JPS63241875A - Fuel cell laminated body - Google Patents

Fuel cell laminated body

Info

Publication number
JPS63241875A
JPS63241875A JP62074545A JP7454587A JPS63241875A JP S63241875 A JPS63241875 A JP S63241875A JP 62074545 A JP62074545 A JP 62074545A JP 7454587 A JP7454587 A JP 7454587A JP S63241875 A JPS63241875 A JP S63241875A
Authority
JP
Japan
Prior art keywords
coolant
cooling plates
heat
fuel cell
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074545A
Other languages
Japanese (ja)
Other versions
JP2659951B2 (en
Inventor
Tomiya Sasaki
富也 佐々木
Masaru Ishizuka
勝 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074545A priority Critical patent/JP2659951B2/en
Publication of JPS63241875A publication Critical patent/JPS63241875A/en
Application granted granted Critical
Publication of JP2659951B2 publication Critical patent/JP2659951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to remove more heat without increasing flow of coolant by forming passages for coolant linearly and disposing part of heat pipes embedded in cooling plates facing or close to the coolant passages. CONSTITUTION:Fuel gas is led through a manifold 13a to a fuel cell laminated body 11, and oxidizer gas is led through a manifold 13c, so electrochemical reaction occurs in a gas diffusion electrode, and electric energy is produced. Both gases P, Q are discharged through manifolds 13b, 13d. For cooling plates 14a-14e, coolant C flows in opposite directions in adjacent cooling plates as shown by arrows. Temperature distribution in cooling plates 14a-14e on the side of supply pipes 16a-16e and on the side of discharge pipes 17a-17e is also opposite to each other in adjacent cooling plates. The heat inside the laminated body 11 is transferred to the cooling plates 14a-14e. A heat pipe 19 crossing a linear passage 18 removes heat of cooling plates 14a-14e by a heat exchange, and temperature distribution in cooling plates 14a-14e becomes uniform.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、単位電池の間に冷却板を介装した燃料電池
積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell stack in which a cooling plate is interposed between unit cells.

(従来の技術) 溶融炭酸塩型、リン酸型を始めとする燃料電池では、単
位電池で得られる起電力が低いため、高出力の発電プラ
ントを構成するには、複数の単位電池を直列に積層して
燃料電池積層体を構成し、各単位電池の加算出力を得る
ようにしなければならない。第7図に溶融炭酸塩型の燃
料電池積層体1を示す。
(Prior technology) In fuel cells such as molten carbonate type and phosphoric acid type, the electromotive force obtained by each unit cell is low, so to configure a high output power generation plant, multiple unit cells must be connected in series. They must be stacked to form a fuel cell stack so as to obtain the summed output of each unit cell. FIG. 7 shows a molten carbonate type fuel cell stack 1.

各単位電池2は一対の多孔質1ffi板、すなわち7ノ
ードHA Fi 3 aとカソード電極3bと、これら
の間に介在されたアルカリ炭酸塩からなる電解質層4と
で構成される。これら単位電池2は、セパレータ5を介
して積層される。セパレータ5は、各単位電池間の電気
的な接続機能と、各電極板への反応ガスの通路6を形成
する機能とを兼備えたものである。
Each unit cell 2 is composed of a pair of porous 1ffi plates, that is, a 7-node HA Fi 3 a, a cathode electrode 3b, and an electrolyte layer 4 made of an alkali carbonate interposed between them. These unit batteries 2 are stacked with separators 5 in between. The separator 5 has both the function of electrical connection between each unit cell and the function of forming a passage 6 for reaction gas to each electrode plate.

燃n電池積層体1の4つの側面には、反応ガスの分配、
回収機能を有する図示しないマニホールドが当てがわれ
る。そして、これらマニホールドのうちの一つに酸化剤
ガスQを供給するとともに隣接するマニホールドに燃料
ガスPを供給し、アノード電極3aにおいて、 H2+CO32−+H20+CO2+2e  −なる反
応を、またカソード電極3bにおいて、1/202  
+CO2+2B  −−)COa  2−なる反応を生
起せしめ、直流出力を得た後、それぞれの対向するマニ
ホールドからガスを排出させるようにしている。
On the four sides of the fuel N battery stack 1, there is a distribution of reactive gas,
A not-shown manifold having a collection function is applied. Then, oxidant gas Q is supplied to one of these manifolds, and fuel gas P is supplied to the adjacent manifold to cause a reaction of H2+CO32-+H20+CO2+2e- at the anode electrode 3a and 1/1 at the cathode electrode 3b. 202
After a reaction of +CO2+2B--)COa2- is generated and a DC output is obtained, the gas is discharged from each opposing manifold.

ところで、燃料電池積層体1は上記の化学反応によって
電力と同時に熱を発生する。この熱を除去しないと、溶
融炭酸塩燃料電池の運転温度範囲である600〜700
℃を超えてしまい、効果的な電極反応を促すことが不可
能になる。ところが、燃料電池積層体1は、4つの側面
がマニホールドで覆われているため熱除去能力が低い。
Incidentally, the fuel cell stack 1 generates heat as well as electric power through the above chemical reaction. If this heat is not removed, the operating temperature range of molten carbonate fuel cells is 600-700°C.
℃, making it impossible to promote an effective electrode reaction. However, since the four sides of the fuel cell stack 1 are covered with manifolds, the heat removal ability is low.

そこで、従来は酸化剤ガスQを冷却剤として用い、この
酸化剤ガスQを燃料電池積層体1の内部に過剰に流通さ
せることによって燃料電池積層体1の内部を冷却するよ
うにしていた。
Therefore, conventionally, the inside of the fuel cell stack 1 was cooled by using the oxidizing gas Q as a coolant and circulating the oxidizing gas Q inside the fuel cell stack 1 in excess.

しかしながら、この方法では、酸化剤ガスを電極反応に
寄与させる量よりも過剰に供給しなければならないので
、システム全体の効率が低下するばかりでなく、酸化剤
ガス流量を燃料に比べて遥かに大量に流通させるため、
単位電池2のカソード側とアノード側との間に大ぎな圧
力差を生じ、酸化剤が電解質中を移動して燃料ガス側に
漏洩し、燃料ガスと酸化剤ガスの交差混合が起り、効率
低下の原因となるという問題もあった。
However, in this method, the oxidant gas must be supplied in excess of the amount that contributes to the electrode reaction, which not only reduces the efficiency of the entire system, but also causes the oxidant gas flow rate to be much larger than that of the fuel. In order to distribute to
A large pressure difference occurs between the cathode side and the anode side of the unit cell 2, and the oxidant moves in the electrolyte and leaks to the fuel gas side, causing cross-mixing of the fuel gas and oxidant gas, resulting in a decrease in efficiency. There was also the problem that it caused

したがって、従来、リン酸型の空冷式の燃料電池積層体
などにおいては、数セルに一枚程度の間隔で冷W板を積
層し、燃料電池積層体の特定の側からこの冷却板に空気
等の冷却材を、電池温度よりもやや低い温度で供給し、
熱伝達によって熱を除去する手段がとられてきた。
Therefore, conventionally, in phosphoric acid type air-cooled fuel cell stacks, etc., cold W plates are stacked at intervals of about one per several cells, and air is pumped from a specific side of the fuel cell stack to this cooling plate. coolant at a temperature slightly lower than the battery temperature,
Measures have been taken to remove heat by heat transfer.

そしてこのような手段としては、例えば第5図のように
冷却板7に管状の通路8を形成したもの、あるいは第6
図のように冷却板9にマニホールド形の通路10を形成
したものがある。
Examples of such means include, for example, a cooling plate 7 with tubular passages 8 as shown in FIG.
As shown in the figure, there is one in which a manifold-shaped passage 10 is formed in a cooling plate 9.

しかしながら、このような手段では冷却板7゜9全体に
冷却剤を流ぞうとするため、通路が屈曲して冷却剤を送
る動力にかなりの電力を必要としていた。また熱伝達は
、冷却剤の流速すなわち流量に比例して増加するため、
多くの熱を奪うには、大流量を必要としコストアップに
なっていた。
However, in such a method, since the coolant is forced to flow over the entire cooling plate 7.9, the passage is bent, and a considerable amount of electric power is required to send the coolant. Heat transfer also increases in proportion to the flow rate or flow rate of the coolant, so
In order to remove a lot of heat, a large flow rate is required, which increases costs.

(発明が解決しようとする問題点) このように、酸化剤ガスの過剰供給に代えて冷却板を積
層する従来の構造では、冷却剤の通路が屈曲し、冷却剤
を送る動力に多くの電力を必要とし、また多くの熱を奪
うには大流量を必要とし、コストアップになっていた。
(Problems to be Solved by the Invention) As described above, in the conventional structure in which cooling plates are laminated in place of excessive supply of oxidant gas, the coolant passage is bent, and a large amount of electric power is required to send the coolant. In addition, a large flow rate was required to remove a large amount of heat, which increased costs.

そこでこの発明は、冷却剤流量を増加させることなく多
くの熱を奪うことができ、しかも冷却剤を送るための動
力費のコストダウンを可能とする燃料電池積層体を提供
する。
Therefore, the present invention provides a fuel cell stack that can remove a large amount of heat without increasing the flow rate of the coolant, and can reduce the power cost for sending the coolant.

[発明の構成] (問題を解決するための手段) この発明は、単位電池と、内部の冷却剤通路に冷却剤を
流通させて前記単位電池を冷却する冷却板とを積層して
構成される燃料電池積層体において、前記冷却剤の通路
を直線状に形成し、前記冷加板に複数本のヒートパイプ
を埋込み、このヒートパイプの一部が前記冷却剤通路に
臨み又は近接するように配置した。
[Structure of the Invention] (Means for Solving the Problem) The present invention is constructed by stacking unit batteries and a cooling plate that cools the unit batteries by circulating a coolant through an internal coolant passage. In the fuel cell stack, the coolant passage is formed in a straight line, a plurality of heat pipes are embedded in the cooling plate, and some of the heat pipes are arranged so as to face or be close to the coolant passage. did.

〈作用) この発明によれば、単位電池に積層された冷却板内部の
通路が略直線的であるため流路抵抗が減り冷却剤を送る
ための無駄な動力を軽減できる。
<Function> According to the present invention, since the passage inside the cooling plate stacked on the unit battery is substantially straight, the flow passage resistance is reduced and the wasted power for feeding the coolant can be reduced.

そして、冷却剤通路の近傍周囲では冷却板と冷却剤との
直接的な熱交換が行なわれ、また、ヒートパイプでは冷
却板との間の熱交換も内部の冷媒が蒸発し、蒸発した冷
媒はヒートバイブ内を前記通路側へ移動して冷却剤との
間の熱交換で凝縮液化するサイクルを形成し、冷却板の
温度が略全体で均一化できる。
In the vicinity of the coolant passage, direct heat exchange occurs between the cooling plate and the coolant, and in the heat pipe, heat exchange between the cooling plate causes the internal refrigerant to evaporate, and the evaporated refrigerant is A cycle is formed in which the heat vibrator moves to the passage side and condenses and liquefies through heat exchange with the coolant, so that the temperature of the cooling plate can be made substantially uniform throughout.

(実施例) 以下、図面に基づきこの発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例を適用した溶融炭酸塩型燃
料電池の概略構成を示す斜視図であり、11は全体が長
方形でかつ側部の対角方向に対向する1対の稜部12a
、12bを僅か平坦に形成した燃料電池積層体である。
FIG. 1 is a perspective view showing a schematic configuration of a molten carbonate fuel cell to which an embodiment of the present invention is applied, and 11 is a pair of ridges having a rectangular shape and facing diagonally on the sides. 12a
, 12b are formed slightly flat.

この燃料電池積層体11の一対の対向側面には、燃料ガ
スPの供給・排出の為のマニホールド13a、13t+
が当てがわれ、他方の対向側面には、酸化剤ガスQの供
給・排出の為のマニホールド13C,13dが当てがわ
れでいる。
A pair of opposing side surfaces of this fuel cell stack 11 are provided with manifolds 13a and 13t+ for supplying and discharging fuel gas P.
is applied, and manifolds 13C and 13d for supplying and discharging the oxidizing gas Q are applied to the other opposing side.

燃料電池積層体11は、第2図に示すように、例えば5
枚の冷却板148〜14eの間に、単位電池積層ブロッ
ク158〜15dをそれぞれ配して構成したものである
。各単位電池vllfdブロック158〜15dは、例
えば5組の単位電池を積層したもので、その構造は前述
した第7図の構造と同一である。
As shown in FIG. 2, the fuel cell stack 11 has, for example, 5
Unit battery stack blocks 158 to 15d are arranged between cooling plates 148 to 14e, respectively. Each of the unit battery vllfd blocks 158 to 15d is a stack of, for example, five unit batteries, and its structure is the same as that shown in FIG. 7 described above.

冷却板14a〜14C1は、第3図に示すように、平坦
に形成された稜部12a、12bの一方に冷却剤供給管
16a〜16fliを設けるとともに他方に冷却剤排出
管17a〜17eを設け、これら両管を冷却板14a〜
14fl+の内部に形成した直線状の冷却剤通路18を
介して接続したものである。
As shown in FIG. 3, the cooling plates 14a to 14C1 are provided with coolant supply pipes 16a to 16fli on one side of flat ridges 12a and 12b, and coolant discharge pipes 17a to 17e on the other side. Both these tubes are connected to the cooling plate 14a~
14fl+ is connected via a linear coolant passage 18 formed inside the 14fl+.

冷却板148〜14eの内部には複数本のヒートパイプ
19が埋込まれ、さらに、このヒートパイプ19は冷却
剤通路18に直交するようにして配置され、冷却板14
8〜14eのそれぞれで面方向全体に分布している。ヒ
ートパイプブ19の一部が冷却剤通路18に直交する部
分は、ヒートパイプ19が冷却剤通路18を貫通してそ
の一部が冷却剤通路18に臨むようになっており、冷却
剤通路18内を流れる冷却剤Cがヒートパイプ19の一
部に直接触れるようになっている。なお、ヒートパイプ
19は、冷却剤18を貫通することなく、一部が冷却剤
通路18に近接するものでもよく、内部の冷却剤Cと熱
交換ができるものであればよい。
A plurality of heat pipes 19 are embedded inside the cooling plates 148 to 14e, and the heat pipes 19 are arranged perpendicularly to the coolant passage 18.
8 to 14e are distributed over the entire surface direction. The part of the heat pipe block 19 that is perpendicular to the coolant passage 18 is such that the heat pipe 19 passes through the coolant passage 18 and a part thereof faces the coolant passage 18 , so that the heat pipe 19 passes through the coolant passage 18 and a part thereof faces the coolant passage 18 . The flowing coolant C comes into direct contact with a portion of the heat pipe 19. Note that the heat pipe 19 may be one that does not penetrate the coolant 18 but has a portion close to the coolant passage 18, as long as it can exchange heat with the coolant C inside.

そして、これら冷却板14a〜14eの各冷却剤供給管
16a〜16eと冷却剤排出管17a〜17eとは、上
下隣接間でそれぞれ交互に配置されている。
The coolant supply pipes 16a to 16e and the coolant discharge pipes 17a to 17e of the cooling plates 14a to 14e are alternately arranged adjacent to each other.

このように構成された燃料電池において、燃料ガスPを
マニホールド13aを介して燃料電池積層体11に導き
、酸化剤ガスQをマニホールド13Cを介して導くと、
ガス拡散電極において前述した電気化学的反応が生起さ
れ、電気エネルギが発生する。1!株反応に供された両
ガスP、Qは、それぞれ対向するマニホールド13b、
13dを介して排出される。このとき、燃料電池積層体
11の内部では、上記電極反応の結果熱が発生する。
In the fuel cell configured in this way, when the fuel gas P is guided to the fuel cell stack 11 via the manifold 13a, and the oxidizing gas Q is guided via the manifold 13C,
The aforementioned electrochemical reaction occurs at the gas diffusion electrode, generating electrical energy. 1! Both gases P and Q subjected to the stock reaction are supplied to opposing manifolds 13b,
13d. At this time, heat is generated inside the fuel cell stack 11 as a result of the electrode reaction.

一方、冷W板14a〜14eには、図中矢印で示すよう
に、隣接する冷却板間で逆向きとなるように、空気等の
冷却剤Cが流通する。冷却剤Cが隣接する冷却板14a
〜14e間で逆向きになると、供給管16a〜16θ側
と排出管178〜17e側とに渡る各冷却板148〜1
4eの温度分布が隣接する冷却板18〜14eで逆にな
り、相互作用で冷却剤Cの流れ方向の温度分布を小さく
できる。そして、燃料電池積層体11の内部で発生した
熱は冷却板14a〜14eへ伝えられる。
On the other hand, a coolant C such as air flows through the cold W plates 14a to 14e in opposite directions between adjacent cooling plates, as shown by arrows in the figure. Cooling plate 14a adjacent to coolant C
When the direction is reversed between
The temperature distribution of the cooling plates 4e is reversed between the adjacent cooling plates 18 to 14e, and the temperature distribution in the flow direction of the coolant C can be reduced by interaction. The heat generated inside the fuel cell stack 11 is transferred to the cooling plates 14a to 14e.

この場合、冷却剤通路18内の冷却剤Cと冷却板14.
a〜14eとの間の直接的な熱交換は、冷却剤通路18
が直線的であるため、主に通路18の周囲で直線的に行
なわれ、通路18のみでは冷却板148〜14eの温度
分布が通路78に直交する方向で不均一になってしまう
。しかし、ヒートパイプ19では冷却板14a〜14e
との間の熱交換により内部の冷媒が蒸発して冷却板14
a〜14eの熱を奪い、蒸発した冷媒は通路18側へ移
動して冷却剤Cとの間の熱交換によって熱を奪われ、凝
縮液化してキャピラリを介し再び通路18から離れた方
向へ移動する。このようにヒートパイプ19のサイクル
により、各冷却板14a〜14eは通路18と直交する
方向でも温度分布が略均−となる。
In this case, the coolant C in the coolant passage 18 and the cooling plate 14.
Direct heat exchange between the coolant passages 18 and 14e
Since this is linear, the cooling is performed mainly in a straight line around the passage 18, and if the passage 18 is used only, the temperature distribution of the cooling plates 148 to 14e becomes non-uniform in the direction perpendicular to the passage 78. However, in the heat pipe 19, the cooling plates 14a to 14e
The internal refrigerant evaporates due to heat exchange between the cooling plate 14 and
The evaporated refrigerant removes heat from a to 14e, moves toward the passage 18, loses heat through heat exchange with the refrigerant C, condenses into liquid, and moves away from the passage 18 via the capillary again. do. In this way, due to the cycle of the heat pipe 19, each of the cooling plates 14a to 14e has a substantially uniform temperature distribution even in the direction perpendicular to the passage 18.

このように、冷却剤通路18は直線的であっても冷却板
148〜14eはそれぞれ面方向全体で温度分布が略均
−となり、冷却剤Cを送るための無駄な動力を軽減でき
る。
In this way, even though the coolant passage 18 is linear, the temperature distribution of each of the cooling plates 148 to 14e is approximately uniform over the entire surface direction, and the wasted power for sending the coolant C can be reduced.

また、ヒートパイプ19を用いることにより温度分布の
均一化を図るため、冷却剤流量の増大を伴なうことなく
多くの熱を奪うことができ、構造的にも容易であり、経
済性も向上する。
In addition, by using the heat pipe 19, the temperature distribution is made uniform, so a large amount of heat can be removed without increasing the coolant flow rate, and the structure is simple and economical. do.

さらに、冷却板14a〜14eの各温度分布が均一化さ
れるため、単位電池の電解質板に作用する熱応力が低減
されるので、単位電池、ひいては燃料電池積層体のか分
向上にもつながる。
Further, since the temperature distribution of each of the cooling plates 14a to 14e is made uniform, the thermal stress acting on the electrolyte plate of the unit cell is reduced, which leads to an improvement in the performance of the unit cell and, by extension, the fuel cell stack.

第4図には他の実施例を示す。これは、冷却板14a〜
14eの両縁部に平行に冷却剤通路18a、13bを設
け、冷却剤供給口20a〜2od、冷却剤排出口21a
〜21dに対し、同22a〜22(1,23a 〜23
dを1800異ならせて取付けたものである。この場合
、隣接する冷却板14a〜14e相互間でも、上下で対
応している通路の冷却剤流れは逆向きになっている。
FIG. 4 shows another embodiment. This is the cooling plate 14a~
Coolant passages 18a and 13b are provided in parallel to both edges of 14e, coolant supply ports 20a to 2od, and coolant discharge port 21a.
~21d, 22a~22 (1, 23a ~23
d was installed with a difference of 1800. In this case, even between the adjacent cooling plates 14a to 14e, the coolant flows in the corresponding upper and lower passages are in opposite directions.

このようにすると、前記実施例と同様な効果の他に、さ
らに冷却剤Cの入口側と出口側とにおける冷却板14a
〜14eの温度差を小さくすることができる。
In this case, in addition to the same effects as in the above embodiment, the cooling plates 14a on the inlet side and the outlet side of the coolant C
The temperature difference between 14e and 14e can be reduced.

なお、この発明は特に溶融炭酸塩型燃料電池に限らず、
リン酸型等信の燃料電池積層体にも適用可能である。
Note that this invention is not limited to molten carbonate fuel cells;
It is also applicable to phosphoric acid type fuel cell stacks.

[発明の効果] 以上より明らかなようにこの発明の構成によれば、冷却
板の温度分布を略均−にできながら、冷却剤通路が直線
状であるため、冷却剤を送るための動力が増大すること
がない。また、冷却剤流量を増大させることなく多くの
熱を奪うことができ。
[Effects of the Invention] As is clear from the above, according to the configuration of the present invention, the temperature distribution of the cooling plate can be made approximately uniform, and since the coolant passage is linear, the power for sending the coolant can be reduced. It never increases. Also, more heat can be removed without increasing the coolant flow rate.

る。従って、動力費のコストダウンを図ることが可能と
なる。
Ru. Therefore, it becomes possible to reduce the power cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る溶融炭酸塩型燃料電
池の概略構成を示す斜視図、第2図は上記燃料電池の燃
料電池積層体を示す斜視図、第3図はこの発明の一実施
例に係る冷却板の平面図、第4図は他の実施例を示す冷
却板の平面図、第5図、第6図は従来の冷却板を示す平
面図、第7図は燃料電池積層体の代表的構成を示す分解
斜視図である。 11・・・燃料電池積層体 148〜14e・・・冷却板 15a〜15d・・・単位電池積層体 16a 〜16d 、20a 〜20d 、22a 〜
22d・・・冷却剤供給管 17a 〜17e 、21a 〜21d 、23a 〜
23d・・・冷却剤排出管
FIG. 1 is a perspective view showing a schematic configuration of a molten carbonate fuel cell according to an embodiment of the present invention, FIG. 2 is a perspective view showing a fuel cell stack of the fuel cell, and FIG. FIG. 4 is a plan view of a cooling plate according to one embodiment, FIG. 4 is a plan view of a cooling plate showing another embodiment, FIGS. 5 and 6 are plan views of a conventional cooling plate, and FIG. 7 is a plan view of a fuel cell. It is an exploded perspective view showing a typical composition of a layered product. 11...Fuel cell stacks 148-14e...Cooling plates 15a-15d...Unit cell stacks 16a-16d, 20a-20d, 22a-
22d... Coolant supply pipes 17a to 17e, 21a to 21d, 23a to
23d... Coolant discharge pipe

Claims (1)

【特許請求の範囲】[Claims] 単位電池と、内部の冷却剤通路に冷却剤を流通させて前
記単位電池を冷却する冷却板とを積層して構成される燃
料電池積層体において、前記冷却剤通路を直線状に形成
し、前記冷却板に複数本のヒートパイプを埋込み、この
ヒートパイプの一部が前記冷却剤通路に臨み又は近接す
るように配置したことを特徴とする燃料電池積層体。
In a fuel cell stack constituted by stacking unit cells and a cooling plate that cools the unit cells by circulating a coolant through an internal coolant passage, the coolant passage is formed in a straight line, and the A fuel cell stack, characterized in that a plurality of heat pipes are embedded in a cooling plate, and a part of the heat pipes is arranged so as to face or be close to the coolant passage.
JP62074545A 1987-03-30 1987-03-30 Fuel cell stack Expired - Fee Related JP2659951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074545A JP2659951B2 (en) 1987-03-30 1987-03-30 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074545A JP2659951B2 (en) 1987-03-30 1987-03-30 Fuel cell stack

Publications (2)

Publication Number Publication Date
JPS63241875A true JPS63241875A (en) 1988-10-07
JP2659951B2 JP2659951B2 (en) 1997-09-30

Family

ID=13550331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074545A Expired - Fee Related JP2659951B2 (en) 1987-03-30 1987-03-30 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP2659951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771894B2 (en) 2006-07-10 2014-07-08 Samsung Sdi Co., Ltd. Cooling plate having improved flow channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165972A (en) * 1981-04-07 1982-10-13 Sanyo Electric Co Ltd Air-cooled fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165972A (en) * 1981-04-07 1982-10-13 Sanyo Electric Co Ltd Air-cooled fuel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771894B2 (en) 2006-07-10 2014-07-08 Samsung Sdi Co., Ltd. Cooling plate having improved flow channels

Also Published As

Publication number Publication date
JP2659951B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US7070874B2 (en) Fuel cell end unit with integrated heat exchanger
JPH10308227A (en) Solid high molecular electrolyte type fuel cell
JPH05109415A (en) Gas separator for fuel cell
JP3064023B2 (en) Gas separator for fuel cells
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JPS61128469A (en) Fuel cell
JPS62264564A (en) Stacked fuel cell
JPH01105474A (en) Cooling method for fuel cell
JPS63241875A (en) Fuel cell laminated body
JP2000164237A (en) Fuel cell and fuel cell aggregate
JPS5975573A (en) Fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JP2947549B2 (en) Fuel cell
JP2603964B2 (en) Fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell
JPH11144746A (en) Phosphoric acid type fuel cell
JPH0782874B2 (en) Fuel cell
JP2000067885A (en) Fuel cell
JPS6160547B2 (en)
JPS6255873A (en) Fuel cell
JPS6276257A (en) Fuel cell lamination
JPH0821394B2 (en) Method for manufacturing cooling plate for molten carbonate fuel cell
JPH09293528A (en) Fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees