JPH03285865A - Transparent alumina ceramics and production thereof - Google Patents

Transparent alumina ceramics and production thereof

Info

Publication number
JPH03285865A
JPH03285865A JP2085993A JP8599390A JPH03285865A JP H03285865 A JPH03285865 A JP H03285865A JP 2085993 A JP2085993 A JP 2085993A JP 8599390 A JP8599390 A JP 8599390A JP H03285865 A JPH03285865 A JP H03285865A
Authority
JP
Japan
Prior art keywords
mgo
weight
molded body
less
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085993A
Other languages
Japanese (ja)
Inventor
Masato Matsui
松井 政人
Teruo Kondo
近藤 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2085993A priority Critical patent/JPH03285865A/en
Publication of JPH03285865A publication Critical patent/JPH03285865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain Al2O3 ceramics having superior strength and light transmittance by mixing high purity Al2O3 powder with a very small amt. of MgO as a sintering aid, molding the mixture into a prescribed shape and sintering this molded body under specified conditions in a nonoxidizing atmosphere. CONSTITUTION:A powdery mixture of >99.9wt.% fine powder of high purity AL2O3 having 99.99% purity, <=1mum average particle size and 3-15m<2>/g specific surface area with <0.1wt.% fine powder of MgO as a sintering aid is press- molded into a prescribed shape. This molded body is put in a nonoxidizing heating furnace such as a hydrogen furnace or a vacuum furnace, where it is sintered at 1,650-1,750 deg.C max. temp. In this case, the molded body is heated from 1,400 deg.C to the max. temp. at a low heating rate of <=60 deg.C/hr and a sheetlike bod having 8-15mum average grain size and <=0.35mm thickness is formed by sinlering. Transparent alumina ceramics having such high transmittance as to transmit <=70% of UV having 2,537Angstrom wavelength and high strength is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、EP−ROM用パッケージの窓や、高圧放電
灯の発光管などに用いられる透光性アルミナセラミック
スおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to translucent alumina ceramics used for windows of EP-ROM packages, arc tubes of high-pressure discharge lamps, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

透光性アルミナセラミックスは、従来より広く一般に使
用されている。その製造方法については、特公昭39−
240号公報などに示されるように、純度99.9重量
%以上、粒径1μm以下のアルミナ原料に、0.03〜
0.5重量%のMgOを添加した後、所定の形状に成形
し、1000〜1300℃の大気中で仮焼した後、水素
炉、真空炉などの非酸化性雰囲気中において、昇温速度
100℃/時程度、最高焼成温度1750〜1900℃
で0.5〜5時間保持して焼成するようになっていた。
Translucent alumina ceramics have been widely used in the past. Regarding its manufacturing method, please refer to
As shown in Japanese Patent Application No. 240, etc., an alumina raw material with a purity of 99.9% by weight or more and a particle size of 1 μm or less is mixed with 0.03~
After adding 0.5% by weight of MgO, it is molded into a predetermined shape and calcined in the air at 1000 to 1300°C, and then heated at a heating rate of 100% in a non-oxidizing atmosphere such as a hydrogen furnace or a vacuum furnace. ℃/hour, maximum firing temperature 1750-1900℃
It was supposed to be held for 0.5 to 5 hours and fired.

このように、高純度のアルミナ原料を高温で焼成するこ
とによって、結晶粒径を20μm以上に成長させ、透光
性をもたせたものが一般であった。
In this way, by firing a high-purity alumina raw material at a high temperature, the crystal grain size was grown to 20 μm or more, and it was generally made to have translucency.

〔従来技術の課題〕[Issues with conventional technology]

ところが、−船釣にセラミックスの結晶粒径を大きくす
るほど抗折強度は低下し、上記のごとき従来の透光性ア
ルミナセラミックスでは、抗折強度2500Kgf /
cm2程度しかなかった。また、従来の製造方法では昇
温速度が速いために内部の気孔が消滅しきれず、透光性
についても優れたものではなかった。
However, as the crystal grain size of the ceramic for boat fishing increases, the flexural strength decreases, and the conventional translucent alumina ceramics described above have a flexural strength of 2500 Kgf/
It was only about cm2. Furthermore, in the conventional manufacturing method, the internal pores could not be completely eliminated due to the rapid temperature increase rate, and the light transmittance was also not excellent.

そのため、EP−ROM用パフケージの窓のように、厚
み0.5 mm以下の薄板状で、優れた強度、透光度を
必要とするものには用いることができなかった。
Therefore, it could not be used in a thin plate with a thickness of 0.5 mm or less, such as a window in a puff cage for an EP-ROM, which requires excellent strength and light transmittance.

そこで、特開昭63−242964号に示されるように
、焼成温度を1450−1600℃と低くして、結晶粒
径を8μ請以下とし、抗折強度を高めたものも提案され
ていたが、やはり、波長2537人の紫外線透過率が4
0〜70%と低く 、BP−ROM用パフケージの窓と
しては不適当であった。
Therefore, as shown in JP-A No. 63-242964, a method was proposed in which the firing temperature was lowered to 1450-1600°C, the crystal grain size was reduced to 8 μm or less, and the bending strength was increased. As expected, the UV transmittance of 2,537 people is 4.
It was low at 0 to 70%, making it unsuitable as a window for a puff cage for BP-ROM.

〔発明の目的〕[Purpose of the invention]

本発明は上記課題を解決するためになされたものであり
、BP−ROM用パッケージの窓として最適な、すぐれ
た強度と優れた透光性を同時に兼ね備えた透光性アルミ
ナセラミックスを得ることを目的とする。
The present invention was made in order to solve the above problems, and its purpose is to obtain a translucent alumina ceramic that has both excellent strength and excellent translucency, and is ideal for use as a window for a BP-ROM package. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、99.9重量%以上の八1□03と0,1重
量%以下のMgOからなるセラミックス原料を所定形状
に成形した後、水素炉、真空炉などの非酸化性雰囲気中
において、最高焼成温度1650〜1750℃で、14
00℃から最高焼成温度までの昇温速度を60℃/時以
下として焼成することを特徴とする。
In the present invention, after forming a ceramic raw material consisting of 99.9% by weight or more of 81□03 and 0.1% by weight or less of MgO into a predetermined shape, in a non-oxidizing atmosphere such as a hydrogen furnace or a vacuum furnace, Maximum firing temperature 1650-1750℃, 14
It is characterized in that firing is performed at a rate of temperature increase from 00°C to the maximum firing temperature of 60°C/hour or less.

この製造方法によれば、最高焼成温度が低いため、焼結
体の平均結晶粒径を8〜15μmと小さくでき、強度を
4500kgf /cm”以上と高められるだけでなく
、昇温速度を遅くし、ゆっくり焼成することから、内部
の気孔を消滅させやすく、平均気孔径を小さくできるこ
とから、厚み0.35n+mにおける波長2537人の
紫外線透過率が70%以上の透光性アルミナセラミック
スを得ることができる。
According to this manufacturing method, since the maximum firing temperature is low, the average crystal grain size of the sintered body can be reduced to 8 to 15 μm, and the strength can be increased to 4500 kgf/cm or more, and the heating rate can be slowed down. Since it is fired slowly, internal pores can be easily eliminated and the average pore diameter can be reduced, making it possible to obtain translucent alumina ceramics with a UV transmittance of 70% or more at a wavelength of 2537 at a thickness of 0.35 nm+m. .

上記原料組成において、MgOは一部がアルミナ結晶中
に固溶して粒成長抑制剤として働くが、残部は結晶粒界
でスピネルを形成して透光性を悪くしてしまう。したが
ってMgOの添加量は0.1重量%以下、好ましくは0
.03〜0.07重量%の微量とし、また、焼成中に、
異常粒成長を起こさない程度にMgOを蒸発させること
が好ましい。
In the above raw material composition, a part of MgO is solidly dissolved in the alumina crystal and acts as a grain growth inhibitor, but the remaining part forms spinel at the grain boundaries and deteriorates the light transmittance. Therefore, the amount of MgO added is 0.1% by weight or less, preferably 0.
.. A trace amount of 03 to 0.07% by weight, and during firing,
It is preferable to evaporate MgO to an extent that does not cause abnormal grain growth.

さらに、焼結助剤は上記微量のMgOのみであるから、
アルミナ原料粉末として、純度99.99%以上、平均
粒径1μm以下、比表面積3〜15m”/gの活性度の
良いものを用いる必要がある。
Furthermore, since the sintering aid is only the above-mentioned trace amount of MgO,
As the alumina raw material powder, it is necessary to use one having a purity of 99.99% or more, an average particle size of 1 μm or less, and a specific surface area of 3 to 15 m''/g and good activity.

また、焼成時の雰囲気は、水素雰囲気、真空雰囲気など
の非酸化性雰囲気とすることによって内部の気孔を消滅
させやすく、透光性を高めることができる。
Further, by setting the atmosphere during firing to a non-oxidizing atmosphere such as a hydrogen atmosphere or a vacuum atmosphere, internal pores can be easily eliminated and translucency can be improved.

さらに、最高焼成温度が1750℃よりも高いと、結晶
粒径が大きくなって強度が低くなるだけでなく、厚み0
.5 w+m以下の薄板体を焼成するとMgOがほとん
ど蒸発して異常粒成長を生じてしまう。−方最高焼成温
度が1650℃より低いと、結晶粒径が8μ−より小さ
くなって、厚み0.35mmにおける波長2537人の
紫外線透過率が70%より低くなってしまい、EP−R
OM用パッケージの窓としては不適当となる。
Furthermore, if the maximum firing temperature is higher than 1750°C, the crystal grain size not only increases and the strength decreases, but also the thickness decreases to 0.
.. If a thin plate body of 5 w+m or less is fired, most of the MgO will evaporate and abnormal grain growth will occur. If the maximum firing temperature is lower than 1650℃, the crystal grain size will be smaller than 8μ, and the UV transmittance at a wavelength of 2537 at a thickness of 0.35mm will be lower than 70%, resulting in EP-R
It is unsuitable as a window for an OM package.

また、アルミナの焼成において、1400〜1700℃
の間が結晶の粒成長が最も著しく、この時の昇温速度が
60℃/時よりも速いと、粒成長の速度に気孔の消滅速
度(拡散速度)がついてゆけず、内部に気孔が残留して
しまい、透光度、強度を低下させてしまう。したがって
、1400℃〜最高焼成温度の昇温速度は60℃/時以
下、好ましくは30”c/時時下下よい。また、最高焼
成温度での保持時間は3時間以上必要である。
In addition, in firing alumina, 1400 to 1700℃
The grain growth of the crystals is most remarkable between 200 and 300°C, and if the temperature increase rate at this time is faster than 60°C/hour, the rate of disappearance of pores (diffusion rate) cannot keep up with the rate of grain growth, and pores remain inside. This results in a decrease in light transmittance and strength. Therefore, the temperature increase rate from 1400 DEG C. to the maximum firing temperature is 60 DEG C./hour or less, preferably 30"C/hour or less. Further, the holding time at the maximum firing temperature is required to be 3 hours or more.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

純度99.99%、平均粒径0.5μm、比表面積5.
0m2/ gのアルミナ原料粉末に、第1表に示すよう
に0.035〜0.07重量%(7)MgOを添加し、
ボールミルにて粉砕混合後、成形助剤として有機バイン
ダーを合計4〜7重量%添加し、スプレードライヤーに
て乾燥造粒した。次に、この造粒粉末を2 ton /
cm2以上の圧力で焼成後の厚み0.35mmとなるよ
うにプレス成形し、大気炉中1070℃で仮焼してバイ
ンダーを除去した後、真空炉により焼成を行った。
Purity 99.99%, average particle size 0.5 μm, specific surface area 5.
Add 0.035 to 0.07% by weight (7) MgO to 0 m2/g of alumina raw material powder as shown in Table 1,
After pulverization and mixing using a ball mill, a total of 4 to 7% by weight of an organic binder was added as a molding aid, and the mixture was dried and granulated using a spray dryer. Next, this granulated powder was added at a rate of 2 tons/
The material was press-molded at a pressure of cm2 or higher to have a thickness of 0.35 mm after firing, calcined in an air furnace at 1070°C to remove the binder, and then fired in a vacuum furnace.

第1表に示すように、最高焼成温度、および1400℃
〜最高焼成温度の昇温速度を変化させ、得られた一焼結
体について、波長2573人の紫外線透過率、3点曲げ
強度、平均結晶粒径を測定した。結果は第1表の通りで
ある。
As shown in Table 1, the maximum firing temperature and 1400℃
~The heating rate of the maximum firing temperature was varied, and the ultraviolet transmittance at a wavelength of 2573, the three-point bending strength, and the average crystal grain size were measured for each sintered body obtained. The results are shown in Table 1.

C以下余白〕 第1表より、階1は最高焼成温度が1750°Cと高い
ため、MgOが蒸発しすぎて異常粒成長を起こした。ま
た、11h5.6は1400℃〜最高焼成温度の昇温速
度が100℃/時以上と速すぎるため、気孔が残留し、
紫外線透過率、曲げ強度共に低かった。さらに階3は、
プレス圧を下げて生密度を2.20g/cm3と小さく
したため、曲げ強度、紫外線透過率が共に低かった。
Margins below C] From Table 1, since the maximum firing temperature of floor 1 was as high as 1750°C, excessive evaporation of MgO caused abnormal grain growth. In addition, in 11h5.6, the temperature increase rate from 1400°C to the maximum firing temperature was 100°C/hour or more, which was too fast, so pores remained.
Both UV transmittance and bending strength were low. Furthermore, on the third floor,
Since the press pressure was lowered to reduce the green density to 2.20 g/cm3, both the bending strength and the ultraviolet transmittance were low.

これらに対し、本発明実施例である11h2. 47.
8,9.10のものは、いずれも紫外線透過率70%以
上、曲げ強度4500 kgf/cm”と優れていた。
In contrast, 11h2. which is an example of the present invention. 47.
8 and 9.10 had excellent ultraviolet transmittance of 70% or more and bending strength of 4500 kgf/cm''.

〔発明の効果〕〔Effect of the invention〕

軟土のように本発明によれば、99.9重量%以上のA
1zO3と焼結助剤として0.1重量%以下のMgOを
混合して所定形状に成形した後、比酸化性雰囲気中にて
、最高焼成温度1650〜1750℃で、1400℃か
ら最高焼成温度までの昇温速度を60℃/時以下として
焼成することによって、平均結晶粒径が8〜15μmで
、厚み0.35mmにおける波長2537人の紫外線透
過率が70%以上の、強度、透光性共に優れた透光性ア
ルミナセラミックスを得ることができ、特にEP−RO
M用パッケージの窓として好適に使用することができる
According to the invention, like soft soil, more than 99.9% by weight of A
After mixing 1zO3 and 0.1% by weight or less of MgO as a sintering aid and forming it into a predetermined shape, it is heated in a specific oxidizing atmosphere at a maximum firing temperature of 1650 to 1750°C, and from 1400°C to a maximum firing temperature. By firing at a temperature increase rate of 60°C/hour or less, the average crystal grain size is 8 to 15 μm, and the UV transmittance at a wavelength of 2,537 people at a thickness of 0.35 mm is 70% or more, both in strength and translucency. Excellent translucent alumina ceramics can be obtained, especially EP-RO
It can be suitably used as a window for an M package.

Claims (2)

【特許請求の範囲】[Claims] (1)99.9重量%以上のAl_2O_3と0.1重
量%以下のMgOからなり、平均結晶粒径8〜15μm
で、かつ厚み0.35mmにおける波長2537Åの紫
外線透過率が70%以上であることを特徴とする透光性
アルミナセラミックス。
(1) Consists of 99.9% by weight or more of Al_2O_3 and 0.1% by weight or less of MgO, with an average crystal grain size of 8 to 15 μm
A translucent alumina ceramic having a UV transmittance of 70% or more at a wavelength of 2537 Å at a thickness of 0.35 mm.
(2)高純度で、比表面積が3〜15m^2/gのAl
_2O_3粉末99.9重量%以上に、焼結助剤として
0.1重量%以下のMgOを添加して、所定の形状に成
形した後、非酸化性雰囲気中にて、最高焼成温度165
0〜1750℃で、1400℃から最高焼成温度までの
昇温速度を60℃/時以下として焼成することを特徴と
する透光性アルミナセラミックスの製造方法。
(2) High purity Al with a specific surface area of 3 to 15 m^2/g
After adding 0.1% by weight or less of MgO as a sintering aid to 99.9% by weight or more of _2O_3 powder and molding it into a predetermined shape, the maximum firing temperature was 165% in a non-oxidizing atmosphere.
1. A method for producing translucent alumina ceramics, which comprises firing at a temperature of 0 to 1750°C with a heating rate of 60°C/hour or less from 1400°C to a maximum firing temperature.
JP2085993A 1990-03-30 1990-03-30 Transparent alumina ceramics and production thereof Pending JPH03285865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085993A JPH03285865A (en) 1990-03-30 1990-03-30 Transparent alumina ceramics and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085993A JPH03285865A (en) 1990-03-30 1990-03-30 Transparent alumina ceramics and production thereof

Publications (1)

Publication Number Publication Date
JPH03285865A true JPH03285865A (en) 1991-12-17

Family

ID=13874188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085993A Pending JPH03285865A (en) 1990-03-30 1990-03-30 Transparent alumina ceramics and production thereof

Country Status (1)

Country Link
JP (1) JPH03285865A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013996A1 (en) * 1993-11-15 1995-05-26 E.I. Du Pont De Nemours And Company Hf-resistant ceramics and use thereof
US6417127B1 (en) 1999-05-19 2002-07-09 Ngk Spark Plug Co., Ltd. Translucent polycrystalline ceramic and method for making same
US7304010B2 (en) * 2004-02-23 2007-12-04 Kyocera Corporation Aluminum oxide sintered body, and members using same for semiconductor and liquid crystal manufacturing apparatuses
WO2014199975A1 (en) * 2013-06-12 2014-12-18 日本碍子株式会社 Window material for ultraviolet-ray-emitting element and method for producing same
WO2016013127A1 (en) * 2014-07-24 2016-01-28 Toto株式会社 Light emitting tube and discharge lamp
JPWO2014174946A1 (en) * 2013-04-26 2017-02-23 日本碍子株式会社 Handle substrate for composite substrates for semiconductors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013996A1 (en) * 1993-11-15 1995-05-26 E.I. Du Pont De Nemours And Company Hf-resistant ceramics and use thereof
US6417127B1 (en) 1999-05-19 2002-07-09 Ngk Spark Plug Co., Ltd. Translucent polycrystalline ceramic and method for making same
US7304010B2 (en) * 2004-02-23 2007-12-04 Kyocera Corporation Aluminum oxide sintered body, and members using same for semiconductor and liquid crystal manufacturing apparatuses
JPWO2014174946A1 (en) * 2013-04-26 2017-02-23 日本碍子株式会社 Handle substrate for composite substrates for semiconductors
US9676670B2 (en) 2013-04-26 2017-06-13 Ngk Insulators, Ltd. Handle substrates of composite substrates for semiconductors
WO2014199975A1 (en) * 2013-06-12 2014-12-18 日本碍子株式会社 Window material for ultraviolet-ray-emitting element and method for producing same
JPWO2014199975A1 (en) * 2013-06-12 2017-02-23 日本碍子株式会社 Window material for ultraviolet light emitting element and method for manufacturing the same
WO2016013127A1 (en) * 2014-07-24 2016-01-28 Toto株式会社 Light emitting tube and discharge lamp

Similar Documents

Publication Publication Date Title
US4273587A (en) Polycrystalline transparent spinel sintered body and a method for producing the same
US5627116A (en) Method of making a translucent polycrystalline alumina
JP2862245B2 (en) Alumina / zirconia ceramic
JPS59105055A (en) Zirconia coloring material
JPH03285865A (en) Transparent alumina ceramics and production thereof
JPH11157933A (en) Light transmission ceramic, its production, and arc tube and high-voltage discharge lamp by using light transmission ceramic
JPH04238864A (en) Light transmittable sintered material of yttria and production thereof
JPS6360106A (en) Spinel powder and its production
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JPH0459659A (en) Production of sintered silicon nitride
JPS63242964A (en) Alumina ceramics and manufacture
JPH0544428B2 (en)
JP2762508B2 (en) Zirconia sintered body and method for producing the same
JPH03205363A (en) Sintered silicon nitride and production thereof
JPH0733290B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPH02116664A (en) Preparation of sintered body of mullite
JPH035371A (en) Production of si3n4 sintered compact
JP3401559B2 (en) Preparation of Alumina-Glass Composite Porous Body and Method for Producing Translucent Alumina Using Its Porous Mold
JPH02307871A (en) Production of ceramic sintered compact
JPS6365628B2 (en)
JPS6158859A (en) High density ferrite sintered body
JP2811493B2 (en) Silicon nitride sintered body
JP2699111B2 (en) Translucent alumina porcelain and its manufacturing method
JPS6045147B2 (en) Transparent polycrystalline alumina composition and method for producing the same