JPS63241859A - Thin film electrode supported on electron conducting sheet and manufacture thereof - Google Patents
Thin film electrode supported on electron conducting sheet and manufacture thereofInfo
- Publication number
- JPS63241859A JPS63241859A JP63058134A JP5813488A JPS63241859A JP S63241859 A JPS63241859 A JP S63241859A JP 63058134 A JP63058134 A JP 63058134A JP 5813488 A JP5813488 A JP 5813488A JP S63241859 A JPS63241859 A JP S63241859A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- sheet
- metal
- molten
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 137
- 229910052744 lithium Inorganic materials 0.000 claims description 136
- 229910052751 metal Inorganic materials 0.000 claims description 56
- 239000002184 metal Substances 0.000 claims description 56
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 40
- 229910052759 nickel Inorganic materials 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 229910000733 Li alloy Inorganic materials 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 239000001989 lithium alloy Substances 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910000906 Bronze Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical group [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000010974 bronze Substances 0.000 claims description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 239000012768 molten material Substances 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910000792 Monel Inorganic materials 0.000 claims description 2
- 239000010953 base metal Substances 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 2
- 229910052749 magnesium Inorganic materials 0.000 claims 2
- 239000011777 magnesium Substances 0.000 claims 2
- 229910000640 Fe alloy Inorganic materials 0.000 claims 1
- 229910000990 Ni alloy Inorganic materials 0.000 claims 1
- 239000011135 tin Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 239000005518 polymer electrolyte Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- WHXSMMKQMYFTQS-NJFSPNSNSA-N lithium-9 Chemical compound [9Li] WHXSMMKQMYFTQS-NJFSPNSNSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000219495 Betulaceae Species 0.000 description 1
- 238000004354 ROESY-TOCSY relay Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0483—Processes of manufacture in general by methods including the handling of a melt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/666—Composites in the form of mixed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/806—Nonwoven fibrous fabric containing only fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49115—Electric battery cell making including coating or impregnating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Coating With Molten Metal (AREA)
- Manufacture Of Switches (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は支持薄膜リチウム電極とその製造方法に関する
。さらに詳細には、本発明は電子伝導性物質のシート上
に支持されたリチウム、リチウム合金または異物質混入
リチウムの薄膜電極、および、その製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a supported thin film lithium electrode and a method for manufacturing the same. More particularly, the present invention relates to thin film electrodes of lithium, lithium alloys, or foreign lithium supported on sheets of electronically conductive material, and methods of making the same.
[従来の技術及び発明が解決しようとする課題]再充電
が可能なリチウム発電機(又はリチウム電池)(カナダ
、ブリティッシュコロンビア、バーナビ(Burnab
y)、モーリ(Molt)エネルギー有限責任会社)が
市場に現れ、さらに最近高分子電解質が出現して以来、
リチウム発電機の発展に伴なフて固体電池のすべてがこ
こ二、王手のうちに非常に急速に進展した。これらの新
しい系はすべて電流密度が小さくてすむ薄膜を利用する
技術を用いており、その結果リチウム電極の再析出と繰
返し使用が極めて容易になった。この傾向のために、リ
チウム電極はますます薄い膜状のものを生産する必要が
増し、液体電解質電池では100μ程度であり、高分子
電解質の場合では約1μ程度以上30μ未満である。[Prior art and problems to be solved by the invention] Rechargeable lithium generator (or lithium battery) (Burnab, British Columbia, Canada)
y), Molt Energy Limited) appeared on the market, and since the more recent advent of polymer electrolytes,
Along with the development of lithium generators, solid state batteries have all advanced very rapidly in the last few years. All of these new systems use thin film techniques that require low current densities, making the lithium electrode extremely easy to redeposit and repeatedly use. Due to this trend, it is increasingly necessary to produce lithium electrodes in the form of thinner membranes, which are approximately 100μ for liquid electrolyte batteries and approximately 1μ or more and less than 30μ for polymer electrolytes.
リチウムの薄膜はその厚さが約100μくらいであれば
比較的容易に利用しあるいは取り扱うことができる。商
品として生産された薄膜は1ボンドあたり 100ドル
の桁の価格で入手可能である。しかし、さらに薄い膜を
製造するにはまず押出し、次いで積層しなければならな
いのでそのコストが急速に増加する。後者の操作は時間
がかかるうえ困難(従って労費が高くなる)であって、
その結果としてこのリチウムの製造経費は少なくとも3
倍になる。リチウムの製造費が電池の価格のなかで無視
できない部分を占めることを考えれば、その製造費は価
格の50%までを占めることができるであろう。極めて
薄い膜(50μ)はさらに高価であるばかりでなく、ま
た取扱が困難でもある。それはリチウムの薄膜の展性が
大でありまた多くの通常の物質に付着しやすいからであ
る。これは、電極(+)/電解質/リチウム電極という
構成の重畳膜をもつ電池を組み立てる連続作業でリチウ
ム薄膜は極度に取扱が困難であることを意味している。A thin lithium film having a thickness of about 100 microns can be used and handled relatively easily. Commercially produced thin films are available at prices in the order of $100 per bond. However, manufacturing thinner membranes requires extrusion and then lamination, which quickly increases costs. The latter operation is time consuming and difficult (and therefore expensive);
As a result, the production cost of this lithium is at least 3
Double. Considering that the manufacturing cost of lithium occupies a non-negligible portion of the price of a battery, the manufacturing cost could account for up to 50% of the price. Very thin membranes (50μ) are not only more expensive, but also difficult to handle. This is because lithium thin films are highly malleable and easily adhere to many common materials. This means that lithium thin films are extremely difficult to handle in the continuous process of assembling batteries with stacked membranes consisting of electrode (+)/electrolyte/lithium electrode.
本発明において特別の関心を払われている高分子電解質
リチウム電池の製造に用いられている技術は特にこの点
について要求されている。The technology used in the manufacture of polymer electrolyte lithium batteries, which is of particular interest in the present invention, is particularly required in this regard.
その理由は、現在知られている電解質の特性に関して、
必要とされるリチウム膜の厚さは30ないし約1μの間
の値になるからである。この難点を克服する方法が知ら
れていて、例えば、両面のある負極を使い、必要な厚さ
の2倍の厚みのものとすることである。(第3回リチウ
ム電池国際会議、1986年5月27日−30日、日本
京都、要旨集# S T −11)。しかし、その目的
が
Li/電解質/ (+ ) / N i / L f
/電解質/ (+)/Ni/Li、、、、 (+)/
Ni(ただし、ここでNfは一例として選ばれたもので
ある)のように並んだ双極型電池を製造するのであれば
、リチウムが過剰にならないよう、極く薄い膜に頼るこ
とが必要になる。過剰のリチウムは事実原料費や貯蔵エ
ネルギー密度(特に単位体積あたりのエネルギーで表わ
すときの)に対して不利益である。また室温作動に設計
された電池の場合で必要とするリチウム量が極めて小さ
く (1−2C/clD” )、1−5μの厚さに対応
するときには上記の過剰が決定的にまでなる。The reason is that regarding the currently known properties of electrolytes,
This is because the required thickness of the lithium film is between 30 and about 1 micron. Ways to overcome this difficulty are known, for example by using double-sided negative electrodes, which are twice as thick as required. (3rd International Conference on Lithium Batteries, May 27-30, 1986, Kyoto, Japan, Abstracts #ST-11). However, its purpose is Li/electrolyte/(+)/Ni/Lf
/Electrolyte/ (+)/Ni/Li,,,, (+)/
If we were to make bipolar batteries lined with Ni (although Nf was chosen here as an example), we would need to rely on extremely thin films to avoid excess lithium. . Excess lithium is actually detrimental to raw material costs and storage energy density (especially when expressed as energy per unit volume). Furthermore, in the case of batteries designed for room temperature operation, the amount of lithium required is extremely small (1-2C/clD''), and when corresponding to thicknesses of 1-5μ, the above-mentioned excess becomes decisive.
例えば金属コレクターの被覆に使うためなどのリチウム
の超薄膜の製造に種々の方法が示唆されている0例えば
、加熱蒸着、スパッタリング、または電子線を使うリチ
ウムの薄膜生成がその例である。しかしながらこれらの
技法は高真空と厳に無塵の条件下に行われるので、比較
的時間と費用を要する。1μ以下の厚さの薄膜はこのよ
うにして得られる。Various methods have been suggested for the production of ultra-thin films of lithium, for example for use in coating metal collectors. Examples include the production of thin films of lithium using heated evaporation, sputtering, or electron beams. However, these techniques are relatively time-consuming and expensive, as they are performed under high vacuum and strictly dust-free conditions. Thin films with a thickness of less than 1 μm are obtained in this way.
他の方法もあり、金属製支持物上に付けて積層・析出を
行う方法:アメリカ合衆国特許第3756789号、1
973年9月 4日1発明者アルダ−(Alder)お
よび第3721113号、 1973年3月1発明者ハ
ウスプラン(Houseplan)、またはプラスチッ
ク物質とともに熱間同時押出す方法(ヨーロッパ特許出
願第0148241号、パーク(Park)その他、
1985年6月26日、および第0145498号、タ
ック(Cook)その他、 1985年6月19日)、
これらの方法はすべて重大な欠陥をもりており、特に再
充電可能な重合物電解質電池の製造に適用しようとする
ときに顕著である。There are other methods, such as laminating and depositing on a metal support: U.S. Pat. No. 3,756,789, 1
September 4, 1973 1 Inventor Alder and No. 3721113; March 1973 1 Inventor Houseplan or method of hot coextrusion with plastic materials (European Patent Application No. 0 148 241; Park and others
June 26, 1985, and No. 0145498, Cook et al., June 19, 1985);
All of these methods have serious deficiencies, particularly when applied to the manufacture of rechargeable polymer electrolyte cells.
他方、スチール板を亜鉛洛中に広げてメッキする方法が
ある。これに関しては次の特許が参考としてあげられる
:
日本特許願第57−203758号 新日本製鐵日本特
許願第57−203759号 〃日本特許願第57
−2037fiQ号 〃英国特許 208034
G 77カナダ特許 114521(1
バテル メモリアル インスティテユート(Batte
lle Memorial In5titute
)これらの特許に開示された技術は、金属板上にリチ
ウムの薄層を作り出すのには明らかに用いられない。新
日本製鐵の一つの方法に従ってスチール板の片面上にロ
ーラーでする電気メッキについても言及しなければなら
ない(”新工場”、 1986年12月)。On the other hand, there is a method of spreading a steel plate in a zinc plate and plating it. In this regard, the following patents may be cited as references: Japanese Patent Application No. 57-203758 Nippon Steel Japan Patent Application No. 57-203759 Japan Patent Application No. 57
-2037fiQ No. 〃British patent 208034
G77 Canadian Patent 114521 (1 Battelle Memorial Institute)
lle Memorial In5tituto
) The techniques disclosed in these patents obviously cannot be used to create thin layers of lithium on metal plates. Mention must also be made of electroplating with a roller on one side of a steel plate according to a method of Nippon Steel ("New Factory", December 1986).
電池に用いるときには、リチウム膜の厚さの制御がメッ
キ法の場合以上に重要である。他方、もしリチウム層が
薄過ぎると放電中にコレクターの一部が露出し、その結
果として再充電時の不可逆的又は少な(とも深刻な問題
に至ることがありうる。よく知られていることであるが
、リチウムは析出するときに金属コレクター(例えばニ
ッケル)上にでなく、リチウム自身の上に再析出すると
きは多数回(500回以上)繰返し析出することができ
る。他方、また厚さが厚過ぎるとコストとエネルギ蓄積
のためよくないので、電池の製造過程を通して厚すぎる
ことのないように厚さを制御するのが絶対に必要である
。最後に、電池が直列につながれたときの電極の表面電
気容量(C7cm2)を確実にバランスさせるために厚
さを制御するのが必要である。もしそうでなければ、繰
り返し使用の間、電気容量の変り方が個々の電池によっ
て違ってくるであろう。When used in batteries, controlling the thickness of the lithium film is even more important than in plating methods. On the other hand, if the lithium layer is too thin, part of the collector will be exposed during discharge, which can lead to irreversible or even serious problems during recharging. However, when lithium is deposited, it is not deposited on a metal collector (e.g. nickel), but when it is re-deposited on lithium itself, it can be deposited repeatedly many times (more than 500 times). It is absolutely necessary to control the thickness throughout the battery manufacturing process so that it is not too thick, as too thick is bad for cost and energy storage.Finally, the electrodes when the batteries are connected in series It is necessary to control the thickness to ensure that the surface capacitance (C7cm2) of the battery is balanced. If not, the capacitance may change differently between individual cells during repeated use. Probably.
本発明はリチウム電極を使用する際の上記の困難を克服
し、種々の厚さく例えば40ないし約0.1μの厚さ)
のリチウム膜を、迅速に経済的に、しかもバッチに関係
なく特に再現性よく製造することを意図している。The present invention overcomes the above-mentioned difficulties in using lithium electrodes of various thicknesses, e.g.
The intention is to produce lithium membranes quickly, economically and particularly reproducibly from batch to batch.
また本発明は、ニッケルや銅などの金属とともに用いる
ときの融解状態のリチウム、リチウム合金、および多物
質混入リチウムのもつ優れた濡れ特性を利用しようとす
るものである。The present invention also seeks to take advantage of the excellent wetting properties of molten lithium, lithium alloys, and multi-metal lithium when used with metals such as nickel and copper.
本発明の目的の一つは支持体、望ましくは金属または他
の金属化された物質あるいは熱に抵抗性のある物質から
なる支持体、の上に、リチウム薄膜(約1ないし20μ
の厚さの)の高速濡れ特性を利用して、リチウムを付着
させたロール状のものを製造する迅速法を開発すること
である。One of the objects of the present invention is to apply a thin lithium film (approximately 1 to 20 μm
The purpose of the present invention is to develop a rapid method for producing lithium-deposited rolls by utilizing the high-speed wetting properties of lithium-ionized materials (with a thickness of 100%).
本発明の他の一つの目的は、本方法が高速である点を利
用して、融解リチウムと支持物体との接触時間を短くし
融解リチウムによる化学的あるいは熱的攻撃が起りにく
くするところにある。Another object of the present invention is to take advantage of the high speed of the method to shorten the contact time between the molten lithium and the support object, thereby reducing the likelihood of chemical or thermal attack by the molten lithium. .
本発明の一つの目的は、用いる装置と好適に作製した金
属シートのロールを解いてゆくスピードを制御して、リ
チウムに熱処理を受けさせる点にある。実施例には凝固
(リチウムの微結晶性)速度あるいは化学処理速度を制
御する例が含まれている。One object of the present invention is to subject the lithium to a heat treatment by controlling the equipment used and the speed at which the rolls of suitably prepared metal sheets are unrolled. Examples include controlling solidification (lithium microcrystalline) rates or chemical processing rates.
本発明の他の一つの目的は、付着リチウムの厚さが厳重
に制御できる方法で溶融リチウムを付着させた高分子電
解質電池用に開発された支持リチウム電極を製造するこ
とである。Another object of the present invention is to produce a supported lithium electrode developed for polymer electrolyte batteries that has molten lithium deposited in a manner that allows the thickness of the deposited lithium to be tightly controlled.
本発明の一つの目的は、リチウム層の厚さおよびそれに
よる電気容量を制御することにより、薄くかつ再現性の
ある付着物を確実に得ることである。一方では、このよ
うにしてリチウムを使い過ぎないようにでき、他方では
リチウム電極と電池の繰返し使用の間、確実な電気化学
的動作をさせることができるであろう。One objective of the present invention is to ensure that thin and reproducible deposits are obtained by controlling the thickness of the lithium layer and hence the capacitance. On the one hand, it would be possible in this way to avoid overusing lithium, and on the other hand, it would be possible to ensure reliable electrochemical operation during repeated use of the lithium electrode and battery.
[課題を解決するための手段]
広義では、本発明は薄膜電極の製法において、リチウム
、リチウム合金、および異物質混入リチウムのうちのど
れかから造られ、その融点はリチウム融点とは50℃以
上は違わず、その厚さは一定である電子伝導性のシート
上に支持される薄膜電極をロール状に巻いたそのシート
と上記素材金属の供給源から製造する製造方法に関する
ものである。本発明の方法によれば、この素材金属の溶
融金属浴を用意し、シートを連続的に広げてゆき、不活
性雰囲気中で溶融状態の素材金属の一定量を該シートの
2面中少なくとも1面上に連続的に塗布し、シート上に
膜を形成させるのである。膜の厚さは約0.1ないし約
40μで一定であり、その表面は均一かつ一様である。[Means for Solving the Problems] In a broad sense, the present invention is a method for manufacturing a thin film electrode, which is made from any one of lithium, lithium alloy, and lithium mixed with foreign substances, and whose melting point is 50° C. or higher, which is the melting point of lithium. The present invention relates to a manufacturing method in which a thin film electrode supported on an electronically conductive sheet having a constant thickness is wound into a roll, and the sheet is manufactured from a source of the above-mentioned raw metal. According to the method of the present invention, a molten metal bath of this raw metal is prepared, the sheet is continuously spread out, and a certain amount of the raw metal in a molten state is applied to at least one of two sides of the sheet in an inert atmosphere. It is applied continuously onto the surface to form a film on the sheet. The thickness of the film is constant from about 0.1 to about 40μ, and its surface is uniform and uniform.
適当な方法を使って、溶融素材金属がシートに接触した
とき固化しないよう、またシート上に膜が形成されたあ
とシート上の素材金属の固化を制御するようにしなけれ
ばならない。明らかに、この方法はまた両面をリチウム
で被覆したコレクタを製作するのに適している。例えば
、本発明の方法はリチウムを受は付けないシートの面上
に予め陽性電極物質あるいは陽性電極物質を電解質で覆
ったものも、その上にリチウム、リチウム合金、または
異物質混入リチウムの皮膜を形成するのに用いることか
できる。Appropriate methods must be used to prevent the molten raw metal from solidifying upon contact with the sheet and to control the solidification of the raw metal on the sheet after the film has been formed on the sheet. Apparently, this method is also suitable for producing collectors coated on both sides with lithium. For example, the method of the present invention can be applied to a sheet that does not accept lithium, on which a positive electrode material or a positive electrode material is covered in advance with an electrolyte, or on which a film of lithium, lithium alloy, or lithium mixed with a foreign substance is applied. It can be used to form.
本発明を好ましく用いた具体例では、このシートは金属
、合金、金属化されたガラス繊維、または金属化あるい
は帯電したプラスチックで作製されている。金属として
好ましいものは銅、ニッケル、鉄、あるいはそリブデン
である。合金を選ぶときは、ニッケル、銅、あるいは鉄
をベースとする合金、例えば青銅、千ネル合金あるいは
スチールがよい。実用上はニッケルシートが望ましい。In preferred embodiments of the invention, the sheet is made of metal, metal alloy, metallized glass fiber, or metallized or charged plastic. Preferred metals are copper, nickel, iron, or sorybdenum. When choosing an alloy, choose a nickel, copper, or iron-based alloy, such as bronze, copper alloy, or steel. For practical purposes, a nickel sheet is preferable.
溶融素材金属について言えば、それは金属リチウム、あ
るいはリチウム含有量の高い化合物または合金であって
その融点がリチウムの融点に近く、±50℃であるもの
、例えば、アンチモン、ビスマス、ホウ素、スズ、ケイ
素、あるいはマグネシウムとリチウムとの合金またはそ
れらを異物質としてリチウムに混入したものである。Regarding the melting material metal, it is metallic lithium or a compound or alloy with a high lithium content whose melting point is close to that of lithium, ±50°C, such as antimony, bismuth, boron, tin, silicon. , or an alloy of magnesium and lithium, or an alloy of magnesium and lithium mixed with lithium as a foreign substance.
本発明の望ましい他の一例によれば、浴の温度はリチウ
ムの融点と約400℃の間の温度に維持されて、シート
は溶融リチウム浴の上で解き広げられてゆく。さらに、
本発明の望ましい他の一例によれば、溶融リチウムの塗
布機を浴中で絶えず回転させていて、例えばニッケルの
シートの面に溶融リチウムを塗布させる。塗布機の構造
として望ましいのは、溶融リチウムの表面に軸が平行な
ローラがあり、ローラの底部は溶融リチウムに浸かって
おり、上部がシートの面に接触しているものである。ロ
ーラの表面が粗面であフて常にリチウム、リチウム合金
や異物質を混入したリチウムの溶融物で覆われていて、
それを上述の例えばニッケルのシートの面に均一にしか
も一定の厚さで穆してゆく。According to another preferred embodiment of the invention, the sheet is unrolled over the molten lithium bath, with the bath temperature maintained at a temperature between the melting point of lithium and about 400°C. moreover,
According to another preferred embodiment of the invention, a molten lithium applicator is continuously rotated in the bath to apply molten lithium to the surface of a sheet of, for example, nickel. A desirable structure for the applicator is one in which there is a roller whose axis is parallel to the surface of the molten lithium, the bottom of the roller is immersed in the molten lithium, and the top is in contact with the surface of the sheet. The surface of the roller is rough and is always covered with lithium, lithium alloys, and molten lithium mixed with foreign substances.
This is applied uniformly to the surface of the above-mentioned nickel sheet, for example, to a constant thickness.
この粗表面はどんな種類のものでもよいが、規則的な幾
何学模様で構成させるのがよい。その模様はローラの全
表面に規則正しく広がる凹部を構成し、そこに溶融物質
を集め、さらに金属シートの上に移すのである。This rough surface can be of any type, but preferably consists of a regular geometric pattern. The pattern forms regularly spread depressions over the entire surface of the roller, where the molten material is collected and transferred onto the metal sheet.
そのシートを解き広げる速さは約0.5ないしIQOc
m/sが望ましい。さらに、状況によっては、溶融リチ
ウム(純粋なもの、異物質混入のもの、合金にな)たも
の)が被覆すべきシートの面に付く前に固化してしまう
のを防ぐために、ローラを加熱することも可能である。The speed of unraveling the sheet is about 0.5 or IQOc
m/s is desirable. Additionally, in some situations, the rollers may be heated to prevent the molten lithium (pure, adulterated, or alloyed) from solidifying before it reaches the surface of the sheet to be coated. It is also possible.
本発明の他の具体例では、シートの表面に素材金属が付
着する前、および/または後に、シートは加熱処理をさ
れている。In other embodiments of the invention, the sheet is heat treated before and/or after the base metal is deposited on the surface of the sheet.
本発明の他の具体例では、掻取り機が設けられていて、
ローラの表面にある過剰の溶融物質が被覆すべき金属シ
ートの面へ移される前に、その過剰を掻き取っている。In another embodiment of the invention, a scraper is provided;
Excess molten material on the surface of the roller is scraped off before it is transferred to the surface of the metal sheet to be coated.
本発明の他の具体例では、金属シートが溶融した純粋な
、合金の、または異物質混入のリチウムで覆われたのち
に、その表面を掻取り機で処理して、ローラが残した表
面の不完全さをならしている。In another embodiment of the invention, after the metal sheet has been coated with molten pure, alloyed, or adulterated lithium, the surface is treated with a scraper to remove the surface left by the rollers. Smoothing out imperfections.
リチウム浴の周りは、リチウム浴もシートも、酸素も水
も含んでいない不活性雰囲気中に保って、好ましくない
反応から防ぐのが望ましい。It is desirable to maintain an inert atmosphere surrounding the lithium bath, both the lithium bath and the sheet, free of oxygen and water to prevent unwanted reactions.
明白なことであるが、もし必要ならば金属コレクタの両
面を被覆するように装置を変更することもできるが、そ
れはこの技術に長じた人には明かである。もうひとつの
広義の解釈では、本発明は電子伝導性シートからなる支
持薄膜電極に関するもので、そのシートの1面は少なく
とも部分的にリチウム、リチウム合金、および異物質混
入リチウムのうちから選ばれた素材金属の層で被覆され
、その素材金属層は約0.1ないし40μの均一な厚み
をもっている。この層の表面は実際上凹凸がなく、しか
もナイフで剥すこともできない。Obviously, the apparatus can be modified to coat both sides of the metal collector if desired, as will be apparent to those skilled in the art. In another broad interpretation, the invention relates to a supported thin film electrode consisting of an electronically conductive sheet, at least in part selected from lithium, lithium alloys, and foreign lithium. It is coated with a layer of raw metal, and the raw metal layer has a uniform thickness of about 0.1 to 40 microns. The surface of this layer is practically smooth and cannot be removed with a knife.
電子伝導性シートを構成するのは金属、合金、金属化さ
れたガラス繊維または帯電あるいは金属化したプラステ
ィックである。例えば、銅、ニッケル、鉄、およびモリ
ブデンであるが、またはニッケル、銅、鉄を含む合金、
例えば真鍮、青銅、スチール、モネル合金などである。The electronically conductive sheet is composed of metals, alloys, metallized glass fibers, or charged or metallized plastics. For example, copper, nickel, iron, and molybdenum, or alloys containing nickel, copper, iron,
Examples include brass, bronze, steel, and Monel alloy.
このシートはニッケルであるのが望ましい。Preferably, this sheet is nickel.
被覆物となるものは金属リチウムであるのが望ましいが
、また高リチウム含有量の化合物や合金でリチウムの融
点に近い(±50℃)融点をもつものであってもよく、
その例としては、アンチモン、ビスマス、ホウ素、スズ
、ケイ素、またはマグネシウムとリチウムとの合金ある
いはそれらを異物質として混入したリチウムでもよい。The coating is preferably metallic lithium, but it may also be a compound or alloy with a high lithium content and a melting point close to that of lithium (±50°C).
Examples include antimony, bismuth, boron, tin, silicon, an alloy of magnesium and lithium, or lithium mixed with these as foreign substances.
[実施例]
次に、添付した図面を用いて本発明を説明するが、これ
らの図は例として示されたものであって、本発明をなん
ら制限するものではない。[Example] Next, the present invention will be described using the attached drawings, but these drawings are shown by way of example and do not limit the present invention in any way.
第1図に模式的に示した装置には、金属化した、あるい
は金属のシート3を供給するためのスプール1がある。The apparatus shown schematically in FIG. 1 has a spool 1 for supplying a metallized or metal sheet 3. The device shown schematically in FIG.
処理が終ったシートを巻き取るように巻き取りスプール
5が設けられていて、後述の処理が行われている間シー
トを巻き取るようになっている。この装置にはまた浴7
があって溶融リチウム9を中におさめている。A take-up spool 5 is provided to take up the processed sheet, and takes up the sheet while the processing described below is being performed. This device also has bath 7
It contains molten lithium 9.
リチウム9が間違いなく溶融状態にありその温度を制御
温度に保つように、加熱素子11と熱絶縁物13が設け
られている。この加熱素子は通常の方法で交流電源に接
続されているのはもちろんである。最後に、17で模式
的に図示されている区域内では、浴と処理中のシート3
が一つの制御された雰囲気下に維持されていて、その中
では酸素、水蒸気、その他リチウムと反応するおそれの
ある気体が除去されている。3の区域は全く通常のもの
であって本発明のどの部分にもなっていない。A heating element 11 and a thermal insulator 13 are provided to ensure that the lithium 9 is in a molten state and its temperature is maintained at a controlled temperature. This heating element is of course connected to an alternating current power supply in the usual manner. Finally, in the area schematically illustrated at 17, the bath and the sheet 3 being processed are
are maintained under a controlled atmosphere in which oxygen, water vapor, and other gases that might react with the lithium are removed. Area 3 is completely conventional and does not form any part of this invention.
溶融リチウムの薄膜3′を金属シート3の下面に付着さ
せるための塗布機として表面が布目状になったローラ1
9があり、その表面の模様が毛細管の役目をするのでリ
チウムがシート3の下面に付着する0表面が布目状のロ
ーラ19にはまたその表面に付着したリチウムの温度を
適当に制御するための普通の加熱器21が備わっている
。さらにもし必要ならば、掻取り機22(第1図には点
線で示しである)を設けて溶融物が被覆物として金属シ
ート表面3に塗布されるまえにその過剰量をローラの表
面から取除くことができる。A roller 1 with a textured surface serves as a coating device for attaching a thin film 3' of molten lithium to the lower surface of the metal sheet 3.
9, and the pattern on its surface acts as a capillary so that lithium adheres to the bottom surface of the sheet 3.The roller 19, which has a textured surface, also has a roller 19 for properly controlling the temperature of the lithium adhering to its surface. A normal heater 21 is provided. Additionally, if necessary, a scraper 22 (indicated by dotted lines in Figure 1) may be provided to remove excess melt from the surface of the roller before it is applied as a coating to the metal sheet surface 3. Can be removed.
金属シートとローラ19の接触が適当に行われるように
、2木の棒2および2aを金属シート3の上面にあてが
い、シート3とローラ19の接触角が調節できるように
する。金属シート3が溶融リチウムのある所に達する前
に温度調節器23を設置して、シートが溶融リチウム浴
上に達するにつれてその温度を調節するようにする。同
様にもう一つの温度調節器25を設けて、リチウム塗布
シートがスプール5に巻取られる前に加熱または冷却す
るように調節する。Two wooden rods 2 and 2a are applied to the upper surface of the metal sheet 3 so that the contact angle between the sheet 3 and the roller 19 can be adjusted so that the metal sheet 3 and the roller 19 come into proper contact. Before the metal sheet 3 reaches the molten lithium, a temperature regulator 23 is installed to adjust the temperature of the sheet as it reaches the molten lithium bath. Similarly, another temperature regulator 25 is provided to adjust the heating or cooling of the lithium coated sheet before it is wound onto the spool 5.
第1図に模式的に表わされるこの装置の変形の一つが第
2図に示されている。その中で第1図の装置と共通の部
品は同じ参照番号になっているのですぐに分かるが、ロ
ーラ27が設けられていて、金属シート3を2つのロー
ラ19と27とで挟んで引張っているのが見られる。One variant of this device, represented schematically in FIG. 1, is shown in FIG. Among them, the parts that are common to the apparatus shown in FIG. I can see you there.
ローラ27には加熱器29が付いていてシートを処理す
る間、適当な温度を保つようになっている。Roller 27 is equipped with a heater 29 to maintain the appropriate temperature while processing the sheet.
次に第3図に移ると、第2図に示した装置に掻取り機3
1があるのが分かる。これは膜の厚みを減らし、および
/または、ローラ19で作った膜の不完全な部分をなく
す役目をしている。この付は足した装置は十分に高温に
保ち、掻き取った過剰の物質を液状のまま確実に浴の中
へ返す必要がある。このことは(図には示していないが
)一般に使われる加熱機構を撮取り機31に取付ければ
よい。さらに、掻取りを済ませた表面が完全に均一にな
るよう、押えのローラ33を掻取り機31の直上に配置
しである。リチウム被覆のシートの均一な表面は35に
図示されている。始めに付着したリチウム膜が厚いとき
にはローラ上の模様が冷却したリチウム上にマークを残
すおそれがあるので、掻取り機を過熱するのは特に有用
なことである。加熱掻取り機33はこのような表面の不
完全さをなくすことができる。Turning now to FIG. 3, the device shown in FIG.
I see that there is 1. This serves to reduce the thickness of the membrane and/or eliminate imperfections in the membrane created by rollers 19. The additional equipment must be kept at a sufficiently high temperature to ensure that the excess scraped material is returned to the bath in liquid form. This can be achieved by attaching a commonly used heating mechanism to the photographing device 31 (although not shown). Further, a presser roller 33 is placed directly above the scraper 31 so that the scraped surface is completely uniform. The uniform surface of the lithium-coated sheet is illustrated at 35. Heating the scraper is particularly useful when the initially deposited lithium film is thick, since the markings on the rollers can leave marks on the cooled lithium. The heated scraper 33 can eliminate such surface imperfections.
本発明に従って得られた製品は第4図に図示した電池を
製造するのに用いられる。この電池には厚さ10μの銅
コレクタ37がある。本発明の操作によって得られたリ
チウム層39の厚さは約20μである。本電池にはまた
厚さ20μの高分子電解質41、厚さ40μの正極43
および厚さ10μの銅コレクタ45があり、全体で10
0μの厚さを構成している。The product obtained according to the invention is used to manufacture the battery illustrated in FIG. This cell has a copper collector 37 with a thickness of 10μ. The thickness of the lithium layer 39 obtained by the operation of the invention is approximately 20 microns. This battery also includes a polymer electrolyte 41 with a thickness of 20μ and a positive electrode 43 with a thickness of 40μ.
and a copper collector 45 with a thickness of 10μ, for a total of 10
It has a thickness of 0μ.
帯状のリチウムで被覆された金属シートの例が第5.6
および7図に図示されている。第5図では金属リチウム
49が金属シート47上に塗布されている。帯状リチウ
ムの始まりは図に51として示され、被覆されていない
2つの帯状の部分は53と55の参照番号で表わされて
いる。もしリチウムの繰返し模様でニッケルシートの上
を被覆したければ、その繰返し模様57を作る塗布用ロ
ーラ19を使うことができる。第6図に示した模様の代
りに、例えば第7図の5.9に示すような他の模様を用
いることもできるのは明かである。An example of a metal sheet coated with band-shaped lithium is given in Section 5.6.
and 7. In FIG. 5, metallic lithium 49 is applied onto the metal sheet 47. In FIG. The beginning of the lithium band is indicated in the figure as 51, and the two uncovered parts of the band are designated by reference numerals 53 and 55. If it is desired to coat the nickel sheet with a repeating pattern of lithium, an application roller 19 can be used to create the repeating pattern 57. It is clear that instead of the pattern shown in FIG. 6, other patterns can also be used, such as the one shown at 5.9 in FIG. 7, for example.
本発明を次に挙げる実施例を使って説明するが、本発明
をそれらの例に限定する目的で挙げるのではない。The invention will now be illustrated by the following examples, which are not intended to limit the invention to these examples.
太JLfL上
電解銅のシート(幅: 7.6cm、厚さ:25μ)の
スプールを使用してリチウム電極を作製した。選ばれた
装置は第1図に図示されるもので、グローブボックス(
ヘリウム雰囲気下)に納め、その水分は10ppm以下
、酸素分は10pp+w以下であった。シートを第1図
のように置いた0巻いたシートを解き広げてゆく操作は
引っ張りローラを2 cm/sの速さで回転させて行っ
た。ステンレス・スチール製の塗布用ローラ(幅7cm
)を銅シートの中心に置いた。ローラの直径は2.5c
mでその表面模様の特徴は、ヴアージニア州すッチモン
ド所在インタ ロート コーホレーテッド(INTA
ROTOInc、)の記載に従い、打込数200 、刻
みの深さ24オーム、角錐形模様で体積−5,0である
。リチウム浴の温度はテスト中260℃に維持される。A spool of a thick JLfL electrolytic copper sheet (width: 7.6 cm, thickness: 25 μm) was used to fabricate a lithium electrode. The equipment chosen is the one illustrated in Figure 1, which includes a glove box (
The water content was 10 ppm or less, and the oxygen content was 10 pp+w or less. The sheet was placed as shown in Figure 1, and the unrolled sheet was unrolled and spread out by rotating a pulling roller at a speed of 2 cm/s. Stainless steel coating roller (width 7cm)
) was placed in the center of the copper sheet. The diameter of the roller is 2.5c
m, and its surface pattern is characterized by the characteristics of its surface pattern.
According to the description of ROTO Inc.), the number of dots is 200, the depth of the notch is 24 ohm, the volume is -5.0 with a pyramidal pattern. The temperature of the lithium bath is maintained at 260°C during the test.
ローラの体積の約30%は液体中に浸っている。大きさ
10X5X2c+aのステンレス・スチール容器には約
50ccの”電池”級純度のリチウムが入っている。1
1節板(23,25)はこのテストには用いていない、
このようにして約10mのリチウム皮膜が銅の上に作ら
れ、巻取り用ローラに巻取られる。Approximately 30% of the roller's volume is submerged in liquid. A stainless steel container measuring 10x5x2c+a contains approximately 50cc of "battery" grade lithium. 1
The 1st section board (23, 25) was not used in this test.
Approximately 10 m of lithium film is thus created on the copper and wound onto a winding roller.
こうして得られたリチウムは表面に欠陥がなく(O,S
μ以下)高度に金属的外観をもフている。鋼上のリチウ
ムの縁は直線状でギザギザはない。The lithium thus obtained has no defects on the surface (O, S
μ or less) It also has a highly metallic appearance. The edges of the lithium on the steel are straight and not jagged.
リチウムの厚さは平均5μで極めて規則的であり、どの
方向にも0.5μ以下の変動である。The lithium thickness is very regular with an average of 5μ, varying less than 0.5μ in any direction.
使ったリチウムの量は5μの厚さを作るのに3cc程度
である。The amount of lithium used was about 3cc to make a thickness of 5μ.
連続操作ではもつと多量のリチウムを製造することにな
るが、そのときは新鮮なリチウムを容器に規則的に加え
るので十分である。Continuous operation may produce large amounts of lithium, and it is sufficient to periodically add fresh lithium to the vessel.
火五■ユ
この実施例を行うのに実施例1の場合と同じ装置を使っ
たが、変ったところは、「インキ付け」ローラを使いそ
の表面模様は多少強調されていて、打込数は25、刻み
の深さは330オーム、体積ツ72であり、その模様は
やはり角錐状である。実験条件は同一で、速度= 2
cm/s、浴温度−260℃であった。こうして、鋼上
に生成したリチウムの厚さは平均8μとなり、この値は
リチウムの消費量としては7cclOmに、または電気
量としては14A、hに相当する。浴とそのすぐ周りは
ヘリウム雰囲気とし、巻取りスプールは乾燥空気(70
℃で露点が一25℃以下)の雰囲気で包む。The same equipment as in Example 1 was used to perform this example, except that an "inking" roller was used, the surface pattern was somewhat emphasized, and the number of strokes was 25. The depth of the notches is 330 ohms, the volume is 72, and the pattern is also pyramidal. Experimental conditions are the same, speed = 2
cm/s, and the bath temperature was -260°C. The thickness of the lithium thus formed on the steel is on average 8 μm, which corresponds to a consumption of 7 cclOm of lithium or 14 A,h of electricity. The bath and its immediate surroundings are kept in a helium atmosphere, and the take-up spool is kept in dry air (70
Wrap in an atmosphere with a dew point of 125°C or less).
K直■ユ
依然第1図の装置を使い、シートを解き広げる速さを5
倍早く(およそ10 cm/sに)し、ニッケルシート
(幅7cm、厚さ8μ)を温度調節器23で予め300
℃に加熱し、「インキ付け」スプールを300℃に熱し
、浴9を260℃の温度に保りて操作して同じ厚さのリ
チウムを得た。Using the device shown in Figure 1, the speed at which the sheet is unraveled is 5.
double the speed (approximately 10 cm/s), and heat the nickel sheet (width 7 cm, thickness 8 μ) to 300 cm in advance using the temperature controller 23.
The same thickness of lithium was obtained by heating the "inking" spool to 300°C and operating the bath 9 at a temperature of 260°C.
リチウム塗布のニッケルが巻取りスプールに達する前に
、小型のヘリウム・ジェットを25の位置で使って冷却
した。A small helium jet was used at position 25 to cool the lithium-coated nickel before it reached the take-up spool.
1五■1
実施例1で製造したリチウムを使って小電池(4cm”
)を構成した。実施例1の製品から4 cm’のディス
クをパンチして作った。このリチウム・ディスク上に、
ポリエチレン・オキシドと過塩素酸リチウムの20/1
の割合の混合物からなる厚さ75μの電解質膜を析出し
た。15■1 A small battery (4cm") using the lithium produced in Example 1
) was configured. A 4 cm' disc was punched from the product of Example 1. On this lithium disk,
20/1 polyethylene oxide and lithium perchlorate
An electrolyte membrane having a thickness of 75 μm was deposited from a mixture having a ratio of .
ニッケル・コ、レクタ上にTiS、をベースとする正極
で、表面電気容量1.5C/cm”のものを上記の半電
池の上に作った。このように構成した電池の温度を80
℃に上げると、電池は見かけ上リチウムの損失なく10
0回以上再使用が可能であった。A positive electrode based on nickel copolymer and TiS on a rectifier with a surface capacitance of 1.5 C/cm was fabricated on top of the above half cell.The temperature of the cell thus constructed was set to 80
When raised to 10 °C, the battery cools down to 10
It could be reused 0 or more times.
叉IL旦
例えばポリエチレン・オキシドをカナダ特許第4798
62号、 1985年4月23日に記載されているよう
な厚さ50μの合成共重合物で置き換え、伝導体ととも
に電解質を使って、50回の強い放電と充電を繰り返し
たが、樹枝状結晶を生じることもなく、リチウム電極が
不調になった気配もなかった。For example, polyethylene oxide can be used in Canadian Patent No. 4798.
No. 62, April 23, 1985, the dendrites were replaced with a 50μ thick synthetic copolymer and subjected to 50 strong discharge and charge cycles using an electrolyte with a conductor. There was no problem, and there was no sign that the lithium electrode was malfunctioning.
叉m(Wl旦
実施例2に従って作製したリチウム電極を使い、共重合
物を基にした電解質でもう一つの4 cm2の電池を製
作した。正極としては高電気容量(’ 5 C/cm2
)のV6O13を使った。リチウム10μ(すなわち7
.3C/cm2)を用いると、それは正極に対してリチ
ウムが約50%であることを意味するが、60℃で75
回の過酷な条件での使用にも耐え、樹枝状結晶の生成と
か他のリチウム電極の誤動作に結び付く現象を起こすこ
とはなかフた。Another 4 cm2 cell was fabricated with a copolymer-based electrolyte using the lithium electrode prepared according to Example 2. As the positive electrode, a high capacitance ('5 C/cm2) was used.
) V6O13 was used. Lithium 10μ (i.e. 7
.. 3C/cm2), it means about 50% lithium for the positive electrode, but at 60°C 75%
It withstood repeated use under harsh conditions and did not produce dendrites or other phenomena that could lead to malfunction of lithium electrodes.
医JL[ヱ
実施例3のやり方で作製されたリチウム薄膜を使い、1
個あたり約3.5vの電圧をもつ素電池17個を直列に
集積して電圧が50Vを越える1個の電池を作製した。Medical JL
Seventeen unit cells each having a voltage of about 3.5V were integrated in series to produce one battery with a voltage exceeding 50V.
この例では、正極はMnO,でできており、電解質は上
述のように共重合物を基にするものであった。出来上が
ったものの主な特徴は電池の厚さがIIIIll以下と
いう例外的な薄さである。In this example, the positive electrode was made of MnO, and the electrolyte was copolymer-based as described above. The main feature of the finished product is that the battery is exceptionally thin, with a thickness of less than 1/3 inch.
第1図は本発明に従って操作を行なうための装置を模式
的に図解したものであり、第2図は同じ操作を行うため
の他の装置の模式図であり、第3図は第1図および第2
図の装置に装着可能な掻取り機の模式図であり、第4図
は本発明による陽極を装備した電池の断面図であり、第
5図はリチウムで帯状に覆われた金属シートを上方から
見た図であり、第6図は繰返し図形のある金属シートを
上方から見た別の図であり、そして第7図は別の繰返し
図形のある金属シートを上方から見たもう一つの図であ
る。
1・・・スプール、 3・・・シート、3′・
・・溶融リチウムの薄膜、
5・・・巻取りスプール、 )・・・浴、9・・・リ
チウム、 11・・・加熱素子、13・・・熱
絶縁物、 19−・・ローラ、21・・・加熱器
、 22・・・掻取り機、23.25・・・温度
調節器、
27・・・ローラ、 29・・・加熱器、31
・・・掻取り機、 33・・・ローラ、37.4
5・・・銅コレクタ、
39・−リチウム層、 47・・・金属シート、4
9・・・金属リチウム。FIG. 1 is a schematic illustration of an apparatus for carrying out an operation according to the present invention, FIG. 2 is a schematic illustration of another apparatus for carrying out the same operation, and FIG. Second
Fig. 4 is a cross-sectional view of a battery equipped with an anode according to the present invention, and Fig. 5 shows a metal sheet covered with a strip of lithium from above. Figure 6 is another view from above of a metal sheet with a repeating figure, and Figure 7 is another view from above of a metal sheet with another repeating figure. be. 1... Spool, 3... Sheet, 3'.
... Thin film of molten lithium, 5... Winding spool, )... Bath, 9... Lithium, 11... Heating element, 13... Thermal insulator, 19-... Roller, 21... ... Heater, 22 ... Scraping machine, 23.25 ... Temperature regulator, 27 ... Roller, 29 ... Heater, 31
...Scraper, 33...Roller, 37.4
5... Copper collector, 39... Lithium layer, 47... Metal sheet, 4
9...Metal lithium.
Claims (1)
混入したリチウムからなる群から選ばれ、かつ、その融
点がリチウムの融点と±50℃以上違わない素材金属で
一定の厚さの薄膜をもつ電極を作るにあたり、電子伝導
性物質のシートのロールと該素材金属源から供給される
材料を使って行なう電子伝導性物質シートに支持される
薄膜電極の製造方法において、該素材金属が溶融状態に
ある浴を設けて不活性雰囲気下に保ち、該シートを連続
的に解き広げながらその2面のうち少なくとも1面上に
溶融状態にある素材金属の一定量を連続的に塗布して、
厚さが一定で約0.1ないし約40μのあいだにあり表
面が均一かつ一様な薄膜を該シート上に形成し、溶融状
態にある素材金属が該シートに接触して直ちに固化する
のを防ぎ、該素材金属が該シート上に上述の薄膜を形成
したのち制御下に固化させることを特徴とする電子伝導
性物質シートに支持された薄膜電極の製造方法。 2、該シートが金属、合金、金属化されたガラス繊維、
帯電したプラスチック、および金属化されたプラスチッ
クからなる群より選ばれた物質からなる請求項1に記載
の方法。 3、該シートが銅、ニッケル、鉄、およびモリブデンよ
りなる群より選ばれる金属でできている請求項2に記載
の方法。 4、該シートがニッケル、銅または鉄の合金であること
を特徴とする請求項2に記載の 方法。 5、該シートが真鍮、青銅、スチールまたはモネル合金
からなる請求項4に記載の方法。 6、シートがニッケルからなる請求項2に記載の方法。 7、素材金属が金属リチウムである請求項6に記載の方
法。 8、素材金属がリチウムの合金である請求項1に記載の
方法。 9、リチウムがアンチモン、ビスマス、ホウ素、スズ、
ケイ素、およびマグネシウムと合金を作るか、またはそ
れらを異物質として含んでいる請求項1に記載の方法。 10、浴の温度をリチウムの融点と約400℃の間の温
度に保つことを特徴とする請求項7に記載の方法。 11、シートを溶融リチウム浴上で解き広げることを特
徴とする請求項10に記載の方法。 12、溶融リチウム浴中で溶融リチウム塗布機を絶えま
なく回転してニッケルシートの面に接触し続けることを
特徴とする請求項11に記載の方法。 13、該塗布機のローラの軸は溶融リチウムの表面に平
行で、ローラの底部は溶融リチウム中に漫っていて、一
方、上部は該面に接触しており、ローラの表面は粗面に
なっていて溶融リチウムが覆いそれがニッケルシートの
該面上に一様に移されることを特徴とする請求項12に
記載の方法。 14、該粗面は規則的な幾何学模様によってつくられ、
その模様はローラ表面に規則正しく広がった凹部を形成
し、該凹部は溶融リチウムを貯めてそれを金属シート上
に移す請求項13に記載の方法。 15、凹部の大きさが純粋リチウム、リチウム合金また
は異物質を含むリチウムの層の関数として決められる請
求項14に記載の方法。 16、0.5ないし100cm/sの速さでシートを広
げて行くことを特徴とする請求項15に記載の方法。 17、上記シート面に溶融リチウムを塗布するまえに、
ローラ上で直ちに固化しないよう、 ローラを加熱することを特徴とする請求項15に記載の
方法。 18、溶融状態の素材金属を該シートに塗布する前およ
び塗布した後、シートを加熱処理することを特徴とする
請求項1に記載の方法。 19、金属シートを溶融リチウムで被覆したのち、該面
を掻取り機で処理して塗布したリチウムの厚さを減らし
、さらに必要ならばローラのためにできた表面の不完全
さを取り除く請求項15に記載の方法。 20、リチウム浴とその近くのシートを、酸素も水蒸気
も含まない不活性雰囲気下に保つことを特徴とする請求
項15に記載の方法。 21、ローラの表面に付着した溶融物質の過剰を、それ
が被覆すべき金属シートにつけられるまえに取り除くよ
うに、掻取り機を備えることを特徴とする請求項13に
記載の方法。 22、支持薄膜電極において、リチウム、リチウム合金
、および異物質を混入されたリチウムからなる群から選
ばれ、かつ、融点がリチウムの融点から50℃以内にあ
る素材金属の層で少なくとも部分的に少なくとも1面が
被覆されている電子伝導性シートで、該素材金属の層は
約0.1ないし約40μのあいだの一様な厚さをもち、
その層の表面は事実上凹凸のない滑らかな面であって、
請求項1の方法によって作製されたときはナイフを使っ
てシートから剥せない電子伝導性シートからなることを
特徴とする支持薄膜電極。 3、シートが金属、合金、金属化されたガラス繊維、帯
電プラスチック、および金属化されたプラスチックから
なる群より選ばれた物質で作製される請求項22に記載
の電極。 4、シートが銅、ニッケル、鉄、およびモリブデンから
なる群より選ばれる金属でできて いることを特徴とする請求項23に記載の電極。 5、シートがニッケル、銅、あるいは鉄を主成分とする
合金であることを特徴とする請求項23に記載の電極。 6、シートが真鍮、青銅、スチールあるいはそネル合金
からできている請求項25に記載の電極。 27、シートがニッケルでできている請求項23に記載
の電極。 28、素材金属が金属リチウムである請求項27に記載
の電極。 29、素材金属がリチウムの合金から選ばれる請求項2
2に記載の電極。 30、リチウムがアンチモン、ビスマス、ホウ素、スズ
、ケイ素、マグネシウムと合金に なっている請求項29に記載の電極。 31、陽極、陰極および電解質からなる電気化学的発電
機において、陽極が請求項22、23、24、のいずれ
か1つにおいて限定されている電気化学的発電機。 32、陽極、陰極および電解質からなる電気化学的発電
機において、陽極が請求項25、28、27のいずれか
1つにおいて限定されている電気化学的発電機。 33、陽極、陰極および電解質からなる電気化学的発電
機において、陽極が請求項29又は30のいずれかにお
いて限定されている電気化学的発電機。[Claims] 1. A material metal selected from the group consisting of lithium, lithium alloys, and lithium mixed with foreign substances, and whose melting point does not differ by more than ±50°C from the melting point of lithium, and has a certain thickness. A method of manufacturing a thin film electrode supported on a sheet of an electron conductive material using a roll of a sheet of an electron conductive material and a material supplied from a source of the material metal in order to make an electrode having a thin film of the material metal. A bath in which metal is in a molten state is provided and kept in an inert atmosphere, and while the sheet is continuously unrolled, a certain amount of the material metal in a molten state is continuously applied onto at least one of its two sides. hand,
A thin film with a constant thickness of about 0.1 to about 40 μm and a uniform surface is formed on the sheet, and the material metal in a molten state immediately solidifies when it comes into contact with the sheet. A method for manufacturing a thin film electrode supported on an electronically conductive material sheet, characterized in that the material metal is solidified in a controlled manner after forming the above-mentioned thin film on the sheet. 2. The sheet is made of metal, alloy, metallized glass fiber,
The method of claim 1, comprising a material selected from the group consisting of charged plastics and metallized plastics. 3. The method of claim 2, wherein said sheet is made of a metal selected from the group consisting of copper, nickel, iron, and molybdenum. 4. A method according to claim 2, characterized in that the sheet is an alloy of nickel, copper or iron. 5. The method of claim 4, wherein said sheet is made of brass, bronze, steel or Monel alloy. 6. The method of claim 2, wherein the sheet is made of nickel. 7. The method according to claim 6, wherein the material metal is metallic lithium. 8. The method according to claim 1, wherein the raw metal is a lithium alloy. 9. Lithium is antimony, bismuth, boron, tin,
2. The method according to claim 1, which is alloyed with or contains silicon and magnesium as extraneous substances. 10. A method according to claim 7, characterized in that the temperature of the bath is maintained at a temperature between the melting point of lithium and about 400°C. 11. The method of claim 10, characterized in that the sheet is unrolled on a molten lithium bath. 12. The method of claim 11, characterized in that the molten lithium applicator is continuously rotated in the molten lithium bath to maintain contact with the surface of the nickel sheet. 13. The axis of the roller of the applicator is parallel to the surface of the molten lithium, the bottom of the roller is spread in the molten lithium, while the top is in contact with the surface, and the surface of the roller is roughened. 13. A method according to claim 12, characterized in that the molten lithium is covered and transferred uniformly onto said side of the nickel sheet. 14. The rough surface is created by a regular geometric pattern,
14. The method of claim 13, wherein the pattern forms regularly spread recesses in the roller surface, the recesses storing molten lithium and transferring it onto the metal sheet. 15. The method of claim 14, wherein the size of the recess is determined as a function of the layer of pure lithium, lithium alloy or lithium containing foreign material. 16. The method according to claim 15, characterized in that the sheet is spread at a speed of 16.0.5 to 100 cm/s. 17. Before applying molten lithium to the sheet surface,
16. A method according to claim 15, characterized in that the roller is heated to prevent immediate solidification on the roller. 18. The method of claim 1, wherein the sheet is heat treated before and after applying the raw metal in a molten state to the sheet. 19. After coating the metal sheet with molten lithium, the surface is treated with a scraper to reduce the thickness of the applied lithium and, if necessary, to remove surface imperfections created by the rollers. 15. The method described in 15. 20. Process according to claim 15, characterized in that the lithium bath and the sheet near it are kept under an inert atmosphere free of oxygen and water vapor. 21. The method of claim 13, further comprising a scraper to remove excess molten material adhering to the surface of the roller before it is applied to the metal sheet to be coated. 22. In the supported thin film electrode, at least partially a layer of a material metal selected from the group consisting of lithium, lithium alloy, and lithium mixed with a foreign substance and whose melting point is within 50 ° C. of the melting point of lithium. an electronically conductive sheet coated on one side, the layer of base metal having a uniform thickness between about 0.1 and about 40 microns;
The surface of the layer is virtually smooth and has no irregularities,
A supported thin film electrode comprising an electronically conductive sheet that cannot be peeled off from the sheet using a knife when prepared by the method of claim 1. 3. The electrode of claim 22, wherein the sheet is made of a material selected from the group consisting of metals, metal alloys, metallized glass fibers, charged plastics, and metallized plastics. 4. Electrode according to claim 23, characterized in that the sheet is made of a metal selected from the group consisting of copper, nickel, iron and molybdenum. 5. The electrode according to claim 23, wherein the sheet is made of nickel, copper, or an alloy whose main component is iron. 6. An electrode according to claim 25, wherein the sheet is made of brass, bronze, steel or a solenoid alloy. 27. The electrode of claim 23, wherein the sheet is made of nickel. 28. The electrode according to claim 27, wherein the material metal is metallic lithium. 29. Claim 2, wherein the material metal is selected from lithium alloys.
2. The electrode according to 2. 30. The electrode of claim 29, wherein lithium is alloyed with antimony, bismuth, boron, tin, silicon, and magnesium. 31. An electrochemical generator consisting of an anode, a cathode and an electrolyte, wherein the anode is defined in any one of claims 22, 23 and 24. 32. An electrochemical generator consisting of an anode, a cathode and an electrolyte, wherein the anode is defined in any one of claims 25, 28 and 27. 33. An electrochemical generator consisting of an anode, a cathode and an electrolyte, wherein the anode is defined in either claim 29 or 30.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000531715A CA1288473C (en) | 1987-03-11 | 1987-03-11 | Thin electrode carried on electronically conducting strip, and process for itsmanufacture |
CA531,715 | 1987-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63241859A true JPS63241859A (en) | 1988-10-07 |
Family
ID=4135145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63058134A Pending JPS63241859A (en) | 1987-03-11 | 1988-03-11 | Thin film electrode supported on electron conducting sheet and manufacture thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US4824746A (en) |
EP (1) | EP0285476B1 (en) |
JP (1) | JPS63241859A (en) |
AT (1) | ATE76702T1 (en) |
CA (1) | CA1288473C (en) |
DE (1) | DE3871417D1 (en) |
ES (1) | ES2032983T3 (en) |
GR (1) | GR3005547T3 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002509341A (en) * | 1997-12-12 | 2002-03-26 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Apparatus and method for treating cathode material provided on thin film substrate |
JP2002212705A (en) * | 2001-01-22 | 2002-07-31 | Sumitomo Electric Ind Ltd | Method and system for thin film deposition |
JP2008527163A (en) * | 2004-12-27 | 2008-07-24 | サエス ゲッタース ソチエタ ペル アツィオニ | Method for manufacturing a device carrying at least one active substance by deposition of a low melting point alloy |
JP2011026707A (en) * | 2010-09-13 | 2011-02-10 | Sumitomo Electric Ind Ltd | Thin film manufacturing method and thin film manufacturing apparatus |
JP2017509765A (en) * | 2014-04-01 | 2017-04-06 | ハイドロ−ケベック | Polymers and their use as lubricants in the formation of alkali metal films. |
JPWO2018128025A1 (en) * | 2017-01-05 | 2019-01-17 | 株式会社アルバック | Winding type film forming apparatus and winding type film forming method |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911995A (en) * | 1987-03-11 | 1990-03-27 | Hydro-Quebec | Thin electrode supported on electronically conductive sheet and process of manufacture |
FR2616969B1 (en) * | 1987-06-18 | 1989-09-08 | Elf Aquitaine | METHOD FOR MANUFACTURING AN ELECTROCHEMICAL ASSEMBLY COMPRISING AN ELECTRODE AND AN ELECTROLYTE AND ASSEMBLY THUS PRODUCED |
US5019469A (en) * | 1987-06-18 | 1991-05-28 | Societe Nationale Elf Aquitaine | Process for production of an electrochemical sub-assembly comprising an electrode and an electrolyte, and the sub-assembly obtained in this way |
DE3838329A1 (en) * | 1987-11-11 | 1989-05-24 | Ricoh Kk | Negative electrode for a secondary battery |
EP0357859B1 (en) * | 1988-09-09 | 1993-12-22 | Hydro-Quebec | Process for the production of a thin electrode supported by a sheet |
US5169446A (en) * | 1989-08-02 | 1992-12-08 | Mhb Joint Venture | Method and apparatus for coating alkali or alkaline earth metals |
CA2021764C (en) * | 1989-08-02 | 2000-01-11 | Rene Koksbang | Method and apparatus for coating alkali or alkaline earth metals |
US5080932A (en) * | 1989-08-02 | 1992-01-14 | Mhb Joint Venture | Method for coating lithium on a substrate |
DE69221007T2 (en) * | 1991-04-25 | 1997-11-13 | Nippon Steel Corp | Method and device for applying molten metal coatings |
CA2051611C (en) * | 1991-09-17 | 1996-01-23 | Michel Gauthier | Process for preparation of electrode collector systems for thin film generators, electrode collector systems et generators therefrom |
CA2068290C (en) * | 1992-05-08 | 1999-07-13 | Michel Gauthier | Electrical connecting on lithium anodes |
US5411764A (en) * | 1993-03-30 | 1995-05-02 | Valence Technology, Inc. | Method of making lithium electrode |
CA2099526C (en) * | 1993-07-02 | 2005-06-21 | Hydro-Quebec | Lubricant additives used in thin film rolling of lithium strips |
CA2099524C (en) * | 1993-07-02 | 1999-05-18 | Patrick Bouchard | Thin film lithium rolling method with controlled separation |
CA2143047A1 (en) * | 1994-02-22 | 1995-08-23 | Yoshinori Takada | Alloy for the negative electrode of lithium secondary battery and lithium secondary battery |
WO1995029509A1 (en) * | 1994-04-20 | 1995-11-02 | Valence Technology, Inc. | Method for producing low porosity electrode |
US5522955A (en) * | 1994-07-07 | 1996-06-04 | Brodd; Ralph J. | Process and apparatus for producing thin lithium coatings on electrically conductive foil for use in solid state rechargeable electrochemical cells |
EP1000674B1 (en) | 1994-07-12 | 2005-05-11 | Hydro-Quebec | Method of producing a thin sheet of an alkali metal or an alkalimetal alloy by rolling a metal strip in presence of a lubricating composition |
US6104967A (en) * | 1997-07-25 | 2000-08-15 | 3M Innovative Properties Company | Fault-tolerant battery system employing intra-battery network architecture |
US6100702A (en) * | 1997-07-25 | 2000-08-08 | 3M Innovative Properties Company | In-situ fault detection apparatus and method for an encased energy storing device |
US6120930A (en) | 1997-07-25 | 2000-09-19 | 3M Innovative Properties Corporation | Rechargeable thin-film electrochemical generator |
US6146778A (en) | 1997-07-25 | 2000-11-14 | 3M Innovative Properties Company | Solid-state energy storage module employing integrated interconnect board |
US6087036A (en) * | 1997-07-25 | 2000-07-11 | 3M Innovative Properties Company | Thermal management system and method for a solid-state energy storing device |
US6099986A (en) | 1997-07-25 | 2000-08-08 | 3M Innovative Properties Company | In-situ short circuit protection system and method for high-energy electrochemical cells |
US5952815A (en) * | 1997-07-25 | 1999-09-14 | Minnesota Mining & Manufacturing Co. | Equalizer system and method for series connected energy storing devices |
US6117584A (en) * | 1997-07-25 | 2000-09-12 | 3M Innovative Properties Company | Thermal conductor for high-energy electrochemical cells |
US6046514A (en) * | 1997-07-25 | 2000-04-04 | 3M Innovative Properties Company | Bypass apparatus and method for series connected energy storage devices |
US6933077B2 (en) * | 2002-12-27 | 2005-08-23 | Avestor Limited Partnership | Current collector for polymer electrochemical cells and electrochemical generators thereof |
CA2552282A1 (en) | 2006-07-18 | 2008-01-18 | Hydro Quebec | Multi-layered live lithium-based material, preparation processes and applications in electrochemical generators |
US9385397B2 (en) | 2011-08-19 | 2016-07-05 | Nanotek Instruments, Inc. | Prelithiated current collector and secondary lithium cells containing same |
KR101816763B1 (en) * | 2013-05-08 | 2018-01-09 | 주식회사 엘지화학 | Electrode structure of electrochemical device including insulating layer and manufacturing thereof |
KR102258758B1 (en) * | 2017-12-14 | 2021-06-07 | 주식회사 엘지에너지솔루션 | Continuous Manufacturing Method of Lithium Secondary Battery Forming Passive layer on the Surface of Lithium Metal Electrode and Lithium Secondary Battery prepared by the Same |
CN108336298B (en) * | 2018-01-07 | 2021-01-01 | 合肥国轩高科动力能源有限公司 | Device and method for preparing composite lithium metal cathode |
WO2019230421A1 (en) * | 2018-05-31 | 2019-12-05 | 株式会社アルバック | Winding-type film deposition device and winding-type film deposition method |
US11384419B2 (en) * | 2019-08-30 | 2022-07-12 | Micromaierials Llc | Apparatus and methods for depositing molten metal onto a foil substrate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126679A (en) * | 1982-01-22 | 1983-07-28 | Hitachi Ltd | Formation of electrode for thin-film lithium battery |
JPS618850A (en) * | 1984-04-11 | 1986-01-16 | ハイドロ−ケベツク | Dense anode of lithium alloy for full solid battery |
JPS61239561A (en) * | 1985-04-16 | 1986-10-24 | Matsushita Electric Ind Co Ltd | Manufacture of metal electrode |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR962471A (en) * | 1950-06-10 | |||
GB905611A (en) * | 1957-10-01 | 1962-09-12 | Technograph Printed Circuits L | Improvements in and relating to the coating of metallic surfaces |
US4011372A (en) * | 1975-12-09 | 1977-03-08 | The United States Of America As Represented By The United States Energy Research And Development Administration | Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell |
CA1047600A (en) * | 1976-02-02 | 1979-01-30 | Majesty (Her) The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Flexible lead chloride cathode construction |
US4109035A (en) * | 1977-04-19 | 1978-08-22 | Scott Paper Company | Tension wire metering of applicator roll |
US4239817A (en) * | 1979-04-27 | 1980-12-16 | Thyssen Aktiengesellschaft Vorm. August Thyssen-Hutte | Process and apparatus for coating one side of a metal strip with molten metal |
SE434017B (en) * | 1980-06-10 | 1984-07-02 | Inventing Ab | SET AND DEVICE FOR A CURRENT, DOUBLE TREATMENT OF A CURRENT PAPER COAT WITH SAME TREATMENT |
AT369436B (en) * | 1981-05-12 | 1982-12-27 | Voest Alpine Ag | METHOD FOR CONTINUOUSLY ONE-SIDED COATING A BLANK METAL STRIP WITH MOLTEN METAL, AND DEVICE FOR CARRYING OUT THE METHOD |
JPS60151968A (en) * | 1984-01-20 | 1985-08-10 | Mitsubishi Electric Corp | Manufacture of electrode for fuel cell |
-
1987
- 1987-03-11 CA CA000531715A patent/CA1288473C/en not_active Expired - Lifetime
-
1988
- 1988-03-09 DE DE8888400546T patent/DE3871417D1/en not_active Expired - Lifetime
- 1988-03-09 EP EP88400546A patent/EP0285476B1/en not_active Expired - Lifetime
- 1988-03-09 AT AT88400546T patent/ATE76702T1/en not_active IP Right Cessation
- 1988-03-09 ES ES198888400546T patent/ES2032983T3/en not_active Expired - Lifetime
- 1988-03-11 JP JP63058134A patent/JPS63241859A/en active Pending
- 1988-03-11 US US07/166,980 patent/US4824746A/en not_active Expired - Lifetime
-
1992
- 1992-08-27 GR GR920401876T patent/GR3005547T3/el unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58126679A (en) * | 1982-01-22 | 1983-07-28 | Hitachi Ltd | Formation of electrode for thin-film lithium battery |
JPS618850A (en) * | 1984-04-11 | 1986-01-16 | ハイドロ−ケベツク | Dense anode of lithium alloy for full solid battery |
JPS61239561A (en) * | 1985-04-16 | 1986-10-24 | Matsushita Electric Ind Co Ltd | Manufacture of metal electrode |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002509341A (en) * | 1997-12-12 | 2002-03-26 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Apparatus and method for treating cathode material provided on thin film substrate |
JP4959050B2 (en) * | 1997-12-12 | 2012-06-20 | スリーエム カンパニー | Cathode material processing apparatus and method provided on thin film substrate |
JP2002212705A (en) * | 2001-01-22 | 2002-07-31 | Sumitomo Electric Ind Ltd | Method and system for thin film deposition |
JP2008527163A (en) * | 2004-12-27 | 2008-07-24 | サエス ゲッタース ソチエタ ペル アツィオニ | Method for manufacturing a device carrying at least one active substance by deposition of a low melting point alloy |
JP2011026707A (en) * | 2010-09-13 | 2011-02-10 | Sumitomo Electric Ind Ltd | Thin film manufacturing method and thin film manufacturing apparatus |
JP2017509765A (en) * | 2014-04-01 | 2017-04-06 | ハイドロ−ケベック | Polymers and their use as lubricants in the formation of alkali metal films. |
JPWO2018128025A1 (en) * | 2017-01-05 | 2019-01-17 | 株式会社アルバック | Winding type film forming apparatus and winding type film forming method |
Also Published As
Publication number | Publication date |
---|---|
EP0285476B1 (en) | 1992-05-27 |
ATE76702T1 (en) | 1992-06-15 |
GR3005547T3 (en) | 1993-06-07 |
CA1288473C (en) | 1991-09-03 |
EP0285476A1 (en) | 1988-10-05 |
DE3871417D1 (en) | 1992-07-02 |
US4824746A (en) | 1989-04-25 |
ES2032983T3 (en) | 1993-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63241859A (en) | Thin film electrode supported on electron conducting sheet and manufacture thereof | |
US4911995A (en) | Thin electrode supported on electronically conductive sheet and process of manufacture | |
CN109873122B (en) | Ultrathin metal lithium complex and preparation method and application thereof | |
CN107425175B (en) | Preparation method of ultrathin lithium belt for lithium metal battery | |
JPS6146947B2 (en) | ||
JP7537791B2 (en) | Ultra-thin lithium film laminate and its manufacturing method | |
CN114583108A (en) | Lithium alloy negative electrode film, preparation method thereof and secondary lithium metal battery | |
WO2021253318A1 (en) | Ultrathin lithium bar preform, composite negative electrode, manufacturing method therefor, and battery | |
US6942781B2 (en) | Method for electroplating a strip of foam | |
CN113823760A (en) | Ultrathin lithium strip prefabricated member, composite negative electrode, preparation method of composite negative electrode and battery | |
WO2023221435A1 (en) | Ultrathin metal lithium composite material, and preparation method therefor and use thereof | |
US1417464A (en) | Production of thin metal sheets or foils | |
CN115172660A (en) | Metal foil and preparation method thereof, lithium battery cathode and lithium battery | |
JP3429448B2 (en) | Battery porous current collector, electrode, method and apparatus for producing them | |
CN110931708A (en) | Preparation method of reference electrode of lithium ion and lithium metal battery | |
CN115579448A (en) | Preparation method of lithium composite negative electrode with controllable thickness | |
CN111670269A (en) | Electrolytic copper foil having high temperature dimensional stability and texture stability and method for manufacturing the same | |
CN212571044U (en) | Pole piece production equipment and lithium ion battery production line with same | |
JP2635713B2 (en) | Method of manufacturing thin-film electrode supported on sheet substrate | |
US5411764A (en) | Method of making lithium electrode | |
DE69015043T2 (en) | Manufacture of lithium layers on objects. | |
WO2021037182A1 (en) | Production lines and production methods for continuously casting and rolling metal strap and composite metal strap | |
CN114657624B (en) | Electrochemical preparation method of metal nanowire array | |
CN221304733U (en) | Ultrathin composite copper current collector, electrode plate, battery, electromagnetic shielding film and electric appliance | |
US20230223546A1 (en) | Method for producing an anode for lithium batteries |