JPS61128469A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61128469A
JPS61128469A JP59249590A JP24959084A JPS61128469A JP S61128469 A JPS61128469 A JP S61128469A JP 59249590 A JP59249590 A JP 59249590A JP 24959084 A JP24959084 A JP 24959084A JP S61128469 A JPS61128469 A JP S61128469A
Authority
JP
Japan
Prior art keywords
fuel
air
flow path
thin plate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249590A
Other languages
Japanese (ja)
Inventor
Yasutaka Komatsu
小松 康孝
Ryoichi Kaneko
金子 了市
Akio Soma
相馬 昭男
Yoshinori Nemoto
根本 嘉典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59249590A priority Critical patent/JPS61128469A/en
Publication of JPS61128469A publication Critical patent/JPS61128469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make a fuel cell thin by forming an electrolyte retaining plate so that a separator placed between an anode and a cathode is formed with a corrugated thin plate and a fuel passage and an air passage are formed on its upper and lower sides. CONSTITUTION:An electrolyte retaining plate 21 is formed in such a way that a separator placed between an anode 22 and a cathode 23 is formed with a corrugated thin plate 11, and a fuel gas passage 13 is formed on its lower side and an air passage 14 on its upper side, and its four outer sides are welded with members 12a-12d, and fuel supply-exhaust passages 15, 15a and branches 17, 17a and air supply-exhaust passages 16, 16a and branches 18, 18a are formed. A plurality of these plates are stacked to form a fuel cell. The cell is made thin and the cross section of the passage can be varied to make the flow rate of the reaction gas uniform and efficiency is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係り、特に大容量化に好適な反応ガ
ス流路構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell, and particularly to a reaction gas flow path structure suitable for increasing capacity.

〔発明の背景〕[Background of the invention]

燃料電池の電池出力は、電流密度が150〜170mA
/antであり、電圧は、アノード、カソード、電解質
保持板からなる単位電池(以下単セルという)当り1v
弱程度である。従って、所要の発電規模にするために一
基本要素である単セルを、ガス流路を形成するセパレー
タを介して数百側程度積層して電池スタックを形成し、
この電池スタックを発電出力規模に合わせて多数配列し
なければならない1以上のことから、所要の出力を得る
ためには、非常に多くのセル構成部品を製作しなければ
ならないため、各部品の低コスト化が重要となりさらに
出力密度を向上させるためコンパクト化及びセルの高出
力化が必要とされている。
The cell output of the fuel cell is a current density of 150 to 170 mA.
/ant, and the voltage is 1 V per unit battery (hereinafter referred to as a single cell) consisting of an anode, a cathode, and an electrolyte holding plate.
It is only weak. Therefore, in order to achieve the required power generation scale, a battery stack is formed by stacking several hundred single cells, which are one basic element, through separators that form gas flow paths.
A large number of these battery stacks must be arranged to match the power generation output scale.In order to obtain the required output, a large number of cell component parts must be manufactured. Cost reduction has become important, and in order to further improve the output density, it is necessary to make the cell more compact and to increase the output power of the cell.

反応ガスの流路を形成するセパレータの従来の構造を図
示すると第2図のようになる。
The conventional structure of a separator that forms a flow path for a reaction gas is shown in FIG. 2.

第2図において、21は電解質保持板、22はアノード
、23はカソードをそれぞれ示し、燃料はセパレータ2
4の下面に形成された燃料ガス流路溝25を通り、また
空気はセパレータ24の上面に形成された空気流路溝2
6を通る。
In FIG. 2, 21 is an electrolyte holding plate, 22 is an anode, 23 is a cathode, and the fuel is connected to the separator 2.
The air passes through the fuel gas passage groove 25 formed on the lower surface of the separator 24, and the air passes through the air passage groove 2 formed on the upper surface of the separator 24.
Pass through 6.

ここで、セパレータ24の溝は切削やエツチング等で作
られるためコストが高く、はた薄形化が困難であるため
、電池スタックの高さが高くなるという問題があった。
Here, since the grooves of the separator 24 are made by cutting, etching, etc., the cost is high, and it is difficult to reduce the thickness of the separator 24, so there is a problem that the height of the battery stack increases.

セパレータの加工コストの問題を解決しようとする構造
は、特開昭55−12699号公報に示されている様な
、波形シート隔離板と称する、薄板を曲げたもので反応
ガス流路を形成するものがある。
A structure that attempts to solve the problem of processing costs for separators is the one shown in Japanese Unexamined Patent Publication No. 12699/1983, which uses bent thin plates called corrugated sheet separators to form reaction gas flow paths. There is something.

しかし、この波形シート隔離板は燃料流路用、空気流路
用が別々になっており、さらにその2枚の波形シートの
間に裏当てプレートを挾んでいるため、薄形化には適さ
なかった。
However, this corrugated sheet separator has separate sections for the fuel flow path and air flow path, and a backing plate is sandwiched between the two corrugated sheets, making it unsuitable for thinning. Ta.

また、反応ガスの量は1反応の進行とともに変化する。Further, the amount of reaction gas changes as one reaction progresses.

つまり溶融炭酸塩型電解質方式の場合を例にとると、燃
料ガス側の反応は H,+ G O,−4a、o+col+2=−従って、
燃料ガス量は反応の進行と伴に多くなってゆく、逆に空
気側の反応は 0、+2GO,+4e−−42CO,”−となり、空気
量は反応と伴に少なくなってゆく。
In other words, taking the case of a molten carbonate electrolyte system as an example, the reaction on the fuel gas side is H, + GO, -4a, o + col + 2 = - Therefore,
The amount of fuel gas increases as the reaction progresses; conversely, the reaction on the air side becomes 0, +2GO, +4e--42CO, "-, and the amount of air decreases as the reaction progresses.

このことから、ガス流路断面積が一様ならば。From this, if the cross-sectional area of the gas flow path is uniform.

燃料ガス側では入口側より出口側の方がガス流速は大き
くなり、逆に空気側では入口側より出口側の流速が小さ
くなり、反応が均一に行なわれず、性能が低くなるとい
う問題もあった。
On the fuel gas side, the gas flow rate is higher on the outlet side than on the inlet side, and conversely, on the air side, the flow rate is lower on the outlet side than on the inlet side, which causes problems such as reactions not being carried out uniformly and performance being lower. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電池を薄形化し、また高効率化するガ
ス流路構造をもち、大容量化に適した燃料電池を提供す
ることにある。
An object of the present invention is to provide a fuel cell that has a gas flow path structure that makes the cell thinner and more efficient, and is suitable for increasing capacity.

〔発明の概要〕[Summary of the invention]

本発明は、波形薄板上面下面に燃料ガスと空気を流し、
一枚の波形薄板で燃料流路と空気流路の両者を形成する
ことにより、電池の薄形化を実現し、さらに反応ガスの
流路断面積を入口側から出口側にかけてガス流速がほぼ
均一になる様に変化させることにより、高効率化を実現
するものである。
The present invention allows fuel gas and air to flow on the upper and lower surfaces of the corrugated thin plate,
By forming both the fuel flow path and the air flow path with a single corrugated thin plate, the battery can be made thinner, and the cross-sectional area of the reactant gas flow path is almost uniform from the inlet side to the outlet side. High efficiency can be achieved by changing it so that it becomes .

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例を示す分解斜視図である。FIG. 1 is an exploded perspective view showing one embodiment of the present invention.

図において、波形薄板11の下面側には燃料ガス流路1
3が、また上面側には空気流路14が形成されている。
In the figure, a fuel gas flow path 1 is provided on the lower surface side of the corrugated thin plate 11.
3, and an air flow path 14 is formed on the upper surface side.

さらに波形薄板11の外周4辺には枠を形成する4つの
部材12a、12b、12c。
Furthermore, four members 12a, 12b, and 12c forming a frame are provided on four sides of the outer periphery of the corrugated thin plate 11.

12dを設け、この枠12a、12b、12c。12d, and these frames 12a, 12b, 12c.

12dが波形薄板と溶接もしくは拡散接合で接着されて
いる。枠構成部材12 a y l 2 b e 12
 Q #12dのうち、枠12aには燃料供給用流路1
5及び燃料供給用枝管15a、空気供給用流路16及び
空気供給用枝管16aが設けられ、また枠12bには燃
料排出用流路17及び燃料排出用枝管17a、空気排出
用流路18及び空気排出用枝管18aが設けられている
。反応ガスの流れを示すと、まず燃料ガスは燃料供給用
流路15から入り、燃料供給用枝管15aに分枝されて
入り、波形薄板の下面に設けられた燃料流路13を通っ
て、燃料排出用枝管に入りまとめられた燃料排出用流路
18より排出される6次に空気は、空気供給用流路16
より入り、空気供給用枝管で分岐され。
12d is bonded to the corrugated thin plate by welding or diffusion bonding. Frame component member 12 a y l 2 b e 12
Q Of #12d, the frame 12a has the fuel supply channel 1.
5 and a fuel supply branch pipe 15a, an air supply channel 16, and an air supply branch pipe 16a, and a fuel discharge channel 17, a fuel discharge branch pipe 17a, and an air discharge channel are provided in the frame 12b. 18 and an air exhaust branch pipe 18a are provided. Showing the flow of the reaction gas, the fuel gas first enters from the fuel supply channel 15, branches into the fuel supply branch pipe 15a, passes through the fuel channel 13 provided on the lower surface of the corrugated thin plate, The 6th air discharged from the fuel discharge flow path 18 that enters the fuel discharge branch pipe and is combined into the air supply flow path 16
It enters through the main pipe and branches off with an air supply branch pipe.

波形薄板11の上面に形成された空気流路14を通り空
気排出用枝管18aに入り、空気排出用流路18よりま
とめて排出される。この波形薄板11の構造により、燃
料流路と空気流路が平面的に交互に並ぶため、セパレー
タとして1反応ガス片方分だけの厚さですむので、燃料
及び空気流路が高さ方向に隣接している従来構造第2図
のセパレータ24と比べて厚さが172以下となる。
The air passes through the air passage 14 formed on the upper surface of the corrugated thin plate 11, enters the air discharge branch pipe 18a, and is collectively discharged from the air discharge passage 18. Due to the structure of this corrugated thin plate 11, the fuel flow channels and the air flow channels are arranged alternately in a plane, so the separator only needs to be as thick as one side of one reaction gas, so the fuel and air flow channels are adjacent to each other in the height direction. Compared to the conventional separator 24 shown in FIG. 2, the thickness is 172 mm or less.

ここで、枠L 2□a 、 12 b 、 12 a 
、 12 dは、その上下面で電解質板と接し、ウェッ
トシールを形成し、セル間からのガス漏れを防止し、さ
らに波形薄板11の補強としての働きもする。
Here, the frame L 2□a, 12 b, 12 a
, 12 d are in contact with the electrolyte plate on their upper and lower surfaces to form a wet seal, prevent gas leakage between the cells, and also serve as reinforcement for the corrugated thin plate 11 .

ここで示しであるガスの流れは燃料も空気も同一方向に
流れる平行流方式であるが、燃料と空気が逆方向に流れ
る対向流方式とすることも可能である。
Although the gas flow shown here is a parallel flow type in which fuel and air flow in the same direction, it is also possible to use a counter flow type in which fuel and air flow in opposite directions.

薄形化によるメリットは次のようになる。輸送の問題等
からスタックの高さが制限されているため、スタック当
りのセル数を多くでき、スタックの高出力化、しいては
出力密度の増大となり、コストが低減できる。またさら
に部材の質量が小さくなり、熱容量が小さくなるため、
起動時の昇温か容易になる。
The advantages of thinning are as follows. Since the height of the stack is limited due to transportation issues, the number of cells per stack can be increased, the output of the stack can be increased, the output density can be increased, and the cost can be reduced. Furthermore, the mass of the parts becomes smaller and the heat capacity becomes smaller, so
It becomes easier to heat up the temperature at startup.

第3図は本実施例電池の断面の1部である。FIG. 3 shows a part of the cross section of the battery of this example.

21は電解質保持板、22はアノード、23はカソード
、11は波形薄板、13は燃料流路、14は空気流路、
17は燃料排出用流路、17aは燃料排出用枝管、18
は空気排出用流路、18aは空気排出用枝管、12cは
枠を示している。電解質板21は枠12c(図示されて
いないが枠12a。
21 is an electrolyte holding plate, 22 is an anode, 23 is a cathode, 11 is a corrugated thin plate, 13 is a fuel flow path, 14 is an air flow path,
17 is a fuel discharge channel, 17a is a fuel discharge branch pipe, 18
18a is a branch pipe for air discharge, and 12c is a frame. The electrolyte plate 21 has a frame 12c (not shown, but a frame 12a).

12b、12cも同様)と周辺部で接触し、ウェットシ
ールと呼ばれる電解質の表面張力を利用したガスシール
を行なっている。このウェットシールを有効に作用させ
るため、枠12cの高さく枠12a、12b、12dも
同様)は波形薄板11の高さより、電極(アノード22
及びカソード23)の厚さの分だけ高くなっている。
12b and 12c) at their periphery to perform a gas seal using the surface tension of the electrolyte, which is called a wet seal. In order to make this wet seal work effectively, the height of the frame 12c (same for the frames 12a, 12b, 12d) is set so that the electrode (anode 22) is higher than the height of the corrugated thin plate 11.
and the thickness of the cathode 23).

波形薄板の断面形状は、矩形のものを示したがこの他に
も第6図に示す正弦波形状波板11bや第7図に示す高
さ方向に可撓性のある弾性波板1.1cでも可能である
The cross-sectional shape of the corrugated thin plate is shown as being rectangular, but there may also be a sinusoidal corrugated plate 11b shown in FIG. 6 or an elastic corrugated plate 1.1c which is flexible in the height direction as shown in FIG. But it is possible.

第4図は、本実施例のセルにガス給排気用のマニフォー
ルドを取付けた平面図である。
FIG. 4 is a plan view of the cell of this embodiment with a manifold for gas supply and exhaust.

二二で41aは燃料供給用マニフォールド。22 and 41a is a fuel supply manifold.

41bは空気供給用マニフォールド、41Cは燃料排出
用マニフォールド、41dは空気排出用マニフォールド
を示している。各マニフォールドはセルの4隅にガスケ
ット42を挾んで枠12a。
41b is an air supply manifold, 41C is a fuel discharge manifold, and 41d is an air discharge manifold. Each manifold has a frame 12a with gaskets 42 sandwiched between the four corners of the cell.

12b、12c、12dにボルト締めされている。12b, 12c, and 12d are bolted.

ここで燃料及び空気用マニフォールドは供給側と排出側
がセルの対角線方向に設けてあり、セルを通るガス流路
の長さが一定となっており、流れが均一となっている。
Here, the fuel and air manifolds are provided with a supply side and a discharge side diagonally of the cell, and the length of the gas flow path passing through the cell is constant, so that the flow is uniform.

またガスケット42とマユフォールド固定ボルト43は
電気的絶縁材料となっており、セルの枠1−2a、12
b、12ct12dとマニフォールド41 a g 4
 l b g 4 i c e41dとが電気的に短絡
しない構造となっている。
Furthermore, the gasket 42 and Mayufold fixing bolt 43 are made of electrically insulating material, and the cell frames 1-2a, 12
b, 12ct12d and manifold 41 a g 4
The structure is such that there is no electrical short circuit between lbg4ice41d.

第5図は、マニフオールドを取り付けた本実施例の斜視
図である。マニフォールド41a、41b。
FIG. 5 is a perspective view of this embodiment with a manifold attached. Manifolds 41a, 41b.

41c、41.dは、セルを積層したスタック51の各
セルにガスを分配供給し、また各セルの排出ガスを集合
させてまとめて排出する構造となっている。
41c, 41. d has a structure in which gas is distributed and supplied to each cell of a stack 51 in which cells are laminated, and exhaust gas from each cell is collected and discharged all at once.

また、このマニフオールドは、スタック51の補強材と
しても働き、地震等による外力のためのスタックのくず
れを防止する。
The manifold also serves as a reinforcing material for the stack 51, and prevents the stack from collapsing due to external forces such as earthquakes.

第8図は、流路断面積を流れ方向で変化させた波形薄板
の実施例である。これは溶融炭酸塩型電解質方式の場合
の例であり、燃料通路13は入口側から出口側に向かつ
て流路幅が増大し、逆に空気流路14は入口側から出口
側に向かつて流路幅が減少している。この構造により、
反応によるガス流量の変化に対応させ、流路内のガス流
速を均一化し、電池内での反応を均一化し、電池性能が
向上する。出口と入口との流路幅の比は、本実施例の場
合、ガスの利用率が燃料側で80%、空気側で50%で
あるため、反応熱による膨張も考慮して燃料流路で約1
:2.空気流路で約1.9 : 1となっている。
FIG. 8 shows an example of a corrugated thin plate in which the cross-sectional area of the flow path is changed in the flow direction. This is an example of a molten carbonate electrolyte system, where the width of the fuel passage 13 increases from the inlet side to the outlet side, and conversely, the air passage 14 increases the flow rate from the inlet side to the outlet side. Road width is decreasing. This structure allows
In response to changes in gas flow rate due to reactions, the gas flow rate within the flow path is made uniform, and the reaction within the battery is made uniform, improving battery performance. In this example, the gas utilization rate is 80% on the fuel side and 50% on the air side. Approximately 1
:2. The air flow path has a ratio of approximately 1.9:1.

また1本実施例は溶融炭酸塩型電解質方式の場合である
が、他の電解質方式の場合にも応用できる。つまり、リ
ン酸型電解質方式の場合、溶融塩型とは逆に、燃料は反
応とともに流量が減少し空気は流量が増大するため、流
路幅を流れ方向に従って、燃料側では幅を狭くシ、空気
側では幅を広くしてゆけば良い。
Further, although this embodiment is a case of a molten carbonate type electrolyte system, it can also be applied to cases of other electrolyte systems. In other words, in the case of the phosphoric acid electrolyte method, contrary to the molten salt type, the flow rate of fuel decreases and the flow rate of air increases as the reaction progresses, so the width of the flow path is narrowed along the flow direction, and the width is narrowed on the fuel side. On the air side, just widen the width.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ガス流路を形成
するセパレータを薄形化できることにより、コンパクト
化及び、熱容量の減少にする起動時の昇温が容易になる
。さらにセル内の流速を均一化できることから効率の向
上にもなる。
As described above, according to the present invention, the separator forming the gas flow path can be made thinner, thereby making it easier to downsize the device and increase the temperature at startup to reduce the heat capacity. Furthermore, since the flow velocity within the cell can be made uniform, efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のセパレータの分解斜視図
、第2図は従来の電池積層体の分解斜視図、第3図は本
発明の実施例の電池の断面図、第4図は同じく電池の平
面図、第5図は同じく電池のスタックの斜視図、第6図
及び第7図は本発明における波形薄板の変形応用例の断
面図、第8図は同じく波形薄板の斜視図である。 11・・・波形薄板、12・・・枠、13・・・燃料流
路、14・・・空気流路、15・・・燃料供給用流路、
21・・・電解質保持板、22・・・アノード、23・
・・カソード、篇5図 4ht //b /Ic 葛8図
FIG. 1 is an exploded perspective view of a separator according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a conventional battery stack, FIG. 3 is a sectional view of a battery according to an embodiment of the present invention, and FIG. 5 is a perspective view of a stack of batteries, FIGS. 6 and 7 are cross-sectional views of modified examples of the corrugated thin plate of the present invention, and FIG. 8 is a perspective view of the corrugated thin plate. It is. DESCRIPTION OF SYMBOLS 11... Corrugated thin plate, 12... Frame, 13... Fuel channel, 14... Air channel, 15... Fuel supply channel,
21... Electrolyte holding plate, 22... Anode, 23...
...Cathode, Volume 5 Figure 4ht //b /Ic Kuzu Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1、電解質保持板の一方の面にアノードを、他方の面に
カソードを設け、アノードの電解質保持板と接する面の
反対側の面に燃料流路を、またカソードの電解質保持板
と接する面の反対側の面に空気流路を設け、その燃料及
び空気流路を波形の薄板で形成する燃料電池において、
前記波型薄板の上面、下面にそれぞれ燃料及び空気を流
し、燃料流路及び空気流路の両者が1枚の波形薄板によ
って形成されていることを特徴とする燃料電池。
1. An anode is provided on one side of the electrolyte holding plate and a cathode is provided on the other side, a fuel flow path is provided on the side opposite to the side of the anode in contact with the electrolyte holding plate, and a fuel flow path is provided on the side of the cathode that is in contact with the electrolyte holding plate. In a fuel cell in which an air flow path is provided on the opposite surface, and the fuel and air flow paths are formed by a corrugated thin plate,
A fuel cell characterized in that fuel and air flow through the upper and lower surfaces of the corrugated thin plate, respectively, and both the fuel flow path and the air flow path are formed by one corrugated thin plate.
JP59249590A 1984-11-28 1984-11-28 Fuel cell Pending JPS61128469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249590A JPS61128469A (en) 1984-11-28 1984-11-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249590A JPS61128469A (en) 1984-11-28 1984-11-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61128469A true JPS61128469A (en) 1986-06-16

Family

ID=17195274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249590A Pending JPS61128469A (en) 1984-11-28 1984-11-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61128469A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328251U (en) * 1986-08-08 1988-02-24
JP2001035514A (en) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd Sheet metal for current-carrying and solid electrolyte fuel cell using the same
WO2001013449A3 (en) * 1999-08-16 2001-05-25 Allied Signal Inc Fuel cell and bipolar plate for use with same
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
DE10236997B4 (en) * 2002-08-13 2006-09-14 Daimlerchrysler Ag Electrochemical cell stack
JP2014530463A (en) * 2011-09-21 2014-11-17 インテリジェント エナジーリミテッドIntelligent Energy Limited Fuel cell separation plate
JP2015022802A (en) * 2013-07-16 2015-02-02 日産自動車株式会社 Fuel cell stack
WO2017160511A1 (en) * 2016-03-17 2017-09-21 Exxonmobil Research And Engineering Company Integrated operation of molten carbonate fuel cells
US10763518B2 (en) 2015-05-04 2020-09-01 Temasek Polytechnic Plate member for a cell stack
US11600830B2 (en) 2015-05-04 2023-03-07 Temasek Polytechnic Plate member for a cell stack
DE102021213997A1 (en) 2021-12-08 2023-06-15 Vitesco Technologies GmbH Optimized bipolar plates for a fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328251U (en) * 1986-08-08 1988-02-24
JP2001035514A (en) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd Sheet metal for current-carrying and solid electrolyte fuel cell using the same
AU773563B2 (en) * 1999-08-16 2004-05-27 Allied-Signal Inc. Fuel cell and bipolar plate for use with same
KR100697480B1 (en) * 1999-08-16 2007-03-20 얼라이드시그날 인코퍼레이티드 Fuel cell having improved condensation and reaction product management capabilities
US6322919B1 (en) 1999-08-16 2001-11-27 Alliedsignal Inc. Fuel cell and bipolar plate for use with same
US6635378B1 (en) 1999-08-16 2003-10-21 Hybrid Power Generation System, Llc Fuel cell having improved condensation and reaction product management capabilities
WO2001013449A3 (en) * 1999-08-16 2001-05-25 Allied Signal Inc Fuel cell and bipolar plate for use with same
WO2001013441A3 (en) * 1999-08-16 2001-06-07 Allied Signal Inc Fuel cell having improved condensation and reaction product management capabilities
WO2003028132A1 (en) * 2000-06-14 2003-04-03 Mitsubishi Heavy Industries, Ltd. Fuel cell device and method of cooling fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
DE10236997B4 (en) * 2002-08-13 2006-09-14 Daimlerchrysler Ag Electrochemical cell stack
JP2014530463A (en) * 2011-09-21 2014-11-17 インテリジェント エナジーリミテッドIntelligent Energy Limited Fuel cell separation plate
JP2015022802A (en) * 2013-07-16 2015-02-02 日産自動車株式会社 Fuel cell stack
US10763518B2 (en) 2015-05-04 2020-09-01 Temasek Polytechnic Plate member for a cell stack
US11600830B2 (en) 2015-05-04 2023-03-07 Temasek Polytechnic Plate member for a cell stack
WO2017160511A1 (en) * 2016-03-17 2017-09-21 Exxonmobil Research And Engineering Company Integrated operation of molten carbonate fuel cells
DE102021213997A1 (en) 2021-12-08 2023-06-15 Vitesco Technologies GmbH Optimized bipolar plates for a fuel cell

Similar Documents

Publication Publication Date Title
EP0039235B1 (en) Polygonal shaped fuel cell system
JP3530198B2 (en) Solid electrolyte fuel cell
US6207310B1 (en) Fuel cell with metal screen flow-field
US7569301B2 (en) Fuel cell
CN109585874B (en) Separator for fuel cell and fuel cell stack
KR20160136588A (en) Bipolar plate for fuel cell
KR20020062720A (en) Fuel cell having improved condensation and reaction product management capabilities
CN109802156B (en) Metal separator for fuel cell and fuel cell
JPS61128469A (en) Fuel cell
EP3553864B1 (en) Bipolar plate, cell stack, and redox flow battery
CN109962257B (en) Power generation single cell
US8053125B2 (en) Fuel cell having buffer and seal for coolant
JPH11283637A (en) Fuel cell
CA2608616C (en) Fuel cell with simplified separator structure
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JP2002343406A (en) Manifold for fuel cell
JP2003068331A (en) Fuel cell separator
KR102666114B1 (en) Separator, and Fuel cell stack comprising the same
WO2008024401A1 (en) Bipolar separators with improved fluid distribution
JPH04370664A (en) Fuel cell
WO2018183047A1 (en) Flow field plate for an electrochemical fuel cell
JP7531540B2 (en) Fuel cell separator and power generation cell
JPH07135005A (en) Fuel cell
JP2000067885A (en) Fuel cell
JPH0290470A (en) Lamination type fuel battery