JPH09249967A - High purity barium-strontium titanate sputtering target material and its production - Google Patents

High purity barium-strontium titanate sputtering target material and its production

Info

Publication number
JPH09249967A
JPH09249967A JP8058099A JP5809996A JPH09249967A JP H09249967 A JPH09249967 A JP H09249967A JP 8058099 A JP8058099 A JP 8058099A JP 5809996 A JP5809996 A JP 5809996A JP H09249967 A JPH09249967 A JP H09249967A
Authority
JP
Japan
Prior art keywords
sintered body
purity
target material
strontium titanate
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8058099A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
和男 渡辺
Hitoshi Maruyama
仁 丸山
Terushi Mishima
昭史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8058099A priority Critical patent/JPH09249967A/en
Publication of JPH09249967A publication Critical patent/JPH09249967A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PROBLEM TO BE SOLVED: To produce a high purity dielectric sintered sputtering target used for the formation of a capacitor film of next generation high integrating degree semiconductor memory and to provide a method for producing the same. SOLUTION: This high purity barium-strontium titanate sputtering target material and the method for producing the same are composed of a high purity barium-strontium titanate sputtering target material in which, in a high purity barium-strontium titanate oxide sintered body, the oxide sintered body has a stoichiometric compsn., has 90 to 98% density, 0.1 to 3μm sintered body particle size and >=4N purity and a producing method in which the powder of (Ba, Sr)TiO3-x ((x=0 to 0.05) with >=4N purity is subjected to hot pressing at 1100 to 1300 deg.C in a vacuum or in an inert gas atmosphere to form an oxygen deficient type (Ba, Sr)TiO3-x (x=0.001 to 0.05) sintered body, which is oxidized at 800 to 1100 deg.C in the air or in an oxygen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、次世代高集積度半
導体メモリーのキャパシタ模形成に用いられる高純度誘
電体焼結スパッタリングターゲット材およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity dielectric sintered sputtering target material used for forming a capacitor for a next-generation highly integrated semiconductor memory and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の技術としては、大気中での常圧焼
結法により得られる高純度・化学量論型(絶縁体タイ
プ)(Ba,Sr)TiO3.00ターゲット或いは特開平
7−109566公報に示される様に、(Ba、Sr)
Ti系酸化物粉末を真空ホットプレス法で焼結すること
により、酸素欠損型の酸化物ターゲット材を作り、この
ターゲット材の板厚方向の電気抵抗を100mオ-ム・cm
ないし10オ-ム・cm(印加電圧1.5Vの測定で)とす
ると、ターゲット材が、化学量論型の(Ba,Sr)T
i系酸化物の場合よりも低い印加パワーを印加しても高
い成膜速度が得られるということも知られている。
2. Description of the Related Art As a conventional technique, a high-purity stoichiometric (insulator type) (Ba, Sr) TiO 3.00 target obtained by atmospheric pressure sintering in the atmosphere or JP-A-7-109566. As shown in (Ba, Sr)
An oxygen-deficient oxide target material is produced by sintering Ti-based oxide powder by a vacuum hot pressing method, and the electrical resistance of this target material in the plate thickness direction is 100 m ohm · cm.
Or 10 ohm · cm (at an applied voltage of 1.5 V), the target material is a stoichiometric (Ba, Sr) T
It is also known that a high film formation rate can be obtained even when an applied power lower than that of the i-type oxide is applied.

【0003】[0003]

【発明が解決しようとする課題】上記、大気中での常圧
焼結法により得られる絶縁体タイプのターゲットは、高
密度化に共う粒成長が生じるため、耐熱衝撃性が低く、
ハイレートを得るために高パワーの高周波スパッタリン
グを行うとターゲットが割れる問題があった。耐熱衝撃
性を上げるためには、高純度・微細結晶化することが有
効であるが、大気中常圧焼結法では、高酸素分圧下のた
め粒成長が進み易く、密度90%以上が得られる焼結温
度領域で、平均結晶粒径を3μm以下にするには、不純
物等を添加して粒成長を抑制する必要があり、純度4N
以上の高純度粉末を用いる場合、3μm以下に粒成長を
抑えて密度90%以上の焼結体を得ることは困難であり
問題であった。また、上記せる酸素欠損型の酸化物ター
ゲットは、スパッタリングによるキャパシタ膜形成に当
たり、Ar/O2雰囲気ガス中で成膜した後、膜を大気
中あるいは、酸素雰囲気中で熱処理を行って、不足した
酸素を補い、絶縁体膜を形成するが、一般にスパッタリ
ング時のO2分圧がターゲット材形成時より高いため、
ターゲット材表面に高抵抗酸化膜が生成し、ターゲット
抵抗値が徐々に変化する現象が生じ、スパッタリングレ
ートが変化したり、膜質が変化したりするといった問題
があった。
The above-mentioned insulator type target obtained by the atmospheric pressure sintering method in the atmosphere has a low thermal shock resistance because grain growth occurs together with densification.
There was a problem that the target was cracked when high-power high-frequency sputtering was performed to obtain a high rate. In order to increase the thermal shock resistance, it is effective to carry out high-purity and fine crystallization, but in the atmospheric atmospheric pressure sintering method, grain growth is likely to proceed due to high oxygen partial pressure, and a density of 90% or more can be obtained. In order to reduce the average crystal grain size to 3 μm or less in the sintering temperature range, it is necessary to add impurities or the like to suppress grain growth.
When the above high-purity powder is used, it is difficult and problematic to obtain a sintered body having a density of 90% or more by suppressing grain growth to 3 μm or less. The oxygen deficient oxide target described above was deficient in forming a capacitor film by sputtering, after forming the film in an Ar / O 2 atmosphere gas and then performing heat treatment on the film in the air or in an oxygen atmosphere. Oxygen is supplemented to form an insulator film, but since the O 2 partial pressure during sputtering is generally higher than that during target material formation,
There has been a problem that a high resistance oxide film is formed on the surface of the target material, a phenomenon in which the target resistance value gradually changes, the sputtering rate changes, and the film quality changes.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
耐熱衝撃性が高く、ハイレート、ハイパワーの高周波ス
パッタリング時にもターゲット材が割れたり、ひびが発
生することなく、高速度成膜が可能で、同じくスパッタ
リング時に、スパッタリングレートが変化したり、膜質
の変化が無い高純度(Ba,Sr)Ti系酸化物ターゲ
ット材を見い出すべく鋭意研究を進めたところ、例え
ば、純度4N以上、平均1次粒子径が1μm以下の(B
a,Sr)TiO3ーx(x=0〜0.05)の粉末を、真空
または、不活性ガス雰囲気中1100〜1300℃でホ
ットプレスすると、密度が90〜98%、かつ焼結体平
均粒子径が0.3〜3μmの酸素欠損型(Ba,Sr)
TiO3ーx(x=0.001〜0.05)の焼結体が得ら
れ、この焼結体を大気中または酸素雰囲気中800〜1
100℃で酸化させると、該酸化物焼結体が、純度4N
以上で化学量論組成となり、密度が90〜98%で、か
つ焼結体平均粒子径が0.3〜3μmとなり、この焼結
体が高速成膜に要求される高パワーの高周波スパッタリ
ングに耐え得る性質を持ち、しかもターゲット組成が化
学量論組成であることから、スパッタリング中にターゲ
ット表面に高抵抗酸化膜が形成され、スパッタリンググ
レートや膜質が径時変化したりすることがなく、安定し
たスパッタリングレートと膜質が得られるとの知見を得
たのである。
Means for Solving the Problems Accordingly, the present inventors have
High thermal shock resistance, high-rate, high-power high-frequency sputtering is possible without cracking or cracking of the target material during high-frequency sputtering. High-speed film formation is also possible, and during sputtering, the sputtering rate changes and film quality changes. As a result of intensive research to find a high-purity (Ba, Sr) Ti-based oxide target material that does not have the following, for example, a purity of 4N or more and an average primary particle diameter of 1 μm or less (B
When a, Sr) TiO 3 -x (x = 0 to 0.05) powder is hot pressed at 1100 to 1300 ° C. in a vacuum or an inert gas atmosphere, the density is 90 to 98% and the average sintered body is Oxygen-deficient type (Ba, Sr) with a particle size of 0.3-3 μm
A sintered body of TiO 3 −x (x = 0.001 to 0.05) is obtained, and the sintered body is heated to 800 to 1 in the air or oxygen atmosphere.
When oxidized at 100 ° C., the oxide sintered body has a purity of 4N.
With the above, the stoichiometric composition is achieved, the density is 90 to 98%, and the average particle size of the sintered body is 0.3 to 3 μm, and this sintered body can withstand high-power high-frequency sputtering required for high-speed film formation. The target composition has a stoichiometric composition, and a high-resistance oxide film is formed on the target surface during sputtering, so that sputtering grade and film quality do not change over time, and stable sputtering is achieved. We have obtained the knowledge that rate and film quality can be obtained.

【0005】本発明は、上記の知見に基づいて得られた
ものであり、 (1)高純度チタン酸バリウムストロンチウム酸化物焼
結体において、該酸化物焼結体が、化学量論組成を有
し、密度が90〜98%であり、かつ焼結体平均粒子径
が0.3〜3μmで純度4N以上である高強度チタン酸
バリウムストロンチウムスパッタリングターゲット材。 (2)純度4N以上の(Ba,Sr)TiO3ーx(x=0
〜0.05)の粉末を、真空または不活性ガス雰囲気中
1100〜1300℃で、ホットプレスして酸素欠損型
(Ba,Sr)TiO3ーx(x=0.001〜0.05)
焼結体を、大気または酸素雰囲気中800〜1100℃
で酸化させる(1)記載の高純度チタン酸バリウムスト
ロンチウムスパッタリングターゲット材の製造方法。に
特徴を有するものである。
The present invention has been achieved based on the above findings. (1) In a high-purity barium strontium titanate oxide sintered body, the oxide sintered body has a stoichiometric composition. A high-strength barium strontium titanate sputtering target material having a density of 90 to 98%, a sintered body average particle diameter of 0.3 to 3 μm, and a purity of 4N or more. (2) (Ba, Sr) TiO 3 -x (x = 0) with a purity of 4N or more
~ 0.05) powder is hot-pressed in a vacuum or an inert gas atmosphere at 1100 to 1300 ° C to perform oxygen deficiency type (Ba, Sr) TiO 3 -x (x = 0.001 to 0.05).
Sinter the sintered body in the air or oxygen atmosphere at 800 to 1100 ° C.
The method for producing a high-purity barium strontium titanate sputtering target material according to (1), wherein the target material is oxidized by. It is characterized by the following.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て、具体的に説明する。本発明では、粒成長を伴わない
低酸素分圧下である真空または不活性ガス雰囲気で、ホ
ットプレス焼結することにより、密度90%以上(98
%以下),平均結晶粒径3μm以下の高密度・微細組織
焼結体を作製する。この焼結体には、酸素欠損が生じて
おり、この焼結体の欠損している酸素を補う目的で、大
気または酸素雰囲気中、著しい粒成長の生じない温度で
ある800〜1100℃で熱処理を行うことにより、絶
縁体化した白色焼結体を得ることが出来、この焼結体を
用いてターゲットを構成すると、耐熱衝撃性が高く、ハ
イレート、ハイパワーの高周波スパッタリングに耐え、
高速度成膜が可能で、同じくスパッタリング時に、スパ
ッタリングレートが変化したり、膜質の変化が無い高純
度(Ba,Sr)Ti系酸化物ターゲットが得られるの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. In the present invention, the density is 90% or more (98% or more) by performing hot press sintering in a vacuum or an inert gas atmosphere under a low oxygen partial pressure without grain growth.
%), And a high density and fine structure sintered body having an average crystal grain size of 3 μm or less is produced. Oxygen deficiency has occurred in this sintered body, and for the purpose of supplementing the oxygen deficient in this sintered body, heat treatment is performed in the air or an oxygen atmosphere at 800 to 1100 ° C., which is a temperature at which significant grain growth does not occur. By performing the above, it is possible to obtain an insulating white sintered body, and when a target is formed by using this sintered body, the thermal shock resistance is high, and it withstands high-rate, high-power high-frequency sputtering,
A high-purity (Ba, Sr) Ti-based oxide target that does not change in the sputtering rate or film quality during sputtering can be obtained because high-speed film formation is possible.

【0007】なお、上述の如く、数値限定した理由につ
いて説明する。 (イ)酸化物焼結体の密度 該密度は高速成膜の要求される高パワーの高周波スパッ
タリングに耐え得るターゲット強度の調整と、スパッタ
ーレートと膜質とを安定化させる作用があるが、この値
が90%未満では、上記のスパッタリング条件下で耐え
得るターゲット強度が得られず、一方その値が98%を
越えると、再酸化工程で完全に再酸化出来ないため、上
述のスパッターレートと膜質の安定化が期待出来ないの
で、その値を90〜98%に定めた。
The reason for limiting the numerical values as described above will be described. (A) Density of oxide sintered body The density has the function of adjusting the target strength that can withstand high-power high-frequency sputtering required for high-speed film formation, and stabilizing the sputter rate and film quality. If the ratio is less than 90%, the target strength that can be endured under the above sputtering conditions cannot be obtained. On the other hand, if the value exceeds 98%, the reoxidation process cannot completely reoxidize the target. Since stabilization cannot be expected, the value was set to 90 to 98%.

【0008】(ロ)焼結体平均粒子径 焼結体平均粒子径は、高速成膜に要求される高パワーの
スパッタリング耐性を調整する作用があるが、この値が
3μmを越えると上記作用が十分得られず耐性が得られ
ない。一方その値が0.3μm未満では、酸化物焼結体
の原料粉の細粒化の限界に達するので、その値を0.3
〜3μmに定めた。
(B) Average particle size of sintered body The average particle size of the sintered body has a function of adjusting the high-power sputtering resistance required for high-speed film formation. If this value exceeds 3 μm, the above-mentioned function is obtained. It is not possible to obtain sufficient resistance. On the other hand, if the value is less than 0.3 μm, the limit of atomization of the raw material powder of the oxide sintered body is reached.
˜3 μm.

【0009】(ハ)酸化物焼結体の純度 純度4N未満では、高性能の誘電体膜が形成されないの
で、その値を4N以上とした。
(C) Purity of oxide sintered body If the purity is less than 4N, a high-performance dielectric film cannot be formed. Therefore, the value is set to 4N or more.

【0010】(二)ホットプレス時の温度 この温度は、酸化物焼結体の密度、粒子径を調整する作
用をするが、純度4N以上の原料粉のホットプレスの場
合、その値が1100℃未満では、必要な高密度が得ら
れず、一方その値が1300℃を越えると、粒成長が生
じて、必要な粒子径が得られないで、その値を1100
〜1300℃に定めた。
(2) Temperature during hot pressing This temperature acts to adjust the density and particle size of the oxide sintered body, but in the case of hot pressing raw material powder having a purity of 4N or more, the value is 1100 ° C. If the value is less than 1300, the required high density cannot be obtained. On the other hand, if the value exceeds 1300 ° C, grain growth occurs and the required particle size cannot be obtained.
-1300 ° C.

【0011】(ホ)再酸化温度 真空または不活性雰囲気ホットプレスにおいて、この温
度は、酸化物焼結体の酸素欠損量を調整する作用がある
が、その値が800℃未満では、上述の化学量論組成に
達するまでに完全に再酸化することが出来ない。一方、
その値が1100℃を越えると、焼結体の結晶粒径が3
μmを越えて粒成長するので、その値を800〜110
0℃に定めた。
(E) Reoxidation temperature In vacuum or hot pressing in an inert atmosphere, this temperature has the function of adjusting the amount of oxygen vacancies in the oxide sintered body. It cannot be completely reoxidized by the time the stoichiometric composition is reached. on the other hand,
When the value exceeds 1100 ° C, the crystal grain size of the sintered body becomes 3
Since grain growth exceeds μm, the value is 800-110.
It was set to 0 ° C.

【0012】[0012]

【実施例】以下、本発明の実施例について、具体的に説
明する。再結晶法により高純度化を行った酢酸バリウム
と酢酸ストロンチウムを、それぞれ熱分解することで高
純度BaOおよびSrO粉末を得た。また、蒸留法によ
って高純度化を行ったチタンテトラプロポキシドをイソ
プロピルアルコールに溶かし、水を加えて加水分解し、
熱処理を行って高純度TiO2粉末を得た。これら粉末
をそれぞれ所定の割合で混合し、熱処理を行って4N以
上の純度のペロブスカイト型結晶構造を有した(Ba
0.5Sr0.5)TiO3.00組成で、0.1〜1μmの各種の
平均一次粒子径を有する粉末を得た。次いで、表1に示
した平均一次粒子径を有する上記粉末を、それぞれ直径
130mmの焼結体が得られるホットプレスグラファイ
トモールドに充填し、表1に示した雰囲気、温度で、圧
力200kgf/cm2、保持時間3hrの条件でホッ
トプレスを行い、直径128mm、厚さ7mmの表1に
示した密度(相対密度)のそれぞれの焼結体を得た。こ
れら焼結体の表面を研磨して、表面反応層を除去した後
の外観は黒灰色を呈していた。外周部分からサンプリン
グした試料の組成分析の結果、表1に示す様なそれぞれ
の組成となっており、還元雰囲気中で焼結したために酸
素欠損していた。焼結体の組成および焼結体研磨面のS
EM観察による粒子径はそれぞれ表1に示した値になっ
ていた。
EXAMPLES Examples of the present invention will be specifically described below. High-purity BaO and SrO powders were obtained by thermally decomposing barium acetate and strontium acetate that were highly purified by the recrystallization method. Further, titanium tetrapropoxide highly purified by the distillation method is dissolved in isopropyl alcohol, and water is added for hydrolysis,
Heat treatment was performed to obtain high-purity TiO 2 powder. Each of these powders was mixed at a predetermined ratio and heat-treated to have a perovskite type crystal structure having a purity of 4N or more (Ba.
A powder having a composition of 0.5 Sr 0.5 TiO 3.00 and various average primary particle diameters of 0.1 to 1 μm was obtained. Then, the above-mentioned powders having the average primary particle diameter shown in Table 1 were filled in a hot-press graphite mold from which a sintered body having a diameter of 130 mm was obtained, and the atmosphere and temperature shown in Table 1 were used and the pressure was 200 kgf / cm 2. Then, hot pressing was performed under the condition of holding time of 3 hours to obtain each sintered body having a density (relative density) shown in Table 1 having a diameter of 128 mm and a thickness of 7 mm. The surface of these sintered bodies was polished to remove the surface reaction layer, and the appearance was black gray. As a result of the composition analysis of the sample sampled from the outer peripheral portion, the respective compositions were as shown in Table 1, and oxygen deficiency was caused by sintering in the reducing atmosphere. Composition of sintered body and S of polished surface of sintered body
The particle diameters obtained by EM observation were the values shown in Table 1, respectively.

【0013】[0013]

【表1】 [Table 1]

【0014】次いで、これら焼結体を同じく表2に示す
雰囲気、温度で保持時間3時間、昇温速度2℃/分、降
温速度2℃/分の条件で、それぞれ再酸化熱処理を行っ
たところ、外観は白色となった。試料の組成分析の結
果、いずれも(Ba0.5Sr0. 5)TiO3.00の化学量論組
成となっていた。また焼結体研磨面のSEM観察から粒
子径は、表2に示す通り、いずれの場合も殆ど粒成長し
ていなかった。また、組成、純度、比抵抗値をそれぞれ
測定し、その結果を同じく表2に示した。これらの焼結
体を、本発明高純度チタン酸バリウムストロンチウムス
パッタリングターゲット材1〜7(以下本発明ターゲッ
ト材1〜7という)とした。
Then, these sintered bodies were respectively subjected to reoxidation heat treatment under the conditions shown in Table 2 under the conditions of a holding time of 3 hours, a temperature rising rate of 2 ° C./minute, and a temperature lowering rate of 2 ° C./minute. , The appearance became white. Composition analysis of the sample, either (Ba 0.5 Sr 0. 5) has been a stoichiometry of TiO 3.00. As shown in Table 2, the SEM observation of the polished surface of the sintered body showed almost no grain growth in any case. Further, the composition, the purity and the specific resistance value were measured, and the results are also shown in Table 2. These sintered bodies were used as high purity barium strontium titanate sputtering target materials 1 to 7 of the present invention (hereinafter referred to as target materials 1 to 7 of the present invention).

【0015】[0015]

【表2】 [Table 2]

【0016】次いで、比較のために、表3に示す1次粒
子径、組成を有する表3に示す条件で焼結した直径12
8mm、厚さ7mmの焼結体を作製した。これら焼結体
はいずれも絶縁体タイプの(Ba、Sr)Ti系酸化物
焼結体であった。これら焼結体を従来ターゲット材1〜
3とした。また、上記本発明ターゲット材と同様にし
て、粒子径、純度および比抵抗値を測定し、その結果を
同じ様に表3に示した。
Then, for comparison, the diameter 12 obtained by sintering under the conditions shown in Table 3 having the primary particle diameter and the composition shown in Table 3
A sintered body having a thickness of 8 mm and a thickness of 7 mm was produced. All of these sintered bodies were insulator type (Ba, Sr) Ti-based oxide sintered bodies. These sintered bodies are conventional target materials 1 to
It was set to 3. Further, the particle size, the purity and the specific resistance value were measured in the same manner as the target material of the present invention, and the results are also shown in Table 3.

【0017】[0017]

【表3】 [Table 3]

【0018】次いで、同様に比較のために、表4に示す
原料粉1次粒子径を有する粉末を、それぞれ直径130
mmの焼結体が得られるホットプレスグラファイトモー
ルドに充填し、表4に示した温度で、真空雰囲気中、圧
力200kgf/cm2、保持時間3hrの条件でホッ
トプレスを行い、直径128mm、厚さ7mmの表4に
示した密度(相対密度)のそれぞれの焼結体を得た。こ
れら焼結体はいずれも酸素欠損型の(Ba、Sr)Ti
系酸化物焼結体であった。これら焼結体を従来ターゲッ
ト材4〜10とした。また、上記本発明ターゲット材と
同様にして、平均粒子径、純度および比抵抗値を測定
し、その結果を同じ様に表4に示した。
Then, similarly for comparison, powders having the primary particle diameters of the raw material powders shown in Table 4 were each prepared to have a diameter of 130.
It was filled in a hot-pressed graphite mold from which a sintered body of mm was obtained, and hot-pressed at a temperature shown in Table 4 in a vacuum atmosphere under a pressure of 200 kgf / cm 2 and a holding time of 3 hours to obtain a diameter of 128 mm and a thickness. 7 mm of each sintered body having the density (relative density) shown in Table 4 was obtained. All of these sintered bodies are oxygen-deficient (Ba, Sr) Ti.
It was a system oxide sintered body. These sintered bodies were used as conventional target materials 4 to 10. Further, the average particle diameter, the purity and the specific resistance value were measured in the same manner as the target material of the present invention, and the results are also shown in Table 4.

【0019】[0019]

【表4】 [Table 4]

【0020】上記の本発明ターゲット材1〜7と従来タ
ーゲット材1〜10をそれぞれ直径125mm、厚さ5
mmに加工し、銅製バッキングプレートにIn−Snハ
ンダを用いてボンディングしスパッタリングターゲット
とし、ターゲット1〜7(以下、本発明ターゲット1〜
7という)およびターゲッ1〜10(以下、従来ターゲ
ット1〜10という)を作製した。
The target materials 1 to 7 of the present invention and the conventional target materials 1 to 10 are each 125 mm in diameter and 5 in thickness.
mm, processed with a backing plate made of copper using In-Sn solder to bond to a sputtering target.
7) and targets 1 to 10 (hereinafter referred to as conventional targets 1 to 10).

【0021】上記本発明ターゲット1〜7および従来タ
ーゲット1〜10を用いて下記に示したスパッタリング
条件で、スパッタリング試験を行いそれぞれのパワ−に
対し、スパッタリングレートの経時変化を測定し、この
結果を表5および6に示した。 スパッタリング条件 ターゲット:Φ125×5t 基板 :Φ5”Siウエハ− S−T距離:60(mm) 基板加熱:600(℃) ガス圧 :8×10ー3Torr 分圧比 :Ar/O2=1/1 RFパワ−印加方法:300W〜1200W(段階的に
昇圧)×1、2または3hrキ−プ
Using the targets 1 to 7 of the present invention and the targets 1 to 10 of the prior art, a sputtering test was conducted under the following sputtering conditions, and changes in the sputtering rate with time were measured for each power. The results are shown in Tables 5 and 6. Sputtering conditions Target: Φ125 × 5t Substrate: Φ5 ″ Si wafer-ST distance: 60 (mm) Substrate heating: 600 (° C.) Gas pressure: 8 × 10 −3 Torr partial pressure ratio: Ar / O 2 = 1/1 RF power application method: 300 W to 1200 W (step-up voltage increase) x 1, 2 or 3 hr keeper

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【発明の効果】表5および6から明らかな様に、本発明
ターゲット1〜7は従来ターゲット1〜10に較べ、ス
パッタリング時のレートの変動が少なく、スパッタリン
グ時にターゲット材でのひび割れ等の発生もなく優れて
いることが判る。 これは、本発明ターゲット材を、例
えば1次粒子径が1μm以下の微粉末を用いて酸素欠損
型(Ba,Sr)TiO3ーx(x=0.001〜0.0
5)の焼結体を作り、これを再酸化させて、化学量論組
成を有する4N以上の高純度チタン酸バリウムストロン
チウム酸化物焼結体とし、この焼結体の密度が90〜9
8%でかつ焼結体粒子径が0.3〜3μmとなり高密
度.微細組成となるため、高パワーハイレートスパッタ
リング時においても十分な耐性を持ち、ターゲット材に
ひび割れ等の発生が認められなくなるためである。本発
明ターゲット材を利用することにより産業界に広く貢献
するものである。
As is clear from Tables 5 and 6, the targets 1 to 7 of the present invention have a smaller fluctuation in the rate during sputtering than the conventional targets 1 to 10, and the occurrence of cracks or the like in the target material during sputtering. It turns out that it is excellent. This is because the target material of the present invention is an oxygen-deficient (Ba, Sr) TiO 3 —x (x = 0.001 to 0.0) prepared by using, for example, fine powder having a primary particle size of 1 μm or less.
The sintered body of 5) is prepared and reoxidized to obtain a high-purity barium strontium titanate oxide sintered body of 4N or more having a stoichiometric composition, and the density of this sintered body is 90 to 9
8% and the sintered body particle diameter is 0.3 to 3 μm, which is high density. This is because the fine composition has sufficient resistance even during high-power high-rate sputtering, and the occurrence of cracks or the like in the target material is not recognized. By utilizing the target material of the present invention, it contributes widely to the industrial world.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高純度チタン酸バリウムストロンチウム酸
化物焼結体において、該酸化物焼結体が、化学量論組成
を有し、密度が90〜98%であり、かつ焼結体平均粒
子径が0.3〜3μmで、純度4N以上であることを特
徴とする高純度チタン酸バリウムストロンチウムスパッ
タリングターゲット材。
1. A high-purity barium strontium titanate oxide sintered body having a stoichiometric composition, a density of 90 to 98%, and an average particle diameter of the sintered body. Is 0.3 to 3 μm and has a purity of 4N or more. A high-purity barium strontium titanate sputtering target material.
【請求項2】純度4N以上の(Ba,Sr)TiO
3ーx(x=0〜0.05)の粉末を、真空または不活性ガ
ス雰囲気中1100〜1300℃でホットプレスして作
製した酸素欠損型(Ba,Sr)TiO3ーx(x=0.0
01〜0.05)焼結体を、大気または酸素雰囲気中8
00〜1100℃で酸化させることを特徴とする請求項
1記載の高純度チタン酸バリウムストロンチウムスパッ
タリングターゲット材の製造方法。
2. A (Ba, Sr) TiO having a purity of 4N or more.
Oxygen-deficient (Ba, Sr) TiO 3 -x (x = 0) prepared by hot pressing a powder of 3-x (x = 0 to 0.05) at 1100 to 1300 ° C. in a vacuum or an inert gas atmosphere. .0
01-0.05) Sintered body in air or oxygen atmosphere 8
The method for producing a high-purity barium strontium titanate sputtering target material according to claim 1, wherein the oxidation is performed at 00 to 1100 ° C.
JP8058099A 1996-03-14 1996-03-14 High purity barium-strontium titanate sputtering target material and its production Pending JPH09249967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8058099A JPH09249967A (en) 1996-03-14 1996-03-14 High purity barium-strontium titanate sputtering target material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8058099A JPH09249967A (en) 1996-03-14 1996-03-14 High purity barium-strontium titanate sputtering target material and its production

Publications (1)

Publication Number Publication Date
JPH09249967A true JPH09249967A (en) 1997-09-22

Family

ID=13074517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8058099A Pending JPH09249967A (en) 1996-03-14 1996-03-14 High purity barium-strontium titanate sputtering target material and its production

Country Status (1)

Country Link
JP (1) JPH09249967A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054166C (en) * 1997-11-14 2000-07-05 中国科学院固体物理研究所 Preparing method for inlaid dimension controllable nanometre grade silver particle on barium titanate film
US6331234B1 (en) 1999-06-02 2001-12-18 Honeywell International Inc. Copper sputtering target assembly and method of making same
US6451222B1 (en) * 1999-12-16 2002-09-17 Honeywell International Inc. Ferroelectric composition, ferroelectric vapor deposition target and method of making a ferroelectric vapor deposition target
US6849139B2 (en) 1999-06-02 2005-02-01 Honeywell International Inc. Methods of forming copper-containing sputtering targets
JP2007223899A (en) * 2007-06-06 2007-09-06 Nikko Kinzoku Kk MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING
JP2009270135A (en) * 2008-05-01 2009-11-19 Fujifilm Corp Film deposition method
CN102485378A (en) * 2010-12-06 2012-06-06 北京有色金属研究总院 Preparation method of ruthenium metal sputtering target material
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
WO2013150831A1 (en) * 2012-04-02 2013-10-10 ソニー株式会社 Sputtering target, sputtering target manufacturing method, barium titanate thin film manufacturing method, and thin film capacitor manufacturing method
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054166C (en) * 1997-11-14 2000-07-05 中国科学院固体物理研究所 Preparing method for inlaid dimension controllable nanometre grade silver particle on barium titanate film
US6331234B1 (en) 1999-06-02 2001-12-18 Honeywell International Inc. Copper sputtering target assembly and method of making same
US6645427B1 (en) 1999-06-02 2003-11-11 Honeywell International Inc. Copper sputtering target assembly and method of making same
US6849139B2 (en) 1999-06-02 2005-02-01 Honeywell International Inc. Methods of forming copper-containing sputtering targets
US6451222B1 (en) * 1999-12-16 2002-09-17 Honeywell International Inc. Ferroelectric composition, ferroelectric vapor deposition target and method of making a ferroelectric vapor deposition target
US6579467B2 (en) 1999-12-16 2003-06-17 Honeywell International Inc. Ferroelectric composition, ferroelectric vapor deposition target and method of making a ferroelectric vapor deposition target
US6746619B2 (en) * 1999-12-16 2004-06-08 Honeywell International Inc. Ferroelectric vapor deposition targets
US6858102B1 (en) 2000-11-15 2005-02-22 Honeywell International Inc. Copper-containing sputtering targets, and methods of forming copper-containing sputtering targets
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2007223899A (en) * 2007-06-06 2007-09-06 Nikko Kinzoku Kk MANUFACTURING METHOD OF BaxSr1-xTiO3-y TARGET MATERIAL FOR SPATTERING
JP2009270135A (en) * 2008-05-01 2009-11-19 Fujifilm Corp Film deposition method
CN102485378A (en) * 2010-12-06 2012-06-06 北京有色金属研究总院 Preparation method of ruthenium metal sputtering target material
WO2013150831A1 (en) * 2012-04-02 2013-10-10 ソニー株式会社 Sputtering target, sputtering target manufacturing method, barium titanate thin film manufacturing method, and thin film capacitor manufacturing method
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology

Similar Documents

Publication Publication Date Title
JP3346167B2 (en) High-strength dielectric sputtering target, method for producing the same, and film
JPH11322332A (en) Zno-based sintered product and its production
KR20140116182A (en) Oxide sintered body and sputtering target, and method for manufacturing same
JPH09249967A (en) High purity barium-strontium titanate sputtering target material and its production
JPH0817245A (en) Ferro-electric thin film and manufacture thereof
JP4790118B2 (en) Oxide sintered body and manufacturing method thereof
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
JPH02225367A (en) Production of dielectric ceramics
CN113149614A (en) Sintered body, target material and preparation method thereof
JP2982295B2 (en) Sputtering target and method for manufacturing the same
JP2017154910A (en) Oxide sintered body and sputtering target
JP3127831B2 (en) Sputtering target for high dielectric film formation
JPWO2009044898A1 (en) Indium oxide-based transparent conductive film and method for producing the same
JPH10330169A (en) Production of ceramic sintered compact
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
KR100494610B1 (en) High-Density Sputtering Target for Forming High-Dielectric Films
JP3129046B2 (en) Sputtered sintered target material with excellent thermal shock resistance
JPH11323539A (en) Sputtering target material for forming bi-sr-ta-o ferroelectric thin film and formation using it
JPH07145479A (en) Sputtering target
JP2982298B2 (en) Sputtering target and method for manufacturing the same
JP3134405B2 (en) Method for producing indium oxide / tin oxide sintered body
CN115304383A (en) Aluminum nitride substrate and preparation method and application thereof
JPH073444A (en) Sputtering sintered target material for forming dielectric thin film of semiconductor device excellent in resistance to crack damage
JPH05327146A (en) Ceramic substrate for hybrid ic and manufacturing method thereof
JPH062124A (en) Production of indium oxide-tin oxide sputtering target

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001114