JPS62162670A - Manufacture of lead zirconate titanate sintered body - Google Patents

Manufacture of lead zirconate titanate sintered body

Info

Publication number
JPS62162670A
JPS62162670A JP61002649A JP264986A JPS62162670A JP S62162670 A JPS62162670 A JP S62162670A JP 61002649 A JP61002649 A JP 61002649A JP 264986 A JP264986 A JP 264986A JP S62162670 A JPS62162670 A JP S62162670A
Authority
JP
Japan
Prior art keywords
sintered body
sintered
sintering
fine powder
alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61002649A
Other languages
Japanese (ja)
Other versions
JPH0531516B2 (en
Inventor
深谷 博
岩成 順子
西井 重一
市村 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61002649A priority Critical patent/JPS62162670A/en
Publication of JPS62162670A publication Critical patent/JPS62162670A/en
Publication of JPH0531516B2 publication Critical patent/JPH0531516B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン酸ジルコン酸鉛(以下、「PZT」と
いう)焼結体の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a sintered body of lead zirconate titanate (hereinafter referred to as "PZT").

〔従来の技術〕[Conventional technology]

PZT焼結体は、優れた圧電材料および焦電材料として
広く用いられている。
PZT sintered bodies are widely used as excellent piezoelectric and pyroelectric materials.

従来、PZT焼結体の製造方法としては、鉛(pb)、
ジルコニウム(Zr)およびチタン(Ti)の各酸化物
を乾式で所要割合に混合したものをPbO蒸気を含む空
気中で焼結する方法が用いられて来たが、近年、これら
成分金属のアルコキシドを同一溶液中で同時に加水分解
することによって複合析出物からなる微粉末を得(以下
、この微粉末の製法を「アルコキシド法」という)、該
微粉末を焼結する方法が用いられるようになって来た。
Conventionally, methods for manufacturing PZT sintered bodies include lead (pb),
A method has been used in which zirconium (Zr) and titanium (Ti) oxides are dry mixed in the required proportions and sintered in air containing PbO vapor, but in recent years, alkoxides of these component metals have been sintered. A method has been used in which a fine powder consisting of composite precipitates is obtained by simultaneous hydrolysis in the same solution (hereinafter, the manufacturing method of this fine powder is referred to as the "alkoxide method"), and the fine powder is sintered. It's here.

すなわち、後者の製法で用いられるアルコキシド法によ
り得られる微粉末は、 Pb、 ZrおよびTiの酸化
物ないし水酸化物あるいはその水和物と考えられるが、
高純度で均一性の高い微細粒子からなるため易焼結性が
優れ、より低温で焼結を実施できるため注目されるに至
ったものである。
That is, the fine powder obtained by the alkoxide method used in the latter production method is considered to be an oxide or hydroxide of Pb, Zr, and Ti, or a hydrate thereof.
It has attracted attention because it has excellent sinterability because it is made of fine particles with high purity and high uniformity, and it can be sintered at a lower temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、圧電アクチュエータ等の積層素子の製造、焦
電体膜の形成などにおいては、スクリーン印刷法により
塗膜を形成しこれを焼結してPZT焼結体膜を作製する
ことが行なわれる。このとき、焼成温度が高いと膜内体
が変形を起す恐れがあるとともに、電極が同時に焼成さ
れる場合には高価な金電極でも破壊の恐れがあり、低価
なAg系、Ag−Pd系は破壊が生じ電極を付与するこ
とができないなどの支障が生ずるため、焼成はなるべく
低い温度で、望ましくは1000℃以下の温度で実施で
きることが望まれる。しかし、前記のアルコキシド法に
よっても、1000℃以下で十分に焼結できる微粉末は
未だ得られていないのが現状である。
By the way, in manufacturing laminated elements such as piezoelectric actuators, forming pyroelectric films, etc., a coating film is formed by a screen printing method and then sintered to produce a PZT sintered body film. At this time, if the firing temperature is high, there is a risk that the inner membrane may be deformed, and if the electrodes are fired at the same time, even expensive gold electrodes may be destroyed. However, it is desirable that firing can be carried out at as low a temperature as possible, preferably at a temperature of 1000° C. or lower, since this may cause problems such as failure and failure to apply electrodes. However, even with the alkoxide method described above, it is currently not possible to obtain a fine powder that can be sufficiently sintered at 1000° C. or lower.

PZT焼結体を製造する際の焼結温度を低下させる方法
としては、Pb、 ZrおよびTiの酸化物粉末を乾式
混合する際にPbOを過剰に加えておいて焼結する方法
が知られている(山口修、粉体および粉末冶金、17.
3.116−121 (I970))が、コノ方法では
焼結体中にPbOの大きな析出相が現われ、均一なPZ
T焼結体は得られていない。
A known method for lowering the sintering temperature when producing a PZT sintered body is to add an excessive amount of PbO when dry mixing oxide powders of Pb, Zr, and Ti, and then sinter the powder. (Osamu Yamaguchi, Powder and Powder Metallurgy, 17.
3.116-121 (I970)), but in the Kono method, a large precipitated phase of PbO appears in the sintered body, and a uniform PZ
No T sintered body was obtained.

また従来のPZT焼結体の製造方法では、pb。Furthermore, in the conventional method for producing a PZT sintered body, pb.

蒸気を含む空気中において焼結する必要があったため作
業がそれだけ煩雑であるという欠点もあった。
Another drawback was that the work was complicated because it required sintering in air containing steam.

そこで、本発明の目的は、これらの問題点を解決し、1
000℃以下の低温で焼結を行ない、均一で高密度のP
ZT焼結体を得ることができるPZT焼結体の製法を提
供することにある。
Therefore, the purpose of the present invention is to solve these problems and to
By sintering at a low temperature of 000℃ or less, uniform and high-density P is produced.
An object of the present invention is to provide a method for producing a PZT sintered body that can produce a ZT sintered body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記の従来技術の問題点を解決するものとし
て。
The present invention is intended to solve the problems of the prior art described above.

チタンアルコキシド、ジルコニウムアルコキシドおよび
鉛アルコキシドを含有する溶液に水を加え、これらアル
コキシドの加水分解により得られた微粉末を仮焼した微
粉末を成形後焼結すること・からなる一般式(+): PbxZrATll−A03        ”・(I
)〔式中、Aは、0.1≦A≦0.98である〕で表わ
される組成を有するチタン酸ジルコン酸鉛焼結体の製法
において、 前記一般式(I)におけるXが、1.01≦x≦1.2
0であり、前記粉末の焼結を800℃以上において行な
うことを特徴とする製法を提供するものである。
A general formula (+) consisting of adding water to a solution containing titanium alkoxide, zirconium alkoxide and lead alkoxide, and calcining the fine powder obtained by hydrolyzing these alkoxides, molding and sintering the fine powder: PbxZrATll-A03”・(I
) [In the formula, A is 0.1≦A≦0.98] In the method for producing a lead zirconate titanate sintered body, X in the general formula (I) is 1. 01≦x≦1.2
0, and provides a manufacturing method characterized in that the powder is sintered at a temperature of 800°C or higher.

本発明は、前述のアルコキシド法により焼結用微粉末を
製造するに際し、鉛成分が化学量論的量より過剰となる
ように調整することによって、易焼結性の高い微粉末を
得、これを焼結に用いるものである。
The present invention provides fine powder with high sinterability by adjusting the lead component to be in excess of the stoichiometric amount when producing fine powder for sintering using the alkoxide method described above. is used for sintering.

アルコキシド法は、例えば、特開昭57−82121号
公報に記載されているとおりであり、所望組成のPZT
焼結体が得られるような割合で、即ち、前記一般式(り
に即して述べると、Pb:Zr:Ti(モル比)=x 
: A : 1−Aとなるように、Pb、 Zrおよび
Tiの3種のアルコキシドを適当な溶媒に溶かし、水を
添加して同時に加水分解させることにより析出物として
微粉末を得る方法である。使用できる溶媒は、使用する
3種の金属のアルコキシドの良溶媒であれば、特に制限
されず、例えば、ベンゼン、トルエン、キシレン、ヘキ
サン、メチルエーテル、エチルエーテル、メチルアルコ
ール、エチルアルコール、プロピルアルコール、イソプ
ロピルアルコール等を挙げることができる。このアルコ
キシド法の実施IIA様は種々可能であり、例えば前記
特開昭57−82121号に記載のように3種の金属の
アルコキシドの溶液を所要量混合抜水を添加してもよい
し、後記実施例のように、まずナトリウムアルコキシド
を調製した溶液にTiおよびZrのアルコキシドを加え
、しかる後に酢酸鉛を添加して反応させることにより鉛
アルコキシドを該溶液中に生成せしめ、これに水を加え
てもよく、特に制約はない。
The alkoxide method is, for example, as described in Japanese Patent Application Laid-Open No. 57-82121, and PZT of a desired composition is
In other words, in accordance with the above general formula (Pb:Zr:Ti (molar ratio) = x
:A: 1-A This is a method of obtaining a fine powder as a precipitate by dissolving three types of alkoxides, Pb, Zr and Ti, in a suitable solvent, adding water and simultaneously hydrolyzing them so that the alkoxides are as follows: A: 1-A. The solvents that can be used are not particularly limited as long as they are good solvents for the three metal alkoxides used, and examples include benzene, toluene, xylene, hexane, methyl ether, ethyl ether, methyl alcohol, ethyl alcohol, propyl alcohol, Examples include isopropyl alcohol. This alkoxide method can be carried out in various ways. For example, as described in JP-A-57-82121, a solution of alkoxides of three metals may be mixed and drained in required amounts, or as described below. As in the example, first, Ti and Zr alkoxides were added to a solution prepared from sodium alkoxide, then lead acetate was added and reacted to produce lead alkoxide in the solution, and water was added to this. Yes, there are no particular restrictions.

アルコキシド法に原料として用いることができる、Pb
、 TiおよびZrのアルコキシドとしては、例えば、
イソプロポキシド、メトキシド、エトキシド、ロープロ
ポキシド、n−ブトキシド、tart−ブトキシド等を
例示することができ、これらは前記公報に記載の方法等
によって容易に合成でき、また一部は市販されている。
Pb, which can be used as a raw material in the alkoxide method
, Ti and Zr alkoxides include, for example,
Examples include isopropoxide, methoxide, ethoxide, rhopropoxide, n-butoxide, tart-butoxide, etc., which can be easily synthesized by the method described in the above publication, and some are commercially available. .

アルコキシド法により得られる微粉末は、Pb。The fine powder obtained by the alkoxide method is Pb.

TiおよびZrの酸化物ないし水酸化物あるいは水和物
からなる複合粒子と考えられるが、高純度であるととも
に、均一な微細粒子からなるものである。
They are considered to be composite particles made of oxides, hydroxides, or hydrates of Ti and Zr, but they are highly pure and consist of uniform fine particles.

この微粉末は、濾過、洗浄後乾燥した後、仮焼し好まし
くは粉砕し、成形後さらに焼結に供される。
This fine powder is filtered, washed, dried, calcined, preferably pulverized, molded, and further subjected to sintering.

上記のようにして得られた微粉末は、一般式(I)に対
応する割合でPb、 ZrおよびTiを含有しており、
 x =1.O1〜1.20の範囲であって、鉛を化学
量論的fi(x=1)より過剰に含んでいることが必要
である。Xが1.01未満であると、1000℃以下の
温度での焼結が困難であり、高密度焼結体は得られない
。また、Xが1.20より大きいと、焼結体中に鉛酸化
物の析出相が生成するため均一な焼結体を得ることがで
きない。
The fine powder obtained as described above contains Pb, Zr and Ti in proportions corresponding to general formula (I),
x=1. It is necessary that lead be in the range of O1 to 1.20 and contain lead in excess of the stoichiometric fi (x=1). When X is less than 1.01, sintering at a temperature of 1000° C. or lower is difficult, and a high-density sintered body cannot be obtained. Moreover, if X is larger than 1.20, a precipitated phase of lead oxide is generated in the sintered body, making it impossible to obtain a uniform sintered body.

アルコキシド法により得られた上記の微粉末は、仮焼し
、好ましくは粉砕後に成形し、焼結に供される。微粉末
の仮焼温度は500〜800℃が好ましく、特に600
〜700℃が好ましい。仮焼温度500℃未満であると
固相反応が完了しない結果、後の焼結によっても高密度
焼結体が得られないことが多く、また800℃より高い
と微粉末の粒成長が大きくなり、高密度焼結体が得難い
The above-mentioned fine powder obtained by the alkoxide method is calcined, preferably pulverized, then shaped and subjected to sintering. The calcination temperature of the fine powder is preferably 500 to 800°C, particularly 600°C.
~700°C is preferred. If the calcination temperature is less than 500°C, the solid phase reaction will not be completed and a high-density sintered body will often not be obtained by subsequent sintering, and if it is higher than 800°C, the grain growth of the fine powder will increase. , it is difficult to obtain high-density sintered bodies.

また、焼結温度は、800℃以上が必要であり、好まし
くは900℃〜1200℃である。特に、x=1.01
〜1.05である場合には、900℃以上が好ましい。
Further, the sintering temperature needs to be 800°C or higher, preferably 900°C to 1200°C. In particular, x=1.01
-1.05, preferably 900°C or higher.

焼結温度が800℃未満であると、焼結が余り進行しな
い、なお、焼結温度が1200℃を超えると、PbOの
蒸発が激しくなるため高密度焼結体を得る上で好ましく
ない。
If the sintering temperature is less than 800°C, sintering will not proceed much. If the sintering temperature exceeds 1200°C, the evaporation of PbO will become intense, which is not preferable for obtaining a high-density sintered body.

上記焼結を行なう際の8g気は、従来どおりPbO蒸気
を含有する空気でもよいが、PbO蒸気を含まない単な
る空気でも十分である。
The 8 g of air used in performing the above sintering may be air containing PbO vapor as in the past, but plain air containing no PbO vapor is also sufficient.

〔作 用〕[For production]

本発明で焼結に供される微粒子では、過剰の鉛酸化物が
Zr及びTiの酸化物中に均一に分散して複合体を形成
しているものと考えられ、この過剰の鉛酸化物が反応成
分の表面あるいは粒界を濡らすため液相焼結が低温で速
やかにかつ均一に進行し、高密度で均一な焼結体が得ら
れるものと推察される。
In the fine particles subjected to sintering in the present invention, it is thought that excess lead oxide is uniformly dispersed in Zr and Ti oxides to form a composite. It is presumed that liquid phase sintering progresses rapidly and uniformly at low temperatures to wet the surface or grain boundaries of the reaction components, resulting in a highly dense and uniform sintered body.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 (I) Zr/Ti=52/48(一般式(T)におい
てA=0.52に相当)であって、種々のpb含量(x
=0.93〜1.25の範囲)を有するPZT焼結焼結
体試料−1〜30発明の方法により製造した。試料Nα
8のPZT焼結体の製造を例示する。
Example 1 (I) Zr/Ti=52/48 (corresponding to A=0.52 in general formula (T)) and various pb contents (x
= range of 0.93 to 1.25) PZT sintered body samples 1 to 30 were manufactured by the method of the invention. Sample Nα
The production of the PZT sintered body of No. 8 will be exemplified.

(2)試料&8のPZT焼結体の製造:金属ナトリウム
12.852 gとイソプロピルアルコール150* 
Qとを反応させ、ナトリウムイソプロポキシドを製造し
た。これに、Zr : Ti=52 :48(モル比)
となるように、チタンイソプロポキシド36.028 
gとジルコニウムイソプロポキシド44.980gとを
加え、還流下1時間反応させた。
(2) Production of PZT sintered body of sample &8: 12.852 g of metallic sodium and 150 g of isopropyl alcohol
Q was reacted with sodium isopropoxide to produce sodium isopropoxide. To this, Zr:Ti=52:48 (molar ratio)
Titanium isopropoxide 36.028
g and 44.980 g of zirconium isopropoxide were added, and the mixture was reacted under reflux for 1 hour.

得られた反応溶液に無水酢酸鉛90.897g(一般式
(+)において、X=1.06に相当するm)を加え、
さらに1時間還流下で反応させた。反応溶液から生じた
酢酸ナトリウムを濾別後、濾液に水を加え、アルコキシ
ドの加水分解を行なった。得られた沈殿物を濾過、洗浄
後、乾燥して微粉末を得た。得られた微粉末を600℃
で1時間仮焼した後、攪潰器で粉砕し、2t/c+a”
の圧力でタブレットに成形した。このタブレットをPb
O蒸気で飽和した1気圧の酸素雰囲気(PbO蒸気圧:
約3.4Torr)中において、1000℃において焼
成し、PZT焼結体を得た。この焼結体は全体に均一で
緻密な組織からなり、焼結密度を測定したところ、7.
92g/−と高密度を有することがねがった(理論密度
8g/c+d)、また、異常粒成長は無く均一な高密度
焼結体が得られた。
Add 90.897 g of anhydrous lead acetate (m corresponding to X = 1.06 in general formula (+)) to the obtained reaction solution,
The reaction was further continued under reflux for 1 hour. After filtering off the sodium acetate produced from the reaction solution, water was added to the filtrate to hydrolyze the alkoxide. The obtained precipitate was filtered, washed, and dried to obtain a fine powder. The obtained fine powder was heated to 600℃
After calcining for 1 hour, crush it with a crusher to produce 2t/c+a”
It was molded into a tablet under the same pressure. Pb this tablet
1 atm oxygen atmosphere saturated with O vapor (PbO vapor pressure:
A PZT sintered body was obtained by firing at 1000° C. in a temperature of about 3.4 Torr. This sintered body had a uniform and dense structure throughout, and when the sintered density was measured, it was found to be 7.
It was found that the sintered body had a high density of 92 g/- (theoretical density of 8 g/c+d), and a uniform high-density sintered body without abnormal grain growth was obtained.

(3)他の試料翫のPZT焼結体の製造ニ一般式(r)
におけるXがそれぞれ表1に示す値となるように無水酢
酸鉛の使用量を変え、表1に示すそれぞれの焼結温度で
焼結を行なった以外は、試料Nα8の場合と同様にして
PZT焼結体を製造した。得られた焼結体の焼結密度を
表1に示す。いずれの試料にも異常粒成長は認められな
く均一であった。
(3) General formula (r) for manufacturing PZT sintered bodies for other sample rods
PZT sintering was carried out in the same manner as in the case of sample Nα8, except that the amount of lead acetate anhydride used was changed so that X in A body was produced. Table 1 shows the sintered density of the obtained sintered body. No abnormal grain growth was observed in any of the samples and they were uniform.

表  1 (表1つづき) 実施例2 試料Nu31〜45(7) P Z T焼結体の製造:
本実施例では、焼結を空気雰囲気中で行なった。
Table 1 (Table 1 continued) Example 2 Sample Nu31-45 (7) Production of PZT sintered body:
In this example, sintering was performed in an air atmosphere.

その他は、一般式(I)におけるXがそれぞれ表2に示
す値となるように無水酢酸鉛の使用量を変え、それぞれ
表2に示す温度で焼結を行なった以外は試料Na8の場
合と同様にしてPZT焼結体を製造した。得られた焼結
体について測定した焼結密度を表2に示す。いずれの試
料Nαの焼結体にも異常粒成長は認められず均一であっ
た。
Other details were the same as in the case of sample Na8, except that the amount of lead acetate anhydride used was changed so that X in general formula (I) was the value shown in Table 2, and the sintering was performed at the temperatures shown in Table 2. A PZT sintered body was produced. Table 2 shows the sintered density measured for the obtained sintered body. No abnormal grain growth was observed in any of the sintered bodies of sample Nα, and the sintered bodies were uniform.

表  2 (表2つづき) 〔発明の効果〕 本発明の製法は、1000℃以下の低温における焼結に
より、はぼ理論密度に等しい高密度でしかも均一なPZ
T焼結体を製造することができる。したがって、従来困
難であったスクリーン印刷法を利用するPZT焼結体膜
の製造に好適である。また、省エネルギーの点でも有利
であるため種々の用途に広く利用することができる。
Table 2 (Continued from Table 2) [Effects of the Invention] The manufacturing method of the present invention produces a uniform PZ with a high density almost equal to the theoretical density by sintering at a low temperature of 1000°C or less.
A T sintered body can be manufactured. Therefore, it is suitable for manufacturing a PZT sintered body film using the screen printing method, which has been difficult in the past. Furthermore, it is advantageous in terms of energy saving, so it can be widely used in various applications.

本発明の製法は、PbOを含有しない単なる空気雰囲気
中における焼結でも可能であり、製造工程を簡略化でき
る利点がある。
The manufacturing method of the present invention allows sintering in a simple air atmosphere that does not contain PbO, and has the advantage of simplifying the manufacturing process.

Claims (1)

【特許請求の範囲】 1)チタンアルコキシド、ジルコニウムアルコキシドお
よび鉛アルコキシドを含有する溶液に水を加え、これら
アルコキシドの加水分解により得られた微粉末を仮焼し
た微粉末を成形後焼結することからなる一般式(I): Pb_xZr_ATi_1_−_AO_3・・・(I)
〔式中、Aは、0.1≦A≦0.98である〕で表わさ
れる組成を有するチタン酸ジルコン酸鉛焼結体の製法に
おいて、 前記一般式(I)におけるxが、1.01≦x≦1.2
0であり、前記粉末の焼結を800℃以上において行な
うことを特徴とする製法。
[Claims] 1) Water is added to a solution containing titanium alkoxide, zirconium alkoxide, and lead alkoxide, and the fine powder obtained by hydrolyzing these alkoxides is calcined, and the fine powder is molded and then sintered. General formula (I): Pb_xZr_ATi_1_-_AO_3...(I)
[In the formula, A is 0.1≦A≦0.98] In the method for manufacturing a lead zirconate titanate sintered body having a composition represented by the formula, x in the general formula (I) is 1.01. ≦x≦1.2
0, and the manufacturing method is characterized in that the powder is sintered at a temperature of 800°C or higher.
JP61002649A 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body Granted JPS62162670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002649A JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002649A JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Publications (2)

Publication Number Publication Date
JPS62162670A true JPS62162670A (en) 1987-07-18
JPH0531516B2 JPH0531516B2 (en) 1993-05-12

Family

ID=11535201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002649A Granted JPS62162670A (en) 1986-01-09 1986-01-09 Manufacture of lead zirconate titanate sintered body

Country Status (1)

Country Link
JP (1) JPS62162670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139064A (en) * 1990-09-27 1992-05-13 Iwatsu Electric Co Ltd Production of lead titanate zirconate
JPH04149059A (en) * 1990-10-09 1992-05-22 Shizuoka Univ Ceramic piezoelectric body
JP2004168637A (en) * 2002-10-09 2004-06-17 Agency For Science Technology & Research Method for manufacturing piezoelectric thick film on substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782121A (en) * 1980-11-07 1982-05-22 Yoshiharu Ozaki Preparation of lead titanate zirconate (pzt)
JPS5927402A (en) * 1982-08-05 1984-02-13 工業技術院長 Method of producing plzt substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782121A (en) * 1980-11-07 1982-05-22 Yoshiharu Ozaki Preparation of lead titanate zirconate (pzt)
JPS5927402A (en) * 1982-08-05 1984-02-13 工業技術院長 Method of producing plzt substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139064A (en) * 1990-09-27 1992-05-13 Iwatsu Electric Co Ltd Production of lead titanate zirconate
JPH04149059A (en) * 1990-10-09 1992-05-22 Shizuoka Univ Ceramic piezoelectric body
JP2004168637A (en) * 2002-10-09 2004-06-17 Agency For Science Technology & Research Method for manufacturing piezoelectric thick film on substrate

Also Published As

Publication number Publication date
JPH0531516B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
WO2001064600A1 (en) Method for fabrication of lead based perovskite materials
US20080152530A1 (en) Method of preparing ferroelectric powders and ceramics
CN106810252A (en) Precursor solution and method for preparing leadless piezoelectric material material
EP0294991A2 (en) Readily sinterable powder of perovskite type oxide containing group Va element and laminated element obtained therefrom
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
JPS62162670A (en) Manufacture of lead zirconate titanate sintered body
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JP2984758B2 (en) Ceramic composite
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2004026641A (en) Raw material powder for barium titanate sintered compact
JP3710100B2 (en) Manufacturing method of oxide piezoelectric material
JPH10203867A (en) Sintered barium titanate and its production
JP4720004B2 (en) Method for producing crystal-oriented ceramics
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
JP2899755B2 (en) Method for producing PZT powder
JP2985350B2 (en) Method for producing lead-based composite oxide using phase transition method
JP2000001369A (en) High performance electrostrictive ceramics
JPS60141675A (en) Manufacture of light permeable high dielectric ceramic
JPH08239268A (en) Piezoelectric porcelain composition and production of its powder
JPH0262497B2 (en)
JPS62113723A (en) Production of complex perovskite compound
JPS61191518A (en) Production of low-temperature sinterable raw material powder for producing dielectric porcelain
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS60239356A (en) Highly sinterable powder composition containing zirconium asmajor component, manufacture and manufacture of zirconia sintered body