JPS61239561A - Manufacture of metal electrode - Google Patents

Manufacture of metal electrode

Info

Publication number
JPS61239561A
JPS61239561A JP60080566A JP8056685A JPS61239561A JP S61239561 A JPS61239561 A JP S61239561A JP 60080566 A JP60080566 A JP 60080566A JP 8056685 A JP8056685 A JP 8056685A JP S61239561 A JPS61239561 A JP S61239561A
Authority
JP
Japan
Prior art keywords
liquid layer
current collector
roller
metal
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080566A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60080566A priority Critical patent/JPS61239561A/en
Publication of JPS61239561A publication Critical patent/JPS61239561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a convenient electrode having reduced grain field by providing a liquid layer onto fused metal then immersing the current correcting member into the fused metal to adhere metal to the current collecting member thus to integrate thereafter leading to the liquid layer and cooling/solidifying. CONSTITUTION:A current collector 4 wound over a roller 5 is guided by an inversion roller 6 to be immersed into fused metal 1 the led to the liquid layer 2 and wound over a roller 7. When employing sufficiently deep liquid layer 2, the temperature at the upper portion of the liquid layer is lower than the melting point of negative electrode material thus to solidify the integrated current collector/negative electrode material to be wound at this position. The roller 7 can move between the liquid layer 2 and the atmosphere or inert gas environment such as N2, Ar, etc. The integrated current collector/negative electrode material wound over the roller 7 is cleaned with water, ether, etc. then cut into specific dimension to produce an electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特にその負極の製造法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved method for manufacturing a non-aqueous electrolyte secondary battery, particularly its negative electrode.

従来の技術 現在まで、Li、Na等のアルカリ金属を負極活物質材
料として用い、γ−ブチロラクトン、テトラヒドロフラ
ン、プロピレンカーボネート、ジメトキシエタン等の溶
媒中に、溶質としてLick○4゜L I B F 4
 + L I C1等を溶解した、いわゆる非水電  
    i、ヶヤ□い6ユケ1.わ。[ヤッカ1.□、
ゎ5□え。    ;しかし、この種の二次電池はまだ
実用化されていない。その理由は、充放電回数の寿命が
短く、まだ〜充放電に際しての充放電効率が低いためで
あり、この性能劣化の属国は、主に正極及び負極活物質
の充放電における化学的又は物理的可逆性の低下である
Conventional technology Until now, alkali metals such as Li and Na have been used as negative electrode active materials, and Lick○4°L I B F 4 has been used as a solute in a solvent such as γ-butyrolactone, tetrahydrofuran, propylene carbonate, dimethoxyethane, etc.
+ So-called non-aqueous electricity in which L I C1 etc. are dissolved
i, gaya □i 6 yuke 1. circle. [Yacca 1. □、
ゎ5□Eh. ;However, this type of secondary battery has not yet been put into practical use. The reason for this is that the life of the number of charge and discharge cycles is short and the charge and discharge efficiency during charge and discharge is still low. This is a decrease in reversibility.

Li等のアルカリ金属を負極活物質として用いた場合、
充放電により、負イ+極板状にテンドライトが生成し、
これが充放電効率を下げ、また、時にはセパレータを介
して正極と内部短絡し、発熱・発火という危険がある。
When an alkali metal such as Li is used as a negative electrode active material,
Due to charging and discharging, tendrite is generated in the form of a negative electrode plate,
This reduces charging and discharging efficiency, and sometimes causes an internal short circuit with the positive electrode through the separator, creating a risk of heat generation and fire.

このような、負極の欠点を克服するため、従来より次式
のととく、充電時にL1+等のアルカリ金属イオンを吸
蔵し、放電時に放出する材料Mを負極に用いることが提
案されている。
In order to overcome these drawbacks of the negative electrode, it has been proposed to use a material M in the negative electrode, which absorbs alkali metal ions such as L1+ during charging and releases them during discharge, according to the following formula.

この負極材料としてはAl、Bi、Cd、In、Pb。The negative electrode materials include Al, Bi, Cd, In, and Pb.

Sn、、、Zn等を成分とする可融合金が知られており
、これらの金属及び合金を用いる電極(これらは既にL
i等のアルカリ金属を吸蔵していても、寸だ、していな
くてもよい)の簡便な製造法が報告されている。例えば
、Alでは特開昭52=70333号があり、可融合金
では同59−186275号がある。
Fusible alloys containing Sn, ..., Zn, etc. are known, and electrodes using these metals and alloys (these have already been
A simple manufacturing method has been reported for alkali metals such as i, which may or may not be occluded. For example, there is Japanese Patent Application Laid-open No. 52-70333 for Al, and Japanese Patent Application Laid-open No. 59-186275 for fusible metals.

これらの電極製造法は、概ね次の様である。すなわち、
負極材料金属の溶融物中に、Ni等の多孔性集電体を浸
漬し、集電体に負極材料を保持させ、これを取り出すこ
とにより、負極材料を集電体」−で冷却、固化させ、電
極とする(これを浸漬法と呼ぶ)。
The method for manufacturing these electrodes is generally as follows. That is,
A porous current collector such as Ni is immersed in the melt of the negative electrode material metal, the current collector retains the negative electrode material, and by taking it out, the negative electrode material is cooled and solidified by the current collector. , as an electrode (this is called the immersion method).

発明が解決しようとする問題点 しかし、このような電極製造法による電極を非水電解質
二次電池に適用しても、充分なザイクル寿命を有する電
池は得られない。これは下記の理由による。
Problems to be Solved by the Invention However, even if an electrode manufactured by such an electrode manufacturing method is applied to a non-aqueous electrolyte secondary battery, a battery having a sufficient cycle life cannot be obtained. This is due to the following reasons.

□       ここでの金属負極材料は、多孔性集電
体に保持された後に、溶融物中から取り出される。この
溶融物の温度は、材料に」=り異なるが約300〜70
0℃である。このため、集電体」−ての溶融負極拐料は
、溶融物中より取り出されると急速に冷却し、固化する
。よって、集電体−1−の負極材料金属は細かい多結晶
となり、粒界が増す。浸?青法により得られた電極を用
いて充放電をくり返すと、金属電極は粒界より微細化及
び微粉化し極板形状が崩れる。
□ The metal negative electrode material here is held in a porous current collector and then taken out from the melt. The temperature of this melt varies depending on the material, but is approximately 300 to 70°C.
It is 0°C. Therefore, when the molten negative electrode particles used as the current collector are taken out from the melt, they are rapidly cooled and solidified. Therefore, the negative electrode material metal of current collector-1- becomes fine polycrystalline, and the number of grain boundaries increases. Soaking? When charging and discharging are repeated using an electrode obtained by the blue method, the metal electrode becomes finer and finer than the grain boundaries, and the shape of the electrode plate collapses.

したがって、充放電→ノーイクルの寿命が短くなる。Therefore, the charging/discharging → no-cycle life becomes shorter.

浸漬法により得られた極板中の粒界を減らすだめには、
電極を再び、負極材料金属の融点近くの温度寸で加熱し
、その後徐冷する方法が採られるが、これでは二重の工
程となり、製造面からは繁雑である。
In order to reduce the grain boundaries in the electrode plate obtained by the immersion method,
The method used is to heat the electrode again to a temperature close to the melting point of the negative electrode material metal and then slowly cool it, but this requires a double process and is complicated from a manufacturing standpoint.

本発明は、このような従来の欠点を除去するものであり
、簡便で粒界の少ない電極の製造法により、充放電をく
り返しても極板形状の安定な信頼性の高い非水電解質二
次電池を提供することを目的とする。
The present invention eliminates these conventional drawbacks, and uses a simple method for manufacturing electrodes with few grain boundaries to produce highly reliable non-aqueous electrolyte secondary electrodes whose plate shape remains stable even after repeated charging and discharging. The purpose is to provide batteries.

問題点を解決するだめの手段 5、、 本発明の電極製造法は、金属溶融物上に液体層を設け、
集電体を金属溶融物中へ浸漬し、集電体に金属を付着、
一体化し、これを上記液体層へ導いた後、冷却1.固化
することを特徴とする。
Means for solving the problem 5. The electrode manufacturing method of the present invention includes providing a liquid layer on a molten metal,
Dip the current collector into the molten metal and attach the metal to the current collector.
After integrating and guiding this into the liquid layer, cooling 1. Characterized by solidification.

作  用 この技術的手段による作用は次の様になる。For production The effect of this technical means is as follows.

すなわち、金属溶融物中で一体化した集電体と負極材料
この一体化物は、溶融物」二にある液体層、1    
 ″導かれ・″′−0液体層にためられる・溶融物及び
:□     その上の液体層を入れている容器を次に
冷却すると、この容器は熱容量が太きいため、冷却速度
は遅く、したがって、液体層中にある集電体・負極材料
一体化物は徐冷され粒界の少々い電極ができる。
That is, the current collector and the negative electrode material integrated in the metal melt form a liquid layer in the melt.
``Guided'' - Collected in a 0 liquid layer - Melt and: □ When the container containing the liquid layer above it is then cooled, the cooling rate is slow because this container has a large heat capacity, and therefore The combined current collector/negative electrode material in the liquid layer is slowly cooled to form an electrode with slightly narrower grain boundaries.

丑だ、溶融物の容器を冷却せず、集電体・負極材料一体
化物を液体層に導いた後、ただちに、これを液体層よシ
取シ上げてもよい。これは、集電体・負極材料一体化物
表面上に液体が保持されているため、急冷されることが
ないからである。
Alternatively, the current collector/negative electrode material integrated product may be introduced into the liquid layer and then immediately removed from the liquid layer without cooling the melt container. This is because the liquid is retained on the surface of the integrated current collector/negative electrode material, so it is not rapidly cooled.

実施例 以下本発明の実施例を示す。Example Examples of the present invention will be shown below.

Li+等のアルカリ金属イオンを吸蔵・放出できる負極
材料として、ウッド合金(Bi2O,Cd 12,5゜
Pb26.Sn 12.5各重量%、融点70℃)、液
体層としてグリセリン(沸点270℃)、及び、負極材
料保持材(集電体も兼ねる)として、Niのエキスバン
ドメタルを用いた。第1図は、本発明に用いた電極製造
装置の概略図である。ローラ6に巻かれた集電体4は反
転ローラ6にガイドされて溶融金属1に浸漬され、液体
層2に導かれた後、ローラ7に巻きとられる。この時、
液体層2を充分深くしておけば、液体層」二部の温度は
負極材料の融点より低くなっているので、集電体・負極
材料一体化物は固化し、この位置で巻きとることができ
る。まだ、ローラ7け液体層2と大気下又はN 2 、
 A r等の不活性ガス雰囲気の間を移動できるように
なっている。ローラ7に巻きとられた集電体・負極材料
一体化物は、水、エタノール等で洗浄後、所定の寸法に
切りとれば電極ができる。
Wood alloy (Bi2O, Cd 12.5°Pb26.Sn 12.5% by weight each, melting point 70°C) was used as a negative electrode material capable of occluding and releasing alkali metal ions such as Li+, glycerin (boiling point 270°C) as a liquid layer, Further, an expanded Ni metal was used as a negative electrode material holding material (also serving as a current collector). FIG. 1 is a schematic diagram of an electrode manufacturing apparatus used in the present invention. The current collector 4 wound around the roller 6 is guided by the reversing roller 6, immersed in the molten metal 1, guided into the liquid layer 2, and then wound around the roller 7. At this time,
If the liquid layer 2 is deep enough, the temperature of the second part of the liquid layer is lower than the melting point of the negative electrode material, so the current collector/negative electrode material combination will solidify and can be wound up at this position. . Still, roller 7 with liquid layer 2 under atmosphere or N 2 ,
It is designed to be able to move between inert gas atmospheres such as Ar. The integrated current collector/negative electrode material wound around the roller 7 is washed with water, ethanol, etc., and then cut to a predetermined size to form an electrode.

Ni集電体・ウッド合金一体化物をローラ7で巻きとや
、ローラアをグリセリン層2中に位置させた捷捷、容器
3全体を冷却して得た電極をAとする。
An electrode obtained by winding a Ni current collector/wood alloy integrated product with a roller 7, spinning the roller with the roller placed in the glycerin layer 2, and cooling the entire container 3 is designated as A.

次に、ローラ7を破線の如くグリセリン層2より」−に
出し、この位置で、Ni集電体・ウッド合金一体化物を
巻きとり、冷却して得た電極をBとする。
Next, the roller 7 is brought out from the glycerin layer 2 as indicated by the broken line, and at this position, the Ni current collector/wood alloy integrated product is wound up and cooled, and the obtained electrode is designated as B.

比較例として、グリセリン層2がなく、Ni集電体・ウ
ッド合金一体化物を有接大気下にさらしながら冷却、ロ
ーラ7に巻きとり得た電極をCとする。
As a comparative example, an electrode without the glycerin layer 2, in which the Ni current collector/wood alloy integrated product was cooled while being exposed to the atmosphere, and could be wound around a roller 7, was designated as C.

このようにして得た電極A、  B、  Cを比較する
と、Cの電極表面は全体に粗密であり、酸化物におおわ
れており純色であった。これに対して、本発明の電極A
、  Bの表面は滑らかで金属光沢かあった。電極Cに
おいて、金属光沢を持つ電極を得るためには、電極表面
をみがくか、あるいは、N2゜龜 ’      Ar等の不活性雰囲気で作製する必要が
あり、この点から見ても本発明の製造法の優位性が明ら
かである。
Comparing electrodes A, B, and C thus obtained, the electrode surface of C was coarse and dense as a whole, covered with oxide, and had a pure color. In contrast, the electrode A of the present invention
The surface of B was smooth and had a metallic luster. In order to obtain an electrode with metallic luster in the electrode C, it is necessary to polish the electrode surface or manufacture it in an inert atmosphere such as N2゜Ar'; from this point of view, the production of the present invention is The supremacy of law is clear.

寸だ、電極A、  B、  Cの金属組織を観察すると
、電極Aにおける結晶粒が最も大きく、以下B、  C
の順となった。しかし、電極Bの製造法においても、グ
リセリン層2の深さをウッド合金層1の厚みの5倍以」
−にすれば、一体化物を巻きとるローラ7の速さが同じ
場合、電極Aと同程度の結晶粒金属組織を持つ電極が得
られた。
When we observe the metal structures of electrodes A, B, and C, we find that the crystal grains in electrode A are the largest, followed by B and C.
The order was However, in the manufacturing method of electrode B, the depth of the glycerin layer 2 is five times the thickness of the wood alloy layer 1.
-, an electrode having the same crystal grain metal structure as electrode A was obtained when the speed of the roller 7 for winding up the integrated material was the same.

次に、上記の電極A、  B、  Cを用い、扁平型電
池にて充放電試験を行なった。
Next, using the above electrodes A, B, and C, a charge/discharge test was conducted on a flat battery.

電極A、  B、  Cは直径1ア朧に成形した。ウッ
ド合金層の重量は約270mgであった。これらを封目
板にスポット溶接し、金属リチウム箔をそれぞれ27り
圧着した。
Electrodes A, B, and C were formed to have a diameter of 1 mm. The weight of the wood alloy layer was approximately 270 mg. These were spot welded to a sealing plate, and 27 times of metallic lithium foil was crimped onto each.

正極活物質にはv2o5を用い、これとカーボンブラッ
ク、四弗化エチレン樹脂とを重量比で100対5対10
の割合で混合し、混合物200 mgをT1のエキスバ
ンドメタル集電体をスポット溶接した電池ケース内に成
形圧着した。
V2O5 is used as the positive electrode active material, and the weight ratio of this, carbon black, and tetrafluoroethylene resin is 100:5:10.
200 mg of the mixture was molded and pressed into a battery case to which a T1 expanded metal current collector was spot welded.

電解液には、プロピレンカーポネ−トとジメトキシエタ
ンを等体積の割合で混合したものに97、−7 1モル/lの割合でL I C(l O4を溶解したも
のを用い、また、セパレータにはポリプロピレン不織布
を用いた。
The electrolyte used was a mixture of propylene carbonate and dimethoxyethane in equal volumes, with LIC (lO4) dissolved at a ratio of 97, -7 1 mol/l, and a separator. A polypropylene nonwoven fabric was used.

このように構成した電池において、ZmAの定電流で2
.2〜3.6■の電圧の範囲で充放電を行なった。
In a battery configured in this way, at a constant current of ZmA, 2
.. Charging and discharging were performed in a voltage range of 2 to 3.6 .

第2図は、各電池の各サイクルでの放電容量をプロノト
シたもので、図中A、B、Cが電極A。
Figure 2 shows the discharge capacity of each battery at each cycle. In the figure, A, B, and C are electrodes A.

B、  Cに対応する。これより、本発明の電/ll2
A。
Corresponds to B and C. From this, the electricity/ll2 of the present invention
A.

Bは比較例Cよりすぐれたサイクル寿命を有することが
わかる。
It can be seen that Comparative Example B has a cycle life superior to that of Comparative Example C.

なお、本実施例では、Li+を吸蔵・放出する負極材料
金属としてウッド合金、液体層としてグリセリンを用い
たが、本発明はこれらに限定されるものではなく、へ1
合金や他の可融合金の負極材料、ドデシルベンゼン等の
有機液体、水、水ガラス等の無機液体から々る液体層を
用いても同様な効果が得られる。
In this example, Wood alloy was used as the negative electrode material metal that absorbs and releases Li+, and glycerin was used as the liquid layer, but the present invention is not limited to these.
A similar effect can be obtained by using a liquid layer made of an alloy or other fusible metal negative electrode material, an organic liquid such as dodecylbenzene, or an inorganic liquid such as water or water glass.

まだ、これより、液体層を変化させることにより、冷却
速度を変えることができるので、種々の107、 □ 大きさの結晶粒を有する電極を調整できるという効果も
生じる。
Furthermore, since the cooling rate can be changed by changing the liquid layer, there is also the effect that electrodes having crystal grains of various sizes can be adjusted.

発明の効果 以上のように、本発明によれば、簡便で粒界の少ない電
極を得ることができ、充放電をくり返しでも極板形状の
安定なサイクル寿命の長い電池が得られる。
Effects of the Invention As described above, according to the present invention, a simple electrode with few grain boundaries can be obtained, and a battery with a stable electrode plate shape and a long cycle life even after repeated charging and discharging can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いた電極製造装置の概略図であり
、第2図は本発明の実施例及び比較例の電池の各サイク
ルにおける放電容量をプロットしだものである。 1・・・・・・金属溶融物、2・・・・・・液体層、3
・・・・・・容器、4・・・・・・集電体。 (″!A(Dff140Flf rl°7f′!″11
7゛7    、。 :・
FIG. 1 is a schematic diagram of the electrode manufacturing apparatus used in the present invention, and FIG. 2 is a plot of the discharge capacity in each cycle of the batteries of the example of the present invention and the comparative example. 1...Metal melt, 2...Liquid layer, 3
... Container, 4... Current collector. (''!A(Dff140Flf rl°7f'!''11
7゛7,. :・

Claims (1)

【特許請求の範囲】[Claims] 電池の充・放電により、アルカリ金属イオンを吸蔵・放
出する金属電極の製造方法であって、金属溶融物上に液
体層を設け、集電体を上記金属溶融物中に浸漬して集電
体に金属を付着させ、この集電体・金属一体化物を上記
液体層へ導いた後、冷却、固化することを特徴とする金
属電極の製造法。
A method for manufacturing a metal electrode that occludes and releases alkali metal ions by charging and discharging a battery, the current collector being produced by providing a liquid layer on a molten metal and immersing a current collector in the molten metal. A method for manufacturing a metal electrode, which comprises: attaching a metal to the current collector/metal integrated product, guiding the current collector/metal integrated product to the liquid layer, and then cooling and solidifying the current collector/metal integrated product.
JP60080566A 1985-04-16 1985-04-16 Manufacture of metal electrode Pending JPS61239561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080566A JPS61239561A (en) 1985-04-16 1985-04-16 Manufacture of metal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080566A JPS61239561A (en) 1985-04-16 1985-04-16 Manufacture of metal electrode

Publications (1)

Publication Number Publication Date
JPS61239561A true JPS61239561A (en) 1986-10-24

Family

ID=13721884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080566A Pending JPS61239561A (en) 1985-04-16 1985-04-16 Manufacture of metal electrode

Country Status (1)

Country Link
JP (1) JPS61239561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241859A (en) * 1987-03-11 1988-10-07 ハイドロ−ケベック Thin film electrode supported on electron conducting sheet and manufacture thereof
JPH01119792A (en) * 1987-09-15 1989-05-11 Reaktor Brennelement Union Gmbh Fuel rod for reactor fuel assembly
JP2012084522A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Lithium ion secondary battery anode, lithium ion secondary battery, and lithium ion secondary battery anode manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241859A (en) * 1987-03-11 1988-10-07 ハイドロ−ケベック Thin film electrode supported on electron conducting sheet and manufacture thereof
JPH01119792A (en) * 1987-09-15 1989-05-11 Reaktor Brennelement Union Gmbh Fuel rod for reactor fuel assembly
JP2012084522A (en) * 2010-09-17 2012-04-26 Furukawa Electric Co Ltd:The Lithium ion secondary battery anode, lithium ion secondary battery, and lithium ion secondary battery anode manufacturing method

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
JPH08153541A (en) Lithium secondary battery
JPH11191417A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP2001297766A (en) Nonaqueous electrolyte secondary cell, negative electrode material of the same and manufacturing method of negative electrode material
JPH07296812A (en) Negative electrode and li secondary battery
CN101662016B (en) Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2004508687A (en) Lithium powder cathode, lithium battery using the same, and methods for producing them
JP3659177B2 (en) Negative electrode material for non-aqueous secondary battery, method for producing the same, and negative electrode
JPS61239561A (en) Manufacture of metal electrode
JPH1197032A (en) Current collector made of aluminum foil for secondary cell
JPH08180853A (en) Separator and lithium secondary battery
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2001291513A (en) Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JPS63264865A (en) Manufacture of negative electrode for secondary battery
JPH04188560A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JPH0213425B2 (en)
JPS63264867A (en) Manufacture of hydrogen storage electrode
JPS60218774A (en) Manufacture of rechargeable negative electrode
JPS6158164A (en) Zinc alloy powder for negative electrode of nonmercury alkaline battery and its manufacture
JP2003317719A (en) Nonaqueous electrolyte secondary battery
JP3432976B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries