000° C. or lower, the manufacturing method of the present invention can produce a uniform PZT sintered body with a high density almost equal to the theoretical density. Therefore, it is suitable for producing a PZT sintered body film using the screen printing method, which has been difficult in the past. Furthermore, it is advantageous in terms of energy saving, so it can be widely used in various applications. The manufacturing method of the present invention allows sintering in a simple air atmosphere that does not contain PbO, and has the advantage of simplifying the manufacturing process.

Claims (1)

【特許請求の範囲】 1 チタンアルコキシド、ジルコニウムアルコキ
シドおよび鉛アルコキシドを含有する溶液に水を
加え、これらアルコキシドの加水分解により得ら
れた微粉末を仮焼した微粉末を成形後焼結するこ
とからなる一般式(): PbxZrATi1-AO3 ……() 〔式中、Aは、0.1≦A≦0.98である〕 で表される組成を有するチタン酸ジルコン酸鉛焼
結体の製法において、 前記一般式()のおけるxが、1.01≦x≦
1.20であり、前記粉末の焼結を800〜1000℃にお
いて行なうことを特徴とする製法。
[Claims] 1. Water is added to a solution containing titanium alkoxide, zirconium alkoxide, and lead alkoxide, and the fine powder obtained by hydrolyzing these alkoxides is calcined, and the fine powder is molded and then sintered. General formula (): Pb x Zr A Ti 1-A O 3 ... () [In the formula, A is 0.1≦A≦0.98] A lead zirconate titanate sintered body having a composition expressed by the following: In the manufacturing method, x in the general formula () is 1.01≦x≦
1.20, and the manufacturing method is characterized in that the powder is sintered at 800 to 1000°C.
JP61002649A 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body Granted JPS62162670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002649A JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002649A JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Publications (2)

Publication Number Publication Date
JPS62162670A JPS62162670A (en) 1987-07-18
JPH0531516B2 true JPH0531516B2 (en) 1993-05-12

Family

ID=11535201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002649A Granted JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Country Status (1)

Country Link
JP (1) JPS62162670A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674173B2 (en) * 1990-09-27 1994-09-21 岩崎通信機株式会社 Method for producing lead zirconate titanate
JPH04149059A (en) * 1990-10-09 1992-05-22 Shizuoka Univ Ceramic piezoelectric body
SG115500A1 (en) * 2002-10-09 2005-10-28 Inst Materials Research & Eng Method to produce a reliable piezoelectric thick film on a substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782121A (en) * 1980-11-07 1982-05-22 Yoshiharu Ozaki Preparation of lead titanate zirconate (pzt)
JPS5927402A (en) * 1982-08-05 1984-02-13 工業技術院長 Method of producing plzt substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782121A (en) * 1980-11-07 1982-05-22 Yoshiharu Ozaki Preparation of lead titanate zirconate (pzt)
JPS5927402A (en) * 1982-08-05 1984-02-13 工業技術院長 Method of producing plzt substrate

Also Published As

Publication number Publication date
JPS62162670A (en) 1987-07-18

Similar Documents

Publication Publication Date Title
WO2001064600A1 (en) Method for fabrication of lead based perovskite materials
EP0294991A2 (en) Readily sinterable powder of perovskite type oxide containing group Va element and laminated element obtained therefrom
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
JPH0531516B2 (en)
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0210089B2 (en)
JPH0651572B2 (en) Method for producing high dielectric powder
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics
JP2985350B2 (en) Method for producing lead-based composite oxide using phase transition method
JPH0262496B2 (en)
JPH08239268A (en) Piezoelectric porcelain composition and production of its powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH04306889A (en) Manufacture of electrostrictive element
JPS60141675A (en) Manufacture of light permeable high dielectric ceramic
JP2000001369A (en) High performance electrostrictive ceramics
JPH0262497B2 (en)
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS60141674A (en) Manufacture of light permeable high dielectric ceramic
JPS61158858A (en) Lead-containing ceramic element and manufacture
JPH02157155A (en) Production of dielectric ceramics composition of high permittivity
JPH0321488B2 (en)
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium