JPH03205363A - Sintered silicon nitride and production thereof - Google Patents

Sintered silicon nitride and production thereof

Info

Publication number
JPH03205363A
JPH03205363A JP2110633A JP11063390A JPH03205363A JP H03205363 A JPH03205363 A JP H03205363A JP 2110633 A JP2110633 A JP 2110633A JP 11063390 A JP11063390 A JP 11063390A JP H03205363 A JPH03205363 A JP H03205363A
Authority
JP
Japan
Prior art keywords
silicon nitride
earth oxide
powder
rare earth
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2110633A
Other languages
Japanese (ja)
Other versions
JPH0729855B2 (en
Inventor
Tomonori Takahashi
知典 高橋
Manabu Isomura
学 磯村
Keiji Matsuhiro
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to CA002016336A priority Critical patent/CA2016336C/en
Priority to DE90304980T priority patent/DE69004735T2/en
Priority to EP90304980A priority patent/EP0397464B1/en
Priority to US07/521,567 priority patent/US5177038A/en
Publication of JPH03205363A publication Critical patent/JPH03205363A/en
Priority to US07/894,640 priority patent/US5238882A/en
Publication of JPH0729855B2 publication Critical patent/JPH0729855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered silicon nitride exhibiting high strength at high temperature comparable to the strength at normal temperature by forming a mixture of Si3N4 powder, rare-earth oxide powder and SiC powder and calcining the formed article in N2 atmosphere. CONSTITUTION:A raw material composed of Si3N4 powder, rare-earth oxide powder and SiC powder is mixed and formed to obtain a formed article. The article is calcined in N2 atmosphere to effect the essential crystallization of the integranular phase of Si3N4 particle during the temperature-lowering stage. The rare-earth oxide is preferably Y2O3, Yb2O3, etc., and its amount is preferably 2.7-10mol% [calculated as the ratio of (molar amount of rare-earth oxide)/(molar amount of rare-earth oxide + molar amount of Si3N4)]. The amount of SiC is preferably 0.1-11wt.% (in the outer percentage) based on the mixture of silicon nitride and rare-earth oxide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温で高強度な窒化珪素焼結体およびその製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-temperature, high-strength silicon nitride sintered body and a method for manufacturing the same.

(従来の技術) 従来、希土類酸化物を含む■a系元素の酸化物を添加し
た窒化珪素焼結体として、例えば特公昭48−7486
号公報において、SisN+ 85モル%以上のとII
[a系元素の酸化物から選ばれた少なくとも1種15モ
ル%以下とを混合、成形し非酸化性雰囲気中で焼結する
焼結体の製造方法が、また特公昭4921091号公報
においてSisN4が少なくとも50wt%、Y203
またはLa系元素の酸化物から選ばれる少なくとも1種
50wt%以下、およびAj22030. 01 〜2
0wt%からなる窒化珪素焼結体がそれぞれ開示されて
いる。
(Prior art) Conventionally, as a silicon nitride sintered body to which oxides of ■a-based elements including rare earth oxides are added, for example, Japanese Patent Publication No. 48-7486
In the publication, SisN+ of 85 mol% or more and II
[A method for producing a sintered body in which 15 mol% or less of at least one selected from the oxides of a-based elements is mixed, molded, and sintered in a non-oxidizing atmosphere is also disclosed in Japanese Patent Publication No. 4921091. At least 50wt%, Y203
or 50 wt% or less of at least one selected from oxides of La-based elements, and Aj22030. 01 ~2
A silicon nitride sintered body comprising 0 wt% is disclosed.

しかしながら、単に希土類元素を窒化珪素に添加するだ
けでは高温高強度を有する焼結体は得られないとともに
、A6zOs添加では緻密化は促進されるが粒界相は軟
化点が低く高温強度が著しく?下する問題があった。
However, simply adding rare earth elements to silicon nitride does not produce a sintered body with high high-temperature strength, and addition of A6zOs promotes densification, but the grain boundary phase has a low softening point and significantly reduces high-temperature strength. There was a problem to resolve.

この高温強度の問題を解決するため、本出願人は、特開
昭63−100067号公報において、所定組或で所定
量比の希土類元素をSiaN4粉末に添加し、焼結体の
結晶相を特定して高温高強度を達或する技術を開示して
いる。
In order to solve this problem of high-temperature strength, the present applicant added a rare earth element in a predetermined composition or ratio in a predetermined ratio to SiaN4 powder, and identified the crystal phase of the sintered body in Japanese Patent Application Laid-open No. 63-100067. This paper discloses a technology that achieves high strength at high temperatures.

(発明が解決しようとする課題) 特開昭63−100067号公報に開示された窒化珪素
焼結体は、ある程度高温で高強度を達成できるが常温強
度よりは低下する問題があった。これは、粒界の結晶化
を行っても、若干量のガラス相が残るためと考えられて
いる。この点に関して、ガラス相の残留を少な《するた
め、窒化珪素原料中に含まれる全酸素量をSi02量に
換算したとき、SiO■に対する添加希土類酸化物の量
比を大きくしてガラス相の残留しにくい組或とする方法
が考えられるが、この方法では緻密化が困難な問題があ
った。
(Problems to be Solved by the Invention) The silicon nitride sintered body disclosed in JP-A-63-100067 can achieve high strength at a certain high temperature, but there is a problem that the strength is lower than that at room temperature. This is thought to be due to the fact that even after grain boundary crystallization, some amount of glass phase remains. Regarding this point, in order to reduce the amount of residual glass phase, when the total amount of oxygen contained in the silicon nitride raw material is converted to the amount of Si02, the amount ratio of the added rare earth oxide to SiO2 is increased and the amount of residual glass phase is reduced. There is a method that can be considered to create a structure that is difficult to form, but this method has the problem of making it difficult to make it dense.

また、Si02に対する添加希土類酸化物の量比が小さ
いと、緻密化はするが粒界相の結晶化は十分進まない問
題があった。
Furthermore, if the ratio of the added rare earth oxide to Si02 is small, densification is achieved but the crystallization of the grain boundary phase does not progress sufficiently.

一3 本発明の目的は上述した課題を解消して、常温の強度と
ほぼ同等の高温高強度を得ることができる窒化珪素焼結
体およびその製造法を提供しようとするものである。
13. An object of the present invention is to solve the above-mentioned problems and provide a silicon nitride sintered body and a method for manufacturing the same, which can obtain high-temperature high strength almost equivalent to the strength at room temperature.

(課題を解決するための手段) 本発明の窒化珪素焼結体は、Si31tl4と希土類元
素化合物及びSiCから実質的になる焼結体であって、
該焼結体のS!3N4粒子の粒界相が実質的に結晶相よ
りなることを特徴とするものである。
(Means for Solving the Problems) The silicon nitride sintered body of the present invention is a sintered body consisting essentially of Si31tl4, a rare earth element compound, and SiC,
S of the sintered body! It is characterized in that the grain boundary phase of the 3N4 grains consists essentially of a crystalline phase.

また、本発明の窒化珪素焼結体の製造法は、SfaN+
粉末、希土類酸化物粉末およびSiC粉末とからなる原
料を混合し或形して成形体を得た後、戊形体をN2雰囲
気下で焼成し、降温過程でSi3N,粒子の粒界相を実
質的に結晶化することを特徴とするものである。
Further, the method for manufacturing a silicon nitride sintered body of the present invention includes SfaN+
After mixing and shaping raw materials consisting of powder, rare earth oxide powder, and SiC powder to obtain a compact, the compact is fired in an N2 atmosphere, and during the cooling process, Si3N and grain boundary phases of the particles are substantially removed. It is characterized by crystallization.

(作 用) 上述した構成において、所定の希土類酸化物を含有する
Si3N4粉末中にSiCを添加してN2雰囲気中で焼
或して結晶化することにより、Si3N4粒子の粒界相
を実質的に結晶相としたSiCを含んだ焼4 ?体が得られ、この窒化珪素焼結体が粒界におけるガラ
ス相の残留が実質なく、高温においても常温強度とほぼ
同等の高強度を達成できることを見出したことによる。
(Function) In the above structure, by adding SiC to Si3N4 powder containing a predetermined rare earth oxide and crystallizing it by sintering in a N2 atmosphere, the grain boundary phase of the Si3N4 particles is substantially eliminated. Baked 4 containing SiC as a crystalline phase? This is because it has been found that this silicon nitride sintered body has virtually no residual glass phase at the grain boundaries and can achieve high strength almost equivalent to room temperature strength even at high temperatures.

すなわち、窒化珪素原料中に含まれる全酸素量をSiO
■に換算し、希土類酸化物をSiO2に対し多く添加し
た場合、SiCを添加することにより十分緻密化でき、
かつSiCが粒界の結晶化を促進する。
That is, the total amount of oxygen contained in the silicon nitride raw material is
In terms of (2), if a large amount of rare earth oxide is added to SiO2, it can be sufficiently densified by adding SiC,
Moreover, SiC promotes crystallization of grain boundaries.

その結果、ガラス相が極めて少ない結晶質粒界相を有す
る高温高強度の窒化珪素焼結体を得ることができる。希
土類酸化物の添加量がSin.に対し多くない場合には
、SiCを添加しなくても緻密化はするが、SiCを添
加することにより粒界の結晶化が促進され、ガラス相の
少ない粒界相を有する高温高強度の窒化珪素焼結体を得
ることができる。
As a result, a high-temperature, high-strength silicon nitride sintered body having a crystalline grain boundary phase with an extremely small amount of glass phase can be obtained. The amount of rare earth oxide added is Sin. However, if SiC is not added in a small amount, densification can be achieved without adding SiC, but adding SiC promotes grain boundary crystallization, resulting in high-temperature, high-strength nitriding with a grain boundary phase with little glass phase. A silicon sintered body can be obtained.

ここで、rSiO■に対し、添加する希土類酸化物が多
い又は多くないコとは、SiC無添加の場合において最
も高温高強度となる希土類酸化物の添加量を基準とする
ものである。このSiC無添加で最も高温高強度となる
希土類酸化物の添加量は用いる=5− Si3N+原料により異なるものであり、Sin2に対
する希土類酸化物の比で一義的に決定されるものではな
い。
Here, whether more or less rare earth oxide is added to rSiO2 is based on the amount of rare earth oxide added that provides the highest high temperature strength in the case of no SiC addition. The amount of rare earth oxide added that provides the highest high temperature and high strength without the addition of SiC varies depending on the =5-Si3N+ raw material used, and is not uniquely determined by the ratio of rare earth oxide to Sin2.

窒化珪素原料中の酸素量は1〜3重量%が望ましい。酸
素量は窒化珪素原料を酸化することによりコントロール
できる。あるいはSin2粉末を加えてもよい。
The amount of oxygen in the silicon nitride raw material is preferably 1 to 3% by weight. The amount of oxygen can be controlled by oxidizing the silicon nitride raw material. Alternatively, Sin2 powder may be added.

希土類酸化物の添加量の合計は、2.7〜10モル%が
好ましい。添加量の合計が2.7モル%未満では、緻密
化に十分な液相が得られず、10モル%を越えると、S
iCを添加しても緻密化が困難となりやすいためである
。またY203. Yb203以外の希土類酸化物とし
てLu20a. Tm203, Er203等も同効成
分として使用することができる。焼結体中の希土類元素
量は、調合時と変わらない。尚、モル%は(希土類酸化
物モル量)/(希土類酸化物モル量十Si3Naのモル
量)と計算した。
The total amount of rare earth oxides added is preferably 2.7 to 10 mol%. If the total amount added is less than 2.7 mol%, a liquid phase sufficient for densification cannot be obtained, and if it exceeds 10 mol%, S
This is because even if iC is added, densification tends to be difficult. Also Y203. As a rare earth oxide other than Yb203, Lu20a. Tm203, Er203, etc. can also be used as the same effective ingredient. The amount of rare earth elements in the sintered body remains the same as at the time of preparation. The mol% was calculated as (molar amount of rare earth oxide)/(molar amount of rare earth oxide + molar amount of Si3Na).

SiCの添加量は、窒化珪素と希土類酸化物の調合物に
対し、外配量で0.1〜1 1wt%が好ましい。
The amount of SiC added is preferably 0.1 to 11 wt% relative to the mixture of silicon nitride and rare earth oxide.

外配添加量が0.1.wt%未満では十分な緻密化効果
6 および結晶化促進効果が得られず、llwt%を越える
とSiCが緻密化を阻害してしまう場合があるためであ
る。更に好ましくは0.5〜7wt%が良い。
The external addition amount is 0.1. This is because if it is less than 11 wt%, sufficient densification effect 6 and crystallization promoting effect cannot be obtained, and if it exceeds 11 wt%, SiC may inhibit densification. More preferably, it is 0.5 to 7 wt%.

焼結体中のSiCは調合時より若干減ることもある。The amount of SiC in the sintered body may be slightly reduced compared to when it was prepared.

SiCは、α型,β型あるいは非品質のうちの何れであ
っても使用することができる。
SiC can be used regardless of whether it is α type, β type, or non-quality.

本発明の窒化珪素焼結体の製造法では、まず窒化珪素原
料粉末と希土類酸化物およびSiCの混合物を調製する
。次に、得られた混合物を所定の形状に成形して或形体
を得る。その後、得られた成形体を焼或温度に応じた常
圧あるいは加圧N2雰囲気中において1700〜210
0℃、好ましくは1900〜2000°Cの温度で焼成
し、降温過程で結晶化させることにより、SjsN<粒
子の粒界相中にガラス相が残留せず実質的に結晶化した
本発明の窒化珪素焼結体を得ることができる。
In the method for manufacturing a silicon nitride sintered body of the present invention, first, a mixture of silicon nitride raw material powder, rare earth oxide, and SiC is prepared. Next, the obtained mixture is molded into a predetermined shape to obtain a certain shaped body. Thereafter, the obtained molded body was sintered at a temperature of 1700 to 210 in a normal pressure or pressurized N2 atmosphere depending on the sintering temperature.
By firing at a temperature of 0°C, preferably 1900 to 2000°C, and crystallizing during the temperature cooling process, the nitrided nitride of the present invention is substantially crystallized without remaining glass phase in the grain boundary phase of SjsN< grains. A silicon sintered body can be obtained.

(実施例) 以下、実際の例について説明する。(Example) An actual example will be explained below.

純度97重量%、酸素含有量2.2重量%、平均粒径0
.6μm ..BET比表面積17ポ/gの窒化珪素原
料粉末と、純度99.9重量%、平均粒径0.3〜2.
5μmの第1表記載の添加物と、純度99重量%、平均
粒径0.4 μm , BET比表面積20m/gのS
iCを第l表記載の割合で調合し、窒化珪素質磁器製玉
石と内容積1.21のナイロン樹脂製容器を用いて、原
料調合物200gに対して玉石1.8kg,水300m
lを加え、振動数1200回/分の振動ミルで3時間粉
砕した。その後、水を蒸発させ粒径150μmに造粒し
、戊形用粉末とした。次に、7 ton/cm2の圧力
で静水圧プレスし、50X40X6mmの或形体を作製
し、第1表記載の焼成条件で焼成し、本発明の窒化珪素
焼結体No. 1〜27を得た。また、同じ原料を用い
て、第1表記載の添加物及びその調合割合で調合し、同
じく粉砕、造粒、或形し、その後第1表記載の焼或条件
で焼或して、比較例No.2 8〜31の焼結体を得た
。なお、比較例No.29. 30は、再加熱処理によ
り結晶化を行った。
Purity 97% by weight, oxygen content 2.2% by weight, average particle size 0
.. 6 μm. .. Silicon nitride raw material powder with a BET specific surface area of 17 po/g, a purity of 99.9% by weight, and an average particle size of 0.3-2.
5 μm additives listed in Table 1 and S with a purity of 99% by weight, an average particle size of 0.4 μm, and a BET specific surface area of 20 m/g.
Prepare iC in the proportions listed in Table 1, and use silicon nitride porcelain cobbles and a nylon resin container with an internal volume of 1.21 cm.
1 was added thereto, and the mixture was pulverized for 3 hours using a vibrating mill at a frequency of 1200 times/min. Thereafter, the water was evaporated and the powder was granulated to a particle size of 150 μm to obtain a powder for shaping. Next, a shaped body of 50 x 40 x 6 mm was produced by isostatic pressing at a pressure of 7 ton/cm2, and fired under the firing conditions listed in Table 1 to obtain silicon nitride sintered body No. 1 of the present invention. 1 to 27 were obtained. In addition, using the same raw materials, the additives and their blending ratios listed in Table 1 were prepared, and the mixture was crushed, granulated, and shaped in the same manner, and then baked under the baking conditions listed in Table 1 to obtain a comparative example. No. Sintered bodies of Nos. 28 to 31 were obtained. Note that Comparative Example No. 29. No. 30 was crystallized by reheating treatment.

これらの焼結体の嵩密度、粒界相の結晶相、室温および
1400℃における四点曲げ強度を測定した。
The bulk density, grain boundary crystal phase, and four-point bending strength at room temperature and 1400° C. of these sintered bodies were measured.

結果を第1表に示す。第1表において、焼結体の嵩密度
はアルキメデス法により測定した。尚、表中には、理論
密度に対する値として記載した。ただし、理論密度は、
調合粉末組或と調合物の密度より計算した。調合物の密
度は、S+3Na:3.2g/cm3,Y203:5.
Og/cm3, Yb203:9.2g/cm”, T
m203:8.8g/crn”,Lu203:9.4g
/cm3, Er20s:8。6g/cm3. SiC
:3. 2g/cm3を用いた。四点曲げ強度は、JI
S R−1601 rラアイセラミックスの曲げ強さ試
験法」に従って測定した。粒界結晶相は、CuKa線に
よるX線回折の結果から求めたものであり、第1表中J
はカスビディン構造の結晶でJCPDSカード32−l
45lで代表されるSi3N.・4Y203・Sift
と同じ型の回折線をもち、Yの結晶学的位置は他の希土
類元素で置換できる。
The results are shown in Table 1. In Table 1, the bulk density of the sintered bodies was measured by the Archimedes method. In addition, in the table, values are shown as values relative to theoretical density. However, the theoretical density is
It was calculated from the blended powder composition and the density of the blend. The density of the formulation is S+3Na: 3.2 g/cm3, Y203: 5.
Og/cm3, Yb203:9.2g/cm", T
m203: 8.8g/crn", Lu203: 9.4g
/cm3, Er20s: 8.6g/cm3. SiC
:3. 2 g/cm3 was used. Four-point bending strength is JI
It was measured in accordance with SR-1601R Bending Strength Test Method for RAI Ceramics. The grain boundary crystal phase was determined from the results of X-ray diffraction using CuKa rays, and is indicated by J in Table 1.
is a crystal with a casvidin structure and is a JCPDS card 32-l.
Si3N.・4Y203・Sift
The crystallographic position of Y can be replaced by other rare earth elements.

Hはアパタイト構造の結晶でJCPDSカード30−1
462に代表されるSi.N.・10Y203・9Si
Ozと同じ型の回折線をもち、Yの結晶学的位置は他の
希土類元素で置換できる。Kは珪灰石構造の結晶でJC
PDSカード31−1462で代表される2Y203・
Si02 SisN4と同じ型の回折線をもち、Yの結
晶学的位置は他の希土類元素で置換できる。LはRe2
SiOs(Re・希土類一〇 元素)で表わされる結晶でJCPDSカード2].−1
.456.21−1458. 21−1461. 22
−992. 36−1476のいずれかと同じ型の回折
線をもつ。SはRe.Si20y (Re:希土類元素
)で表わされる結晶でJCPDSカード20−1416
. 21−1457. 21−1459. 21−14
60. 22−994.22−1103のいずれかと同
じ型の回折線をもつ。
H is apatite structure crystal JCPDS card 30-1
Si.462 is a representative example. N.・10Y203・9Si
It has the same type of diffraction line as Oz, and the crystallographic position of Y can be replaced by other rare earth elements. K is a crystal with a wollastonite structure and JC
2Y203 represented by PDS card 31-1462.
It has the same type of diffraction line as Si02 SisN4, and the crystallographic position of Y can be replaced by other rare earth elements. L is Re2
A crystal represented by SiOs (Re/10 rare earth elements) JCPDS card 2]. -1
.. 456.21-1458. 21-1461. 22
-992. It has the same type of diffraction line as any one of No. 36-1476. S is Re. Crystal represented by Si20y (Re: rare earth element) JCPDS card 20-1416
.. 21-1457. 21-1459. 21-14
60. 22-994. It has the same type of diffraction line as either 22-1103.

なお、第1表記載の粒界結晶相の割合は、βSj3N+
を除く粒界の各結晶相の最強ピークの積分強度を合計腰
その合計に対する割合である。
Note that the proportion of the grain boundary crystal phase listed in Table 1 is βSj3N+
The sum of the integrated intensities of the strongest peaks of each crystalline phase at grain boundaries, excluding grain boundaries, is the proportion of that total.

また、本発明の窒化珪素焼結体NO.4の透過型電子顕
微鏡写真を第1図に示した。第1図において、Aで示さ
れる粒子はβ−Si3N.であり、Bで示される領域が
粒界相であり、Cで示される粒子がSiCである。
Moreover, the silicon nitride sintered body NO. A transmission electron micrograph of No. 4 is shown in FIG. In FIG. 1, particles denoted by A are β-Si3N. The region indicated by B is the grain boundary phase, and the particles indicated by C are SiC.

l0 第l表より明らかなように、希土類酸化物添加量が多く
、かつSiCを添加した本発明No. 1〜6は相対密
度97%以上と高く、高温での強度が高く室温強度から
の低下も小さい。これに対して、SiCを添加しない比
較例No.28は十分緻密化l5ない。これにより、S
iC添加が緻密化に効果があることがわかる。
10 As is clear from Table 1, the present invention No. 1 with a large amount of rare earth oxide added and SiC added. Nos. 1 to 6 have a high relative density of 97% or more, high strength at high temperatures, and a small decrease in strength from room temperature. On the other hand, Comparative Example No. 1 without adding SiC. 28 is not sufficiently densified. As a result, S
It can be seen that the addition of iC is effective for densification.

希土類酸化物の添加量が多くない場合、例えば本発明の
Nα8,12は、SiC添加により粒界を主としてH相
に結晶化させたものであるが、SiCを添加せず、再加
熱処理により粒界を結晶化した比較例No.29. 3
0より高温高強度である。この場合のSiC添加の効果
は、緻密化効果よりむしろ粒界の結晶化促進によるもの
であり、残留ガラスがより少なくなったためと考えられ
る。
When the amount of rare earth oxide added is not large, for example, in Nα8,12 of the present invention, the grain boundaries are mainly crystallized into the H phase by adding SiC, but the grain boundaries are crystallized by reheating without adding SiC. Comparative Example No. in which the field was crystallized. 29. 3
It has higher strength at higher temperatures than 0. The effect of the addition of SiC in this case is due to promotion of crystallization of grain boundaries rather than a densification effect, and is thought to be due to less residual glass.

(発明の効果) 以上の説明から明らかなように、本発明の窒化珪素焼結
体およびその製造法によれば、所定の希土類酸化物を含
有するSi3N4粉末中にSiCを添加してN2雰囲気
中で焼成して結晶化することにより、SiaN4粒子の
粒界相を実質的に結晶相としたSiCを含んだ焼結体が
得られ、常温の強度とほぼ同等の高温高強度を得ること
ができる。
(Effects of the Invention) As is clear from the above description, according to the silicon nitride sintered body and the manufacturing method thereof of the present invention, SiC is added to Si3N4 powder containing a predetermined rare earth oxide and By firing and crystallizing it, it is possible to obtain a sintered body containing SiC in which the grain boundary phase of SiaN4 particles is substantially the crystalline phase, and it is possible to obtain high-temperature high strength almost equivalent to the strength at room temperature. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の窒化珪素焼結体No. 4の結晶の構
造を示す透過型電子顕微鏡写真である。 図面の浄書(内容に変更なし) 第1図 C: SjC 手 続 書彷式)
FIG. 1 shows silicon nitride sintered body No. of the present invention. 4 is a transmission electron micrograph showing the crystal structure of No. 4. Engraving of drawings (no changes in content) Figure 1 C: SjC procedure document walk-through)

Claims (4)

【特許請求の範囲】[Claims] 1.Si_3N_4と希土類元素化合物及びSiCから
実質的になる焼結体であって、該焼結体のSi_3N_
4粒子の粒界相が実質的に結晶相よりなることを特徴と
する窒化珪素焼結体。
1. A sintered body consisting essentially of Si_3N_4, a rare earth element compound, and SiC, the sintered body containing Si_3N_
A silicon nitride sintered body characterized in that the grain boundary phase of four grains consists essentially of a crystalline phase.
2.前記希土類元素がYおよび/またはYbである請求
項1記載の窒化珪素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the rare earth element is Y and/or Yb.
3.Si_3N_4粉末、希土類酸化物粉末およびSi
C粉末とからなる原料を混合し成形して成形体を得た後
、成形体をN_2雰囲気下で焼成し、降温過程でSi_
3N_4粒子の粒界相を実質的に結晶化することを特徴
とする窒化珪素焼結体の製造法。
3. Si_3N_4 powder, rare earth oxide powder and Si
After mixing raw materials consisting of C powder and molding to obtain a molded body, the molded body is fired in an N_2 atmosphere, and Si_
A method for producing a silicon nitride sintered body, characterized by substantially crystallizing a grain boundary phase of 3N_4 particles.
4.前記希土類酸化物粉末がYおよび/またはYbから
なる請求項3記載の窒化珪素焼結体の製造法。
4. The method for producing a silicon nitride sintered body according to claim 3, wherein the rare earth oxide powder consists of Y and/or Yb.
JP11063390A 1989-05-10 1990-04-27 Silicon nitride sintered body and manufacturing method thereof Expired - Lifetime JPH0729855B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002016336A CA2016336C (en) 1989-05-10 1990-05-09 Silicon nitride sintered bodies and method of manufacturing the same
DE90304980T DE69004735T2 (en) 1989-05-10 1990-05-09 Silicon nitride sintered body and process for its production.
EP90304980A EP0397464B1 (en) 1989-05-10 1990-05-09 Silicon nitride sintered bodies and method of manufacturing the same
US07/521,567 US5177038A (en) 1989-05-10 1990-05-10 Silicon nitride sintered bodies
US07/894,640 US5238882A (en) 1989-05-10 1992-06-05 Method of manufacturing silicon nitride sintered bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11496589 1989-05-10
JP1-114965 1989-05-10

Publications (2)

Publication Number Publication Date
JPH03205363A true JPH03205363A (en) 1991-09-06
JPH0729855B2 JPH0729855B2 (en) 1995-04-05

Family

ID=14651018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063390A Expired - Lifetime JPH0729855B2 (en) 1989-05-10 1990-04-27 Silicon nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0729855B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618768A (en) * 1995-04-07 1997-04-08 Honda Giken Kogyo Kabushiki Kaisha Sintered body of silicon nitride and composite sintered body of silicon nitride and silicon carbide
US5945363A (en) * 1996-08-20 1999-08-31 Ngk Insulators, Ltd. Silicon nitride sintered material
US6541406B1 (en) 1999-11-15 2003-04-01 Ngk Insulators, Ltd. Silicon nitride sintered material and process for production thereof
JP4685257B2 (en) * 2001-03-09 2011-05-18 日本特殊陶業株式会社 Silicon nitride sintered body and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046973A (en) * 1983-08-25 1985-03-14 大森 守 Silicon carbide-silicon nitride sintered composite material and manufacture
JPS6230665A (en) * 1985-07-30 1987-02-09 東芝タンガロイ株式会社 High temperature strength sintered body
JPS62148370A (en) * 1985-12-23 1987-07-02 工業技術院長 Manufacture of high oxidation-resistance silicon nitride base ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046973A (en) * 1983-08-25 1985-03-14 大森 守 Silicon carbide-silicon nitride sintered composite material and manufacture
JPS6230665A (en) * 1985-07-30 1987-02-09 東芝タンガロイ株式会社 High temperature strength sintered body
JPS62148370A (en) * 1985-12-23 1987-07-02 工業技術院長 Manufacture of high oxidation-resistance silicon nitride base ceramics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618768A (en) * 1995-04-07 1997-04-08 Honda Giken Kogyo Kabushiki Kaisha Sintered body of silicon nitride and composite sintered body of silicon nitride and silicon carbide
US5945363A (en) * 1996-08-20 1999-08-31 Ngk Insulators, Ltd. Silicon nitride sintered material
US6541406B1 (en) 1999-11-15 2003-04-01 Ngk Insulators, Ltd. Silicon nitride sintered material and process for production thereof
US6667264B2 (en) 1999-11-15 2003-12-23 Kiyoshi Araki Silicon nitride sintered material and process for production thereof
JP4685257B2 (en) * 2001-03-09 2011-05-18 日本特殊陶業株式会社 Silicon nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0729855B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
EP0250153B1 (en) Silicon nitride sintered bodies and process for manufacturing the same
US6452957B1 (en) Sintered shaped body reinforced with platelets
CA2016336C (en) Silicon nitride sintered bodies and method of manufacturing the same
JPH0455143B2 (en)
US4830800A (en) Method of producing a dense refractory silicon nitride (SI3 N4) compact with one or more crystalline intergranular phases
JPH03205363A (en) Sintered silicon nitride and production thereof
JPS6256110B2 (en)
JPH0459659A (en) Production of sintered silicon nitride
US5238882A (en) Method of manufacturing silicon nitride sintered bodies
JPH06305837A (en) Sintered silicon nitride
JPH0733290B2 (en) Silicon nitride sintered body and manufacturing method thereof
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH08208317A (en) Alumina sintered body and production thereof
JPH0513104B2 (en)
JPH035371A (en) Production of si3n4 sintered compact
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2964830B2 (en) Aluminum oxide based ceramics with excellent toughness
JP2811493B2 (en) Silicon nitride sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPH07206526A (en) Production of silicon nitride sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 16